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Abstract: Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health
threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell
cholera vaccines in young children is poor. An obstacle to the development of improved cholera
vaccines is the need for a better understanding of the primary mechanisms of cholera immunity
and identification of improved correlates of protection. Considerable progress has been made over
the last decade in understanding the adaptive and innate immune responses to cholera disease as
well as V. cholerae infection. This review will assess what is currently known about the systemic,
mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our
understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.

Keywords: cholera; Vibrio cholerae; immunity; innate; adaptive; antibody; cellular; mucosal; systemic;
memory; vaccine

1. Introduction

Cholera is a severe dehydrating disease of humans caused by Vibrio cholerae serogroup
O1 and O139. Over one billion people remain at risk for cholera in 51 endemic countries,
and there are an estimated three million cases and 95,000 deaths from the disease each
year [1]. The current global cholera pandemic began in 1961 with El Tor V.cholerae O1
and shows no signs of abating, as evidenced by recent large outbreaks in Haiti, Yemen,
and South Sudan and annual epidemics in countries in Asia and Africa. This reality has
led to enhanced commitments to cholera control strategies [2]. Such strategies now include
vaccination against cholera, as well as improved water and sanitation efforts [2]. Currently
available oral killed-cholera vaccines (kOCVs) have been a transformative addition to these
control efforts; however, these vaccines may provide limited durable protection, especially
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in immunologically naïve individuals, including children under five years of age who bear
a large proportion of the global cholera burden [3]. In comparison, survivors of clinical
cholera, including young children, have high-level protective immunity that persists for
years [4]. An improved understanding of immune responses associated with protection
against cholera could lead to next-generation vaccines or prevention strategies. This review
will assess what is currently known about the systemic, mucosal, memory, and innate
immune responses to clinical cholera, as well as recent advances in our understanding of
the mechanisms and correlates of protection against V. cholerae O1 infection

2. V. cholerae-Antigen Repertoire
V. cholerae O-Specific Polysaccharide (Lipopolysaccharide)

Protection against cholera is serogroup-specific, and serogroup specificity is dictated
by the O-specific polysaccharide (OSP) component of V. cholerae lipopolysaccharide (LPS).
Because of this, there is no cross-protection between infection with V. cholerae O1 and
O139, even though these organisms can both cause epidemic cholera and are essentially
genetically identical except for differences in the rfb genes encoding the OSP of these two
serogroups [5–7]. Antibodies that bind externally to V. cholerae are binding to surface
displayed antigens, either outer membrane proteins or LPS. Previous work has shown
that the vibriocidal response is mediated by antibodies that bind to LPS, and specifically
OSP [8,9]. Following clinical cholera, over a third of all induced antibodies target V. cholerae
OSP [10,11]. These data would suggest that anti-LPS and specifically OSP-specific immune
antibody responses are the actual mediators of protection against cholera.

Before OSP became available as a reagent for use in immunologic assays, a body
of evidence showed that LPS responses (plasma, mucosal and memory) occur following
cholera and vaccination in both children and adults, and that these responses correlated
with protection against cholera, including in young children [12–15]. These findings
were confirmed with OSP, once it became available for study [9,16–19]. Anti-OSP/LPS
IgG, IgA and IgM responses following immunization of children in Bangladesh with
killed oral cholera vaccines are significantly lower than those induced following clinical
disease in age-matched patients, including the absence of anti-LPS memory responses in
vaccinees despite induction of vibriocidal responses [15,16,18]. Specifically, infants and
young children receiving kOCVs did not mount IgG, IgA, or IgM antibody responses to
V. cholerae OSP or LPS, whereas older children showed significant responses.

In comparison to the vaccinees, young children with wild-type V. cholerae O1 infection
showed significant antibody responses against OSP/LPS. OSP responses correlated with
age in vaccinees, but not in cholera patients, reflecting the ability of even young children
with wild-type cholera to develop OSP responses. These differences might contribute to the
lower efficacy of protection rendered by kOCV than by wild-type disease in young children
and suggest that efforts to improve OSP-specific responses might be critical for achieving
optimal cholera vaccine efficacy in this younger age group [15,16]. In addition, avidity
of anti-LPS IgG and IgA antibodies following wild-type disease is high and prolonged,
despite a decrease in vibriocidal titers by day 180; and anti-LPS avidity correlates with
induction of memory B-cell responses [20]. Anti-LPS avidity falls rapidly to baseline by day
30 following oral vaccination, suggesting a possible explanation for lower and shorter-term
immunity afforded by kOCVs [20]. These data suggest that LPS/OSP specific responses
may be better markers of long-term protection against cholera in endemic zones than other
immune responses.

