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Aim To assess the impact of prenatal exposure to Mail-
lard reaction products (MRPs) -rich diet and postnatal Co-
ca-Cola consumption on metabolic status of female rats. 
Diet rich in MRPs and consumption of saccharose/fructose 
sweetened soft drinks is presumed to impose increased 
risk of development of cardiometabolic afflictions, such as 
obesity or insulin resistance.

Methods At the first day of pregnancy, 9 female Wistar 
rats were randomized into two groups, pair-fed either with 
standard rat chow (MRP-) or MRPs-rich diet (MRP+). Off-
spring from each group of mothers was divided into two 
groups and given either water (Cola-) or Coca-Cola (Cola+) 
for drinking ad libitum for 18 days. Oral glucose tolerance 
test was performed, and circulating markers of inflamma-
tion, oxidative stress, glucose and lipid metabolism were 
assessed.

Results MRP+ groups had higher weight gain, signifi-
cantly so in the MRP+/Cola- vs MRP-/Cola-. Both prena-
tal and postnatal intervention increased carboxymeth-
yllysine levels and semicarbazide-sensitive amine oxidase 
activity, both significantly higher in MRP+/Cola + than in 
MRP-/Cola-. Total antioxidant capacity was lower in MRP+ 
groups, with significant decrease in MRP+/Cola + vs MRP-/
Cola+. Rats drinking Coca-Cola had higher insulin, homeo-
static model assessment of insulin resistance, heart rate, 
advanced oxidation of protein products, triacylglycerols, 
and oxidative stress markers measured as thiobarbituric 
acid reactive substances compared to rats drinking water, 
with no visible effect of MRPs-rich diet.

Conclusion Metabolic status of rats was affected both by 
prenatal and postnatal dietary intervention. Our results 
suggest that combined effect of prenatal MRPs load and 
postnatal Coca-Cola drinking may play a role in develop-
ment of metabolic disorders in later life.
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Maillard reaction products (MRPs), first described by French 
biochemist C. Maillard in the beginning of 20th century (1), 
are formed by nonenzymatic reactions of reactive sugars 
and proteins, giving thermally processed food its typical 
color, taste, and odor.

Eight decades later Brownlee et al. recognized that same 
substances are formed naturally in human body, and 
named the in vivo analogues of MRPs “advanced glycation 
end products” (AGEs) (2,3). Except for classical pathway of 
their formation under hyperglycemic conditions, there are 
alternative pathways of AGEs formation effective – under 
oxidative- and carbonyl-stress, utilizing reactive aldehydes 
formed during lipid peroxidation and autooxidation of glu-
cose. AGEs are implicated in pathophysiology of aging and 
different non-communicable diseases: AGE-modification 
alters the structure (physical and chemical properties) and 
thus function (biological properties) of proteins (4). Dis-
covery of specific cell-surface receptor for AGEs (RAGE) en-
abled characterization of indirect harmful pathways lead-
ing to enhanced oxidative stress and pro-inflammatory, 
diabetogenic, and atherogenic effects (5,6).

In 1997, Koschinsky et al (7) showed that dietary MRPs par-
tially absorbed into the bloodstream were chemically and 
biologically active, exerting harmful health effects, which is 
why they were called “glycotoxins.” This finding prompted 
extensive research confirming that consumption of large 
amounts of dietary MRPs might induce or aggravate in-
sulin resistance, renal impairment or atherosclerosis, ac-
tivate inflammatory and oxidative stress pathways, and 
contribute to development of complications in diabetes 
and nephropathies (8-11). These findings raise the ques-
tion on the role of MRPs-rich diet in prenatal programming. 
Evidence strongly suggests that maternal obesity and im-
proper prenatal nutrition provide maladaptive intrauter-
ine cues to developing offspring, predisposing organs for 
chronic disease later in life (12,13). Maternal dietary hab-
its affect the fetus, outcome of pregnancy, and long term 
health of the child (14-16). Mericq et al found a direct re-
lationship between newborn’s and maternal serum levels 
of several AGEs at the time of delivery, suggesting mater-
nal transmission of AGEs (17). AGEs/RAGE axis activates in 
pregnancy-associated pathologies impacting fetus devel-
opment, such as preeclampsia and preterm birth (18-20).

