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ABSTRACT: Accurate and reliable prediction of the optical and
photophysical properties of organic compounds is important in
various research fields. Here, we developed deep learning (DL)
optical spectroscopy using a DL model and experimental database
to predict seven optical and photophysical properties of organic
compounds, namely, the absorption peak position and bandwidth,
extinction coefficient, emission peak position and bandwidth,
photoluminescence quantum yield (PLQY), and emission lifetime.
Our DL model included the chromophore−solvent interaction to
account for the effect of local environments on the optical and
photophysical properties of organic compounds and was trained
using an experimental database of 30 094 chromophore/solvent
combinations. Our DL optical spectroscopy made it possible to
reliably and quickly predict the aforementioned properties of organic compounds in solution, gas phase, film, and powder with the
root mean squared errors of 26.6 and 28.0 nm for absorption and emission peak positions, 603 and 532 cm−1 for absorption and
emission bandwidths, and 0.209, 0.371, and 0.262 for the logarithm of the extinction coefficient, PLQY, and emission lifetime,
respectively. Finally, we demonstrated how a blue emitter with desired optical and photophysical properties could be efficiently
virtually screened and developed by DL optical spectroscopy. DL optical spectroscopy can be efficiently used for developing
chromophores and fluorophores in various research areas.
KEYWORDS: deep learning, optical property, photophysical property, fluorophore, chromophore, chromophore-solvent interaction,
experimental database

■ INTRODUCTION

The optical and photophysical properties of chromophores and
fluorophores are important for industrial and academic
applications in a variety of research fields such as, organic
solar cells,1 organic light-emitting diodes (OLEDs),2 bioimag-
ing,3 organic sensors,4 and organic dyes. Substantial efforts have
beenmade to design and synthesize new colorful materials based
on various chromophores and fluorophores for various
purposes. To develop new molecules with desired properties,
knowledge of the chemical and physical properties of previously
studied molecules is required. In particular, the optical
properties of molecules, such as absorption and emission peak
positions and bandwidths, extinction coefficients, photo-
luminescence quantum yield (PLQY), and emission lifetime,
are important for the development of chromophores and
fluorophores. For given molecules, the aforementioned optical
properties are readily measured using various spectroscopic
instruments, such as spectrophotometers, spectrofluorometers
with integrating spheres, and time-resolved fluorescence (TRF)
spectrometers. It is also desirable that the optical properties of
newly designed chromophores and fluorophores are accurately

estimated in advance to reduce development costs. To estimate
the optical properties of molecules, empirical rules or theories,
such as theWoodward−Fieser rule,5 first-principles,6,7 and time-
dependent density functional theory (TD-DFT) calcula-
tions8−10 have been developed. Such methods have limitations
resulting from the limited range of molecules to which they can
be applied and from the lack of practical theories to calculate
specific properties. While these rules and theories have been
used to successfully predict many chemical and physical
properties, more accurate, facile, and computationally inex-
pensive methods are still needed.
In this study, we have developed a deep learning (DL)

method to reliably and quickly predict the optical and
photophysical properties of organic compounds. Our DL
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method includes chromophore−solvent interactions to account
for the effect of environment on the optical and photophysical
properties. Our DL model was trained using an experimental
database of 30 094 chromophore/solvent combinations con-
sisting of 11 392 unique organic chromophores in 369 solvents
or solid states.11,12 Our DL method is found to readily predict
seven optical properties such as the first absorption peak
position and bandwidth, extinction coefficient, emission peak
position and bandwidth, photoluminescence quantum yield, and
emission lifetime. The root mean squared errors of the predicted
values were found to be 26.6 and 28.0 nm for absorption and
emission peak positions, 603 and 532 cm−1 for absorption and
emission bandwidths, and 0.209, 0.371, and 0.262 for the
logarithm of the extinction coefficient, PLQY, and emission
lifetime, respectively. Using these predicted optical properties of
organic compounds, the electronic absorption and emission
spectra are shown to be readily reconstructed, and the colors of
organic molecules associated with the absorption and emission
are estimated in Commission Internationale de l’Eclairage
(CIE) color coordinates. Finally, we demonstrate that the DL
model can be effectively utilized to prescreen newly designed
molecules to find target molecules that exhibit the desired
optical and photophysical properties.