Much effort is now being made to assess how OSP-specific antibodies might protect
against cholera, with a growing body of evidence suggesting that protection against
infection may involve the ability of OSP-specific antibodies to impede the motility of
V. cholerae organisms in the human intestine. This effect requires at least two-point binding
of OSP-specific antibodies [21–26].
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3. Protein Antigens

In addition to OSP, well-characterized V. cholerae antigens include the following pro-
teins: cholera toxin B subunit (CTB), the toxin co-regulated pilus (TCP) subunit A (TcpA),
and V. cholerae cytolysin (VCC), also referred to as hemolysin A (HlyA). Cholera toxin is
a major virulence factor for all toxigenic strains of V. cholerae and consists of five B (CTB)
subunits associated non-covalently with a single, enzymatically active A subunit [27].
TcpA is a major structural component of TCP, a colonizing factor essential for virulence
in humans [28]. VCC generates membrane pores in eukaryotic cells and has been shown
to induce fluid accumulation in ligated rabbit ileal loops and induce chloride secretion in
intact human intestinal mucosa [29,30]. CTB, TcpA, and VCC have been shown to induce
systemic, mucosal, and memory B-cell responses after V. cholerae infection [17,31–33].

Additional antigenic targets of the immune response to V. cholerae have recently been
identified. The antigenic repertoire recognized by the cholera-induced plasmablast popula-
tion was assessed through generation of a panel of monoclonal antibodies (mAbs) isolated
following single-cell expression of day 7 plasmablasts from V. cholerae-infected patients [11].
Plasmablasts are activated antibody-secreting cells that are transiently found in the cir-
culation after either infection or vaccination. Both cholera and cholera vaccines induce a
potent mucosal homing plasmablast response that peaks seven days after infection and is
strongly predictive of the presence of specific duodenal plasma cells for up to six months
after cholera [10,34], suggesting that a proportion of these cells ultimately take up residence
in the intestine as plasma cells. Of the 138 mAbs that were generated from a total of
seven participants, 24 were OSP-specific, 37 were CtxB-specific, 12 were CtxA-specific, and
none were TcpA-specific [11]. Using a V. cholerae-antigen array containing 95% of the
V. cholerae proteome, nine additional antigenic targets were identified, most notably
V. cholerae sialidase/mucinase (NanH), which was the target of 6 mAbs (or 5% of all
circulating plasmablasts). Flagellin protein A and ToxR-regulated mucinase tagA were
also identified.

This work was further supported by an immunoscreen using the V. cholerae antigen
array above with plasma and antibodies recovered from culture supernatants of activated
plasmablasts [35]. Fifty-nine antigens were demonstrated to have higher immunoreactivity
at the early convalescent stage of infection compared to the acute stage or healthy con-
trols [17]. These included the known antigens OSP, CTB, TcpA, VCC, as well as several
novel antigens, including NanH, cholera toxin A subunit (CtxA), an outer membrane
protein (OmpV), a protein phosphotransferase (PtsP), and flagellar proteins (FlaC, FlaD).

Systemic, mucosal, and memory B-cells responses to NanH occur after clinical cholera,
with NanH found to be the third most common antigenic target of a mucosal homing
plasmablast response [11,17,36]. NanH is a virulence factor that catalyzes the cleavage of
terminal sialic acid residues from gangliosides on the membrane of intestinal epithelial cells
to generate monogangliosides (GM1), the binding site for CT [37]. NanH-neutralizing anti-
bodies have been shown to block the toxin-potentiating effect of NanH in vitro [11]. These
findings together suggest a possible functional role for NanH in protective immunity to
cholera and antibody responses to NanH have been found to correlate with protection [36].

4. Correlates of Protection
4.1. Vibriocidal Response-Pros/cons

The vibriocidal response has historically been used to assess protection against cholera,
but antibody-based bacterial killing of V. cholerae in the intestinal lumen is unlikely. There
is no evidence that enhanced opsonophagocytosis or antibody-dependent cytotoxic activity
in the intestinal lumen plays a role in mediating protection against cholera. Although
cell-free antibody-based killing via complement lysis might be considered possible in the
intestinal lumen, viability studies in animals have shown that bactericidal activity is not
required for protection from disease [22,25,26]. In addition, although C3 and earlier com-
ponents of the complement cascade have been detected in the intestinal lumen/epithelium,
the terminal components of the complement cascade have not been detected in the lumen
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in the absence of epithelial breakdown and intestinal inflammation [38–40]. The primary
antibody secreted at mucosal surfaces is IgA; however, IgA lacks the Fc regions of IgG
and IgM that bind C1q, and consequently does not activate complement via the classical
complement pathway; moreover, IgA complexed to antigen actually inhibits complement
activation by IgM and IgG [41–43]. These data suggest that IgA plays a minimal, if any,
role in complement activation in the intestine. The vibriocidal antibody assay, however,
assesses complement activation [12,44,45].