Rising prevalence of obesity and obesity-associated (partic-
ularly metabolic) complications in youth (21,22) was linked, 
among others, to rising consumption of sugar-sweetened 
carbonated drinks such as cola beverages (23,24). Effects 

are attributed to multiple factors, including higher calor-
ic intake, high fructose content rendering less satiety and 
compensation and resulting in elevated plasma uric acid, 
and a general effect of consuming refined carbohydrates 
(25,26). Moreover, cola beverages also contain MRPs and 
reactive AGE-precursors, most abundantly hydroimida-
zolone derived from arginine residues modified by meth-
ylglyoxal (27,28).

To the best of our knowledge potential effects of MRPs-
rich diet during pregnancy on prenatal programming have 
yet not been investigated. In this study we investigated the 
metabolic status of young adult rats – offspring of mothers 
consuming MRPs-rich diet during pregnancy. As drinking 
of cola beverages is increasingly popular among children 
and adolescents, our second aim was to investigate the ad-
ditional impact of Coca-Cola consumption on prenatally 
affected young adult rats.

Material and methods

Animals

The study was conducted according to the guidelines for 
experimental studies using laboratory animals (86/609/
EEC) and approved by the institutional ethics committee 
(number 025/2013/UPF, 6.6.2013). Female Wistar rats ob-
tained from AnLab (Prague, Czech Republic) were housed 
under controlled room temperature and humidity, with 12 
hours/12 hours light-dark cycle.

Experimental design

At the first day of pregnancy, 9 rats were randomized into 
2 groups (n = 4-5) and pair-fed with either standard rat 
chaw or chow enriched with bread crusts as a source of 
MRPs (bread crusts: standard rat chow 25%:75% wt/wt) 
until delivery. Bread crusts from German sourdough bread 
were prepared as described previously (29). Consumption 
of standard chow in the control group was recorded daily 
and the same amount of MRPs-rich diet was given to the 
experimental group on the following day.

At the age of 10 weeks, female offspring from each group 
were divided into two weight- matched groups (n = 10-15). 
Both groups were fed with standard rat chow and were 
given either water or decarbonated Coca-Cola (sugar 
110 g/L, caffeine 100 mg/L, energy 1800 kJ/L) for drink-
ing ad libitum. Thus, the study included the following 4 
groups: MRP-/Cola- (standard chow/water drinking); 
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MRP+/Cola- (MRPs-rich diet/water drinking); MRP-/Cola+ 
(standard chow/Coca-Cola drinking; MRP+/Cola+ (MRPs-
rich diet/Coca-Cola drinking). The animals were sacrificed 
after 18 days of intervention (Figure 1).

Two days before sacrifice, systolic blood pressure and heart 
rate were measured by noninvasive tail-cuff plethysmogra-
phy (Hugo-Sachs Elektronik, Freiburg, Germany) and one day 
before sacrifice oral glucose tolerance test was performed. 
After overnight fasting with water or Coca-Cola available 
ad libitum, rats were administered 2 g/kg body weight of 
glucose dissolved in 0.5 mL of water via gavage. Blood glu-
cose levels were measured using standard glucose meter in 
blood from the tail, before glucose administration and 15, 
30, 60, 90 and 120 minutes thereafter. Animals were sacri-
ficed after overnight fasting with water or Coca-Cola avail-
able ad libitum. Urine from bladder and blood samples from 
the abdominal aorta (serum and K3EDTA plasma) were col-
lected under i.p. ketamin/xylazin anesthesia. Samples were 
aliquoted and stored frozen until analysis.