■ RESULTS AND DISCUSSION

Experimental Optical Properties of Organic Compounds

The absorption properties of a chromophore in a solvent are
characterized by the first absorption peak position (λabs),
bandwidth (σabs), and extinction coefficient (ε), whereas the
emission properties of a fluorophore are characterized by the
emission peak position (λemi), bandwidth (σemi), and photo-
luminescence quantum yield (PLQY, Φ). In addition, the
emission (excited-state) lifetime (τ) is an intrinsic property of
fluorophores that is importantly considered in fluorescence
lifetime imaging and dynamic quenching. The experimental
database of these optical and photophysical properties of organic
compounds is prerequisite for our DL method. As shown in
Figure 1, the experimental database includes 11 392 unique
organic chromophores in 369 solvents or solid states, yielding
30 094 chromophore/solvent combinations. Briefly, the exper-
imental database was built by collecting seven optical and
photophysical properties of organic compounds from the
literature and has been described in detail elsewhere.11,12 Not
all seven optical and photophysical properties were available for
each chromophore/solvent pair in the database. A variety of
chromophore structures are included in the database; the
frequencies of specific core structures are summarized in Figure

Figure 1.Database of the optical properties of organic compounds. Histograms of (a) first absorption peak position (λabs), (b) bandwidth in full width
at half-maximum (σabs), (c) extinction coefficient in logarithm (log ε), (d) emission peak position (λemi), (e) bandwidth in full width at half-maximum
(σemi), (f) photoluminescence quantum yield (Φ), (g) lifetime (τ), (h) molecular weights of chromophores, and (i) solvents (CH2Cl2
dichloromethane, CH3CN acetonitrile, Tol toluene, CHCl3 chloroform, THF tetrahydrofuran, MeOH methanol, EtOH ethanol, DMSO dimethyl
sulfoxide, CH cyclohexane, and DMFN,N-dimethylformamide). The number of data points (N) and the number of chromophores (mol.) are included
in each graph.11,12
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S1. For example, more than 1300 BF2-group-containing boron-
dipyrromethene (BODIPY) derivatives are found in the
database.

DL Model for Prediction of Optical and Photophysical
Properties

DL based on big data has attracted substantial attention because
it can potentially solve problems via direct learning from data
without well-defined rules, empirical laws, or theories.13,14 In
chemistry, DL has proven promising for predicting various
properties of molecules and materials,15−29 optimizing reactions
and retrosynthesis,30−32 and designing new molecules including
drugs33,34 and materials.35−37 Additionally, DL has been
effectively used in computational chemistry.38,39 Nakata and
Shimazaki reported a large-scale electronic structure database
(PubChemQC)40 and recently, using the PubChemQC data-
base, Lee and co-workers reported a random forest model to
predict the highest oscillator strength and the corresponding
excitation energy of molecules.26 Lin and co-workers used a DL
method to predict the bandgap of configurationally hybridized
graphene and boron nitride,21 and Chang and co-workers used a
tuplewise material representation to predict the band gap of
organic−inorganic perovskite, 2D materials, and binary and
ternary inorganic materials.27 Jiang and co-workers reported DL
models that could predict infrared and ultraviolet absorption
spectra from the conformations of a molecule using a theoretical
database that was generated by molecular dynamics simulations
and DFT calculations.23,28 Rinke and co-workers reported a DL
method to predict molecular excitation spectra based on the
QM7b andQM9 data sets of small organic molecules containing
up to 17 C, N, O, S, and halogen atoms.24 Li and co-workers
reported a machine learning method using the Morgan
fingerprint and an experimental database of 4300 molecules to
predict three properties such as absorption and emission
wavelengths and PLQY.29