While the vibriocidal response is associated with protection against cholera [46] and is
an important biomarker of recent infection [47], there is no absolute value above which
protection is assured [44]; and cholera vaccines that have been equivalent to wild type
infection in inducing vibriocidal antibody responses have failed in clinical field trials
in humans [48]. Similarly, although vibriocidal antibody titers increase sharply within
10 days of symptomatic cholera, they then fall rapidly within 30 days of infection, returning
to baseline within 6–12 months, despite the fact that an episode of symptomatic cholera
induces long-term immunity against cholera that exists for at least three to 10 years [4,49,50].
In addition, individuals can be protected against cholera with no increase of vibriocidal
antibody responses following challenge and exposure, suggesting that other immune
responses mediate protection against cholera [50–53]. Importantly, OSP responses differ
substantially in naïve North Americans and low-to-middle-income country residents
infected with V. cholerae, despite induction of comparable vibriocidal responses [54]. These
data strongly suggest that the vibriocidal antibody is at best an imperfect non-mechanistic
correlate of protection against cholera.

The majority of the vibriocidal response consists of IgM antibodies that specifically
target OSP, giving the vibriocidal its serogroup specificity [9]. Interestingly, IgM antibodies,
just like IgA antibodies, are actively transported across intact intestinal epithelium into the
intestinal lumen, so it is quite possible that anti-vibrio OSP IgM antibodies may play a role
in mediating at least short-term protection against cholera (for instance, following vaccina-
tion). Still, there are no data that this protection is mediated by complement-dependent
membrane attack complex (MAC)-based lysis at a mechanistic level. If the vibriocidal
antibody response is only a surrogate/correlate of protection against cholera, is there a
related mechanistic antibody response that might actually mediate protection, especially
long-term protection not afforded by IgM? Mucosal IgA and IgM antibodies may protect
against pathogens at mucosal surfaces by inhibiting bacterial-epithelial cell interactions
(“immune exclusion”), and/or via bacterial “clumping” either via agglutination at high
bacterial concentrations (≥108 non-motile bacteria per gram), or “enchaining growth”
(antibody-mediated cross-linking preventing bacterial separation after bacterial division)
at lower bacterial concentrations, with facilitated mucosal clearance of clumped bacte-
ria [55]. Recent data also suggest that inhibition of motility of V. cholerae in the intestinal
lumen may contribute mechanistically to protection against cholera [25,26].

4.2. Memory B-Cells

Individuals with cholera are protected for a period well beyond when the serum vibri-
ocidal antibody, circulating antigen-specific plasmablasts, and serum antibody to specific
cholera antigens have disappeared or waned in the circulation, suggesting that longer-
term protection may depend on anamnestic responses mediated by immunologic memory
following primary infection. During primary infection, naïve B-cells traffic through sec-
ondary lymphoid tissues, where the B-cell receptor may recognize an antigen presented
on an antigen-presenting cell, priming that B-cell to internalize, process, and present that
antigen on MHC class II molecules. Primed B-cells interact with primed T follicular helper
cells, a subset of CD4-positive T-cells that have been similarly primed from a naïve T-cell
by interaction with the same specific antigen presented on an antigen-presenting cell.
The interaction of the primed B and T follicular helper cells activate the B-cell to undergo
further proliferation, somatic hypermutation, and isotype switching, and subsequently
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to differentiate into memory B-cells and long-lived plasma cells specific for that antigen,
which mediate immunologic memory [56].

Both adults and children with cholera develop memory B-cells of the IgG and IgA
isotypes specific to protein antigens, such as CTB and TcpA, which persist in the circulation
out to at least one year following infection. Sialidase-specific IgA memory B-cells have
also been demonstrated after cholera [36]. Similarly, memory B-cells also develop that
recognize both LPS and the OSP of V. cholerae O1, which persist in the circulation out
to at least 90-180 days following infection [15,32,33,47,57]. The mechanisms by which
isotype-switched memory B-cells develop to the T-cell-independent antigens LPS and OSP
are currently unknown.