In this work, we developed a DL model to predict the optical
and photophysical properties as described in Figure 2. The
molecular structure of a chromophore is represented by a 150 ×
150 adjacency matrix (Achm) and a 150 × 43 feature matrix
(Xchm) (Figure S2). The adjacency matrix includes the
connectivity information on atoms in the chromophore, and
the feature matrix (Xchm) includes the identity of the atoms, the
number of hydrogen and heavy atoms bonded to them,
aromaticity, hybridization, ring structure, and formal charge.
The graph convolutional network (GCN) is the simplest version
of the message-passing neural network, which is effective for
graph structures such as molecular structures.16,25,41−44 A single
graph convolution of the adjacency matrix (Achm) and feature
matrix of the lth layer (Hchm

l ) updates the atom’s features,
producing a new feature matrix for the l + 1th layer,Hchm

l+1 , which
contains all the information related to the nearest-neighboring
atoms in the chromophore. The final feature matrix of GCN
layers, Hchm

( f) , is reduced to a row vector, zchm
(0) , by summing all

elements to secure permutation invariance. The row vector, zchm
(0) ,

passes through multilayer perceptrons (MLPs) to produce a
chemical space vector, zchm

( f) , for the chromophore. Similarly, a
chemical space vector, zsol

( f), of the solvent is obtained. The
chemical space vectors for the chromophore and solvent, zchm

( f)

and zsol
( f), are concatenated and pass through the MLPs to

construct an interaction vector. Finally, the interaction vector
passes through the MLPs to obtain the seven optical properties.
Note that the interaction vector in the DL model is used to
account for the chromophore−solvent interaction.
It should be highlighted that our DL model includes the

chromophore−solvent interaction for accurate estimation of the
optical and photophysical properties of organic compounds in
various solvents. Details of the DL model and training process
are provided in the Supporting Information and Methods. The
performance of our DLmodel is presented in Figure S4. Overall,
the DL model is reasonably well trained using the experimental
database and the square of the Pearson correlation coefficient

Figure 2.Our deep learning (DL)model. The interaction vector is used to account for the chromophore−solvent interaction for predicting the optical
and photophysical properties of the chromophore.
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Table 1. Prediction of Optical Properties Using Our DL Modela
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(R2) ranges from 0.93 to 0.71 for the test sets (Table S2). It
should be noted that σabs, σemi, Φ, and τ for a chromophore
cannot be well predicted by currently available theoretical
methods because they are highly dependent on many factors,
including solute−solvent interactions, density of energy states,

and relaxation pathways, which cannot be fully considered in the
theoretical methods. However, in our DL model, these
properties are shown to be directly learned from the
experimental database and reliably predicted, which is a great
advantage of the DL method.

Table 1. continued

a(a) Various optical properties of chromophores with different molecular structures. (b) BODIPY derivatives (in red) with different moieties (in
green) at the meso position in dichloromethane. (c) Three protonation states of 7-amino-2-naphthol in water and their experimentally measured
and predicted values.
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Performances of Our DL Model

The DL model trained with the experimental database can be
used to achieve DL optical spectroscopy such that seven optical
properties for any given molecule are easily predicted. In this
section, several interesting examples from the results of our DL
model will be discussed.
Structural Diversity of Chromophores. As shown in

Table 1a, our DLmodel predicts the optical properties of widely
used core structures of chromophores and fluorophores45−48

such as Nile red,49 Prodan,50 methylene blue,51 and L-tyrosine.52

In addition, we compared the λabs and λemi values predicted by
our DL model and TD-DFT calculations53 for 131 combina-
tions involving 53 chromophores (Figure S5 and Table S6). The
RMSEs of λabs and λemi predicted by our model are 17.0 and 22.5
nm, respectively, which are 2−3.5 times smaller than those
obtained by TD-DFT calculations (46.1 and 81.9 nm,
respectively). The biggest advantage of DL method is that the
information hidden in the experimental database is directly
decoded by the DLmodel. As a result, the DLmodel can predict
the properties (e.g., σabs, σemi, Φ, and τ) that are traditionally
incomputable by theoretical methods. Compared to theory-
based TD-DFT calculations, another advantage of the DL
method is its low computational cost. The TD-DFT calculations
required 236 min per molecule on average to compute the
ground- and excited-state geometries, λabs and λemi. Our DL
model required only 20 s to simultaneously predict the seven
optical properties of 131 chromophore/solvent combinations
on the same computer (see Methods for computational details).
For donor−acceptor (D−A) type molecules, the DL model is

found to recognize the core moiety that has a more significant
effect on the overall optical properties. Table 1b shows D−A
type molecules with BODIPY and other moieties.54−58 Our DL
model confirms that the emission properties (λemi) of the
molecules are mainly determined by the BODIPY moiety. For
example, for the anthracene (donor)−BODIPY (acceptor)
structure, the emission peak position of BODIPY is longer than
that of anthracene, and thus, BODIPY determines the emission
peak position of the molecule according to Kasha’s rule.59

In addition, we further examined whether theDLmodel could
distinguish the optical properties of chromophores with similar
structures. Ninety-seven chromophores in dichloromethane
were selected from the experimental database (Table S7), and
their optical properties were obtained by the DL model and
compared with the experimental values (Figure S6). The DL
model recognizes the core structure of a given molecule that
determines the optical properties and the effect of structural
modification of the core structures on the optical properties such
as changes in the conjugation length and substituents of the core
structures. The diverse changes in the core structures were
successfully accounted for in the prediction of the optical
properties.
Lastly, a change in protonation state is considered the smallest

possible modification to a molecular structure which can
dramatically alter its optical properties; this is because
protonation/deprotonation changes the chromophore charge
distribution and resultantly the chromophore−solvent inter-
actions. Fifty-nine molecules with two or more protonation
states were identified in the database (Figure S7). The effects of
protonation/deprotonation in acid−base reaction on the optical
properties are well predicted by the DL model. For example, the
λabs and λemi of the three protonation states of 7-amino-2-
naphthol in Table 1c are well distinguished.60

Effects of Solvent Polarity. The optical properties are
significantly influenced by the solvent polarity known as
solvatochromic shifts including bathochromic shift (red shift)
and hypsochromic shift (blue shift). In the DL model,
chromophore−solvent interactions are included, allowing
reliable prediction of solvatochromic shifts. The solvatochromic
shifts of Reichardt’s dye61 (Betaine 30, Figure 3a) in 334 solvent

molecules are well predicted by the DL model. The DL model is
found to quite accurately predict the λabs of Betaine 30 in
solvents with similar dielectric constants (εr): 1,2-dichloro-
ethane (εr = 10.36, λabs

exp = 692 nm, λabs
pred = 692 nm), 1,1-

dichloroethane (εr = 10.46, λabs
exp = 726 nm, λabs

pred = 701 nm), and
2,2-dichloropropane (εr = 11.63, λabs

exp = 754 nm, λabs
pred = 715 nm).

These results indicate that the chromophore−solvent inter-
actions in the DL model were sufficiently well implemented.
Organic fluorophores can also be incorporated as dopants in

solid-state host matrices. Such systems are widely used in
OLEDs.62 Our database includes 48 host molecules and 361
fluorophore(dopant)−host systems developed for OLEDs. The
matrix effects on the emission properties of the dopants are well
predicted (Figures 3b and S8). Estimation of the PLQY of
dopants in host matrices is critical for designing dopant
molecules, but the PLQYs of molecules in solutions or in films
are challenging to estimate theoretically. The DL model could
be effectively used to prescreen candidate dopant molecules by
accurately estimating their PLQY.
In solid states, nonradiative processes associated with