Individuals receiving kOCVs develop memory B-cells to CTB and OSP, but at sub-
stantially lower levels than seen with natural infection and are shorter-lived [15,57,58].
These differences might contribute to the lower efficacy of protection rendered by these
vaccines. The live-attenuated cholera vaccine, CVD 103-HgR (approved in the United
States as a traveler’s vaccine), has been shown in clinical trials in developed countries
to induce vibriocidal responses that persist beyond two years in older children [59]
and beyond one year in adults [60]. In addition, induction of memory B-cells to LPS
and CTB has also been demonstrated in a US population [60,61]. However, oral vaccines
(including CVD 103-HgR) induce lower immune responses and efficacy in resource-poor
countries compared to developed countries [62]. More studies of live attenuated vaccines
are needed in endemic countries as several host factors are suspected to impact responses
in different geographic populations including nutritional status, intestinal epithelial barrier
integrity, enteric enteropathy, concurrent infection, and diet [62–66]

Using a household contact study approach, OSP responses were found to correlate
with protection in cholera endemic populations, including in young children [57]; and OSP
and LPS responses were found to correlate with protection against cholera in an exper-
imental infection model in humans [67,68]. However, no protection was mediated by
the presence of circulating memory B-cells recognizing CTB [14,57]. There is currently
inadequate data on the presence and persistence of antigen-specific memory B-cells or
long-lived plasma cells in gastrointestinal mucosa and whether these might mediate more
direct local protection from infection or disease.

5. Innate Immune Responses to Cholera

Microscopic characterization of intestinal mucosal tissue obtained by endoscopic
biopsy shows that V. cholerae disrupts components of the epithelium and is associated with
an influx of inflammatory cells, including neutrophils, lymphocytes and macrophages,
into the lamina propria [69,70]. At a molecular level, early changes include the increased
expression of a wide array of antibacterial effector proteins such as lactoferrin (LTF),
lipocalin2 (LCN2) and Bactericidal/Permeability-increasing-fold-containing family B mem-
ber 1 (BPIFB1; also known as LPLUNC1), as well as oxidases including nitric oxide synthase
(NOS2) and dual oxidase 2 (DUOX2) [71–73]. V. cholerae infection also results in the up-
regulation of key cytokine signaling hubs. Several of these activated signaling pathways,
such as the NLR family pyrin domain containing 3 (NLRP3) inflammasome and interferon
regulatory factor 7 (IRF7)/type I interferon, are not typical of the innate immune response
to pyogenic bacterial infections and are instead more typical of the response seen with viral
infection [73].

The functional significance of the innate immune responses to V. cholerae infection is
not fully understood. While the innate immune system does not entirely prevent infection—
since most immunologically naïve individuals who ingest enough organisms will become
infected—it nonetheless plays an essential role in directing the adaptive immune response.
For example, the innate immune response to live pathogenic V. cholerae results in the
expression of key cytokines such as IL-23 that promote B- and T-cell differentiation [74].

The innate immune system may also impact disease severity. For example, human
biopsy-derived enteroids (an in vitro model for the intestinal epithelium) engineered to



Trop. Med. Infect. Dis. 2021, 6, 192 6 of 12

express the human blood group O-antigen are more susceptible to the effects of cholera
toxin than enteroids expressing the A-type antigen [75]. This provides a molecular basis for
the link between the blood group O phenotype and increased disease severity, and also may
explain why the lowest prevalence of the O blood group phenotype in the world is observed
the Bengal region of South Asia, where cholera is historically endemic [76]. Similarly,
a genome-wide association study found that variations in both the type I interferon and
NLRP3 inflammasome signaling pathways have been under strong selective pressure in
Bangladesh, suggesting that these cholera-linked innate immune responses have played an
important role in human survival historically in this region [77].

6. Interaction between Microbiota and Cholera Immunity

The composition of the gut microbiota may also impact susceptibility to V. cholerae
infection, the clinical severity of disease, and subsequent immune responses. For the
identification of microbial markers associated with susceptibility to infection, a recent
study characterized the microbiota of close contacts of cholera patients in Bangladesh [78]
by measuring the gut microbiota at the time of a shared exposure to the household case
or common water source. The study assessed the microbial composition before and after
exposure and found that the gut microbiota predicted susceptibility to infection at least as
well as the clinical risk factors known to contribute to susceptibility, such as age, baseline
vibriocidal titer, and blood group O-status.