molecular rotations and vibrations are inactive and relatively

Figure 3. Solvent effects on optical properties predicted by our DL
model. (a) Experimental vs predicted λabs values of Reichardt’s dye
(Betaine 30) in 334 solvents. The λabs of Reichardt’s dye exhibits a
hypsochromic (blue) shift from 1000 to 450 nmwith increasing solvent
polarity. (b) Experimental vs predicted λemi values of dopants in host
matrices (films). (c) Experimental vs predicted Φ values of molecules
exhibiting aggregation induced emission in solutions or in solid states.
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high fluorescence quantum yields can be achieved. Aggregation-
induced emission (AIE) has recently become an active research
topic,63 and we investigated whether our DL model could
explain AIE. In our DL model, the effects of local environments
are implemented using the adjacency and feature matrices of the
solvents (Asol and Xsol), which can be treated as either the
molecule itself for one-component solids (i.e., molecular solids)
or as the host matrix for solid solutions. Therefore, the optical
properties of chromophores in solids are able to be trained and
predicted by the DL model. Note that amorphous and
crystalline phase solid states are not distinguished in our
database. Our database contains 730 examples of chromophores
with AIE properties (Figure S9 and Table S3), and their Φ are
indeed predicted to be larger in aggregates (molecular solids)
than in solutions as shown in Figure 3c. In short, the effects of

solvent and local environments on the optical properties of
chromophores were successfully implemented to account for
both solvatochromic shifts and the AIE effect.

Deep Learning Optical Spectroscopy

For a molecule, absorption and emission properties, which are
quantified using spectroscopic measurements, are characterized
by their position (λabs/λemi), bandwidth (σabs/σemi), and
amplitude (ε/Φ). For any given organic compound, these
optical properties are readily predicted by our DLmodel and can
be used to simulate the absorption and emission spectra as
described inMethods, making DL optical spectroscopy possible.
Furthermore, the daylight and emission colors of a molecule in
solution and films under the daylight and UV-lamp can be

Figure 4. DL optical spectroscopy. Experimentally measured and DL predicted absorption (black) and emission (red) spectra. (a) Coumarin 153 in
ethanol. (b) BPCP-2CPC (molecule) in C-2PC (host). The bandwidths in fwhm for the calculated spectra are set to 5370 cm−1 (the default value in
GaussView 6). (c) Photograph of (E,E,E)-2-(4-diphenylaminostyryl)-4,6-bis(4-methoxystyryl)pyrimidine in several solvents. The colors below the
photograph are those predicted using our DL model [Reproduced with permission from ref 66. Copyright 2018 American Chemical Society]. (d)
Photographs of solid state emission. The colors below the photograph are those predicted using our DLmodel [Reprinted with permission from ref 67.
Copyright 2016 Published by Elsevier Ltd.].
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estimated based on the absorption and emission spectra,
respectively.
The absorption and emission spectra of coumarin 153 in

ethanol were predicted using the DL model and TD-DFT
calculations and are compared in Figure 4a.64 The daylight and
emission colors of coumarin 153 in ethanol are successfully
reproduced by the DL model. In contrast, TD-DFT calculations
estimated the daylight color well but not the emission color. For
a molecule, λabs, λemi, ε, and the radiative rate constant can be
estimated by theoretical calculations, but σabs, σemi, and Φ are
highly challenging to predict using currently available theoretical
methods. The performance of the DL model was further
examined using the thermally activated delayed fluorescence
(TADF) dye, BPCP-2CPC, in the host molecule, C-2PC.65

While the optical properties of BPCP-2CPC in toluene are
included in our database, those of BPCP-2CPC in C-2PC are
not. The emission spectrum and a photograph of BPCP-2CPC
in C-2PC are presented in Figure 4b. The emission spectrum of
BPCP-2CPC in C-2PC was reasonably well predicted by the DL
model, and the emission color is well represented in the CIE
1931 xy chromaticity space (Figure S10). Figures 4c, d and S11
show the photographs of chromophores in various environ-
ments along with the emission colors predicted by the DL
model.66,67 The solvent-polarity-dependent colors are well
reproduced. Accordingly, our DL optical spectroscopy is
successfully implemented to predict the optical properties of
chromophores in solutions, films, and powders.

Development of a Target Chromophore by Virtual
Screening via DL Optical Spectroscopy

DL optical spectroscopy could be effectively used to select target
chromophores with desired optical and photophysical proper-
ties from many predesigned candidate molecules as shown in
Figure 5a. Many potentially synthesizable molecular structures
are predesigned, their seven optical properties are predicted by
DL optical spectroscopy, a target molecule with desired
properties is selected and synthesized, and finally the optical
and photophysical properties of the synthesized target molecule
are characterized by many spectroscopic methods and whether
the optical and photophysical properties match those desired is
evaluated. In this way, new target molecules optimized for a
given purpose can be efficiently developed using DL optical
spectroscopy.
This section demonstrates how DL optical spectroscopy can

be practically used in the development of a new blue fluorophore
with a donor (D)−acceptor (A) type. Figure 5b shows three
organic molecules with a DOBNA backbone which could be
readily predesigned. And then their optical properties in toluene
were predicted by DL optical spectroscopy as summarized in
Table S4. Depending on the donor unit such as carbazole (1),
phenoxazine (2), and diphenylamine moieties (3) as shown in
Figure 5b, the predesigned molecules are predicted to exhibit
quite different emission colors, very narrow emission
bandwidths, and decent PLQYs. Note that DOBNA core
structures were shown to exhibit such narrow bandwidths and
high PLQYs.68−70 Among three compounds in Figure 5b,
Compound 1 is a fluorophore with a deep blue color (λemi = 428
nm and CIE y < 0.1), narrow emission bandwidth (σemi = 29

Figure 5. Development of a target chromophore by virtual screening. (a) Overview for development of a new chromophore by DL optical
spectroscopy. (b)Molecular structures of 3 molecules based on a DOBNA core with carbazole (1), phenoxazine (2), and diphenylamine moieties (3),
and the optical properties predicted by DL optical spectroscopy. (c) Absorption and emission spectra of compound 1 in toluene. σabs cannot be
experimentally measured because the S1 transition is overlapped with higher electronic transitions. (d) Time-resolved fluorescence signal of compound
1 in toluene.
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nm), and decent PLQY (Φ = ∼0.7). As a desired deep blue
emitter, compound 1 was synthesized.
As shown in Figure 5c and d, the optical properties of

compound 1 were experimentally measured in toluene, which is
a typical solvent for optical measurements of organic
compounds, and are summarized in Table S5. The optical
properties of compound 1 in toluene are found to agree
reasonably well with the values predicted by DL optical
spectroscopy within the RMSEs although the experimentally
determined values are somewhat slightly smaller than the
predicted values. The λabs and λemi in the absorption and
emission spectra are ∼30 nm blue-shifted compared to the
predicted values. But the emission bandwidth (σemi = 22 nm),
PLQY (Φ = 0.543), and lifetime (τ = 5.1 ns) are reasonably well
predicted. Furthermore, the CIE coordinates are found to be
(0.157, 0.020), which is close to the predicted values (0.153,
0.020).

■ CONCLUSIONS

We have successfully developed a DL method based on an
experimental database to predict the optical properties of
chromophores or fluorophores in various environments. Our
DL model was trained using an experimental database of 30 094
chromophore/solvent combinations consisting of 11 392
unique organic chromophores in 369 solvents or solid
states.11,12 Seven optical properties of each organic molecule
can be reliably estimated using the DL model and used to
reconstruct the absorption and emission spectra and predict the
real-world color of the molecule, achieving DL optical
spectroscopy.
DL optical spectroscopy can be effectively used to prescreen

whether newly designed chromophores and fluorophores
exhibit desired optical properties before they are actually
synthesized, which would reduce development costs signifi-
cantly. We successfully demonstrated a strategy to developing a
new deep blue emitter with desired optical properties using
virtual screening by DL optical spectroscopy. By utilizing DL
optical spectroscopy, the development of organic molecules for
electronic and optoelectronic applications will be boosted.
Our DL method represents a framework that could be