Several taxonomic groups, such as Enterobacteriaceae and Streptococcus, were corre-
lated with the stool of individuals who developed infection. At the same time, the genera
Prevotella, Bacteroides, and Lactobacillus were more dominant among contacts who did not de-
velop infection during the follow-up period. Using the same cohort of household contacts,
a metagenomic study was conducted that identified specific gene groups that correlated
with the development of infection [79]. For example, iron metabolism and regulation genes
were more common in the gut microbiota of persons who did not develop infection after
exposure. Like most bacteria, V. cholerae has several mechanisms of scavenging iron in the
gut, and defects in iron metabolism have been shown to be critical to V. cholerae virulence
in animal studies [80–82]. Bile acids are also metabolized by the gut microbiota and may
impact susceptibility to V. cholerae infection. The bacterium Blautia obeum has been found
to impact the ability of V. cholerae to colonize an animal host by degrading taurocholate,
a conjugated bile acid [83]. V. cholerae senses taurocholate in the small intestinal environ-
ment and this triggers virulence factor expression; however, in the presence of B. obeum,
this effect is reduced [83,84]. These studies demonstrate that commensal microbes in the
human gut microbiota may potentially impact susceptibility to V. cholerae infection, through
signaling molecules or other mechanisms. They may also impact responses to oral cholera
vaccination. This remains an area of active study.

7. Mucosal-Associated Invariant T (MAIT) Cells

Mucosal-associated invariant T (MAIT) cells are innate-like T-cells defined by the
expression of an invariant T-cell receptor (TCR) alpha chain, Vα7.2 (TRAV1-2) in humans,
with a limited diversity of TCR beta chains [85–87]. The MAIT TCR recognizes microbial-
derived metabolites of the riboflavin biosynthetic pathway presented on the MHC Class
1-related protein, MR1 [88]. MAIT cells make up approximately 1-10% of T-cells in healthy
human blood, and are enriched in the liver, skin, lymph nodes and intestinal and respiratory
mucosa [86,89–93]. MAIT cells are potent producers of pro-inflammatory cytokines and
cytotoxic molecules and have been shown to provide protection against mucosal bacterial
pathogens in murine challenge models [94–97]. Given their potential to participate in
both innate and adaptive immunity, MAIT cells have been postulated to play key roles
in mucosal infections. Observational studies have shown that MAIT cell frequency is
reduced in the blood of humans with mucosal infections [98–101]. This finding, along
with an increase in activation and gut homing markers [98,102,103] suggests that MAIT
cells may traffic to the mucosa during infection. Despite their enrichment in the human
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gastrointestinal (GI) tract, knowledge about MAIT cells in the context of GI bacterial
infections remains limited.

V. cholerae is capable of de novo riboflavin biosynthesis using the riboflavin biosyn-
thetic pathway [104]), the intermediates of which can activate MAIT cells [105]. Flow
cytometric analysis of MAIT cells in Bangladeshi adult and pediatric patients present-
ing with severe culture-confirmed cholera showed that at seven days post-cholera onset,
peripheral blood MAIT cells had increased expression of activation markers, and MAIT fre-
quency was significantly decreased in pediatric but not adult patients, suggesting potential
trafficking to the mucosa [106]. In support, analysis of duodenal biopsies and peripheral
blood MAIT cells from another cohort of adult Bangladeshi cholera patients revealed
increases in duodenal lamina propria MAIT cell frequency and expression of gut homing
markers in peripheral blood MAIT cells [107]. Changes in frequency of peripheral blood
MAIT cells were also found to correlate with LPS IgA and IgG responses, suggesting that
MAIT cells may be associated with class switching for T-cell-independent antigens [106].
Furthermore, in a murine model of V. cholerae intranasal vaccination in T-cell deficient mice,
adoptive transfer of MAIT cells rescued V. cholerae-specific IgA responses and promoted
B-cell differentiation [108]. Although these data highlight that MAIT cells, especially those
in the duodenal mucosa, are activated in response to V. cholerae infection, further investiga-
tion into their function and phenotype is necessary to understand the role that MAIT cells
play in cholera immunity.

8. Conclusions

Our understanding of cholera immunity has greatly increased over the last two
decades. However, gaps remain in our understanding of the primary mechanisms of
protective immunity to cholera, specifically whether antigen-specific memory B-cells or
long-lived plasma cells are present and persist in gastrointestinal mucosa and the vari-
ous physiologic mechanisms of an effective antibody-mediated response against cholera.
In addition, further assessment of how the gut microbiome and innate immune response
modulate the adaptive immune response to infection and vaccination will be impor-
tant for a full understanding cholera immunity. These insights into the variation in
immune responses between natural infection and vaccination will lead to improved
vaccination strategies.
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