generally applicable to predict other chemical and physical
properties of organic compounds. The experimental database of
30 094 chromophore/solvent combinations is currently in use
but can be continuously extended to include a broader range of
core structures. Therefore, the prediction accuracy of optical
properties and the coverage of molecular structures by our DL
optical spectroscopy will be continuously improved in the
future. Recently, DL models that generate valid molecular
structures based on a variational autoencoder (VAE) and a
generative adversarial network (GAN) have been reported,71−76

and by combining these generative DL models, our DL optical
spectroscopy is expected to be used more efficiently in the
development of new fluorophores and chromophores. Lastly,
using our DL model we developed a web-based interface,
“Deep4Chem”,77 to predict the optical properties of organic
compounds as well as the electronic absorption and emission
peaks and the corresponding original colors which the materials
would have, associated with absorption and emission peaks, in
CIE color coordinates.

■ METHODS

Training Our DL Model

Our DL model was trained using an experimental database. In the
training process, the loss function was defined by the total mean
squared error which was obtained by summing the mean squared errors
of seven optical and photophysical properties with the same weight.
Note that τ andΦ were taken logarithms before normalization because
their values reported in the literature were ranged on many orders of
magnitude. In the case of Φ = 0 in the database, 10−5 was added to Φ.
The absorption and emission bandwidths (σabs and σemi) in nanometers
in the database were converted to those in wavenumbers by using the
following equation, σj(cm

−1) = 107/[λj − σj(nm)/2] − 107/[λj +
σj(nm)/2] where λj is the absorption and emission peak positions in
nanometers. In addition, all molecular properties were normalized to
follow the standard normal distribution so that the loss of each property
was on the same scale. A total of 30 094 chromophore/solvent
combinations are randomly divided in a ratio of 0.8:0.1:0.1 for training,
validation, and testing. For optimizing the hyper-parameters such as the
number and dimension of GCN layers and MLPs, training and
validation sets were used. No evidence of overfitting was found during
the training over 10 000 epochs, as shown in Figure S3. After
optimization, the DLmodel was trained by using training and validation
sets. The training results are displayed in Figure S4 and Tables S1 and
S2.

Quantum Chemical Calculations

All quantum chemical calculations were performed using the density
functional theory (DFT) and time-dependent DFT (TD-DFT)
methods at the B3LYP level with a 6-31G(d) basis set as implemented
in the Gaussian 16 package.53 For all molecules in Table S5, the integral
equation formalism for the polarizable continuum model (IEF-PCM)
was used for solvation. The absorption and emission spectra of
molecules were obtained by optimizing the electronic ground state and
excited state, respectively, and subsequently calculating the TD-DFT
transition energies. Using a computer with an Intel CPU (i7-6700) and
16 GB of RAM, TD-DFT calculations took an average of 236 min per
molecule. On the other hand, our DL model took 20 s for 131
molecule−solvent pairs on the same computer.

Reconstruction of Absorption and Emission Spectra

Absorption and emission spectra, Sj(ω), were calculated as a single peak
using the normalized Gaussian function and predicted values by our DL
model
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where λj is the absorption or emission peak position in nm and σj is the
bandwidth. The vibronic features and asymmetric nature of the
spectroscopic peaks were not reflected in eq 1. The absorption intensity
is directly related to the extinction coefficient by Beer’s law (A = εbc);
thus, the absorption spectrum can be approximated as εSabs(ω).
Similarly, the emission intensity is proportional to the absorption
intensity and PLQY, and thus, the emission spectrum can be obtained
as εΦSemi(ω). The product of PLQY and extinction coefficient (i.e.,
Φε) is known as the brightness. Using the optical and photophysical
properties (λabs, λemi, σabs, σemi, ε, and Φ) predicted by the DL model,
the absorption or emission spectra of a molecule were readily
calculated. Furthermore, the CIE 1931 color space was computed
using the calculated absorption and emission spectra. The CIE
Standard Illuminant D65 was used for a daylight color.
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The details of our deep learning model, prediction by our
deep learning model, and synthetic procedure of
compound 1 (PDF)
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