Biochemical analysis

Albumin, total cholesterol, and triacylglycerols concentra-
tion and aspartate transaminase (AST) activity were ana-
lyzed by standard methods using autoanalyzer. Fasting in-
sulin was measured using Rat Ultrasensitive Insulin ELISA 
(ALPCO Diagnostics, Salem, MA, USA). To assess carbonyl 
stress in the samples, AGEs-associated fluorescence of 
plasma was measured spectrofluorometrically (30), fruc-
tosamine was measured as described elsewhere (31), and 

Nε-carboxymethyllysine (CML) with AGE-CML ELISA kit (Mi-
crocoat, Bernried am Starnberger See, Germany). To assess 
oxidative damage to proteins, advanced oxidation protein 
products (AOPP) were determined using the spectropho-
tometric method described by Witko-Sarsat et al (32) and 
modified by Anderstam (33), and thiobarbituric acid re-
active substances (TBARS) were measured spectrofluoro-
metrically (34). The antioxidant status was assessed using 
two assays – ferric reducing antioxidant power (FRAP) (35) 
and total antioxidant capacity (TAC) (36). Activity of semi-
carbazide-sensitive amine oxidase (SSAO) was determined 
by radiometric method (37). Urinary creatinine was mea-
sured using the spectrophotometric method by Jaffe (38) 
and proteins were quantified using BCA protein assay kit 
(Sigma Aldrich, Steinheim, Germany). All measurements 
were performed using Saphire II multi-mode plate reader 
(Tecan, Grödig, Austria), and chemicals and reagents used 
were purchased from Sigma-Aldrich.

AGE-associated fluorescence of plasma, CML, AOPP, and 
SSAO activity were normalized to serum albumin. Homeo-
static model assessment of insulin resistance (HOMA-IR) 
was calculated using the formula: fasting insuline (μIU/
mL) × fasting plasma glucose (mmol/L)/22.5. Area under 
glucose curve was calculated from the OGTT data. Urinary 
albumin/creatinine ratio was also calculated.

Statistical analysis

Data are presented as mean ± standard deviation (SD) for 
variables with nonparametric distribution written in italics. 

Figure 1. Diagram of the study design. MRPs – Maillard reaction products.
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On figures, data are presented as minimum, first quartile, 
median, third quartile and maximum. For comparison be-
tween groups of data with normal distribution, one-way 
ANOVA test with subsequent Tukey’s multiple compari-
son test was used. For data with non-normal distribution, 
Kruskal-Wallis test with subsequent Dunn’s multiple com-
parison test was used. P values <0.05 were considered 
significant. Data were analyzed using GraphPad Prism 6.0 
(GraphPad Software, La Jolla, CA, USA).

Results

Pregnancy outcomes

MRPs + and MRPs- rats did not differ significantly in weight 
gain during pregnancy (86 ± 24 g and 81 ± 25 g, respec-
tively, P = 0.670) or in the number of pups delivered (10 ± 3 
and 11 ± 2, respectively, P = 0.517). Since MRPs + moth-
ers delivered significantly greater number of female pups 
(30 female/11 male in MRP+; 21 female/25 male in MRP-; 
P = 0.016), female offspring were used in our experiment.

Metabolic study in female offspring

Metabolic status of offspring was affected both by prenatal 
MRPs load and postnatal Coca-Cola drinking, some of the 
effects occurred only as a result of combined intervention 
(Table 1).

Fluid consumption and weight gain

Fluid consumption was significantly higher in Coca-Cola 
drinking groups than in water drinking groups (Table 1). 

Table 1. Overview of results and statistical analysis – ANOVA respectively Kruskal-Wallis test and post hoc comparison between all pairs of 
groups. Data are given as mean ± standard deviation, for variables with nonparametric distribution written in italics. P values <0.05 were con-
sidered significant, in bold

MRP-/
Cola-
n = 10

MRP+/
Cola-
n = 15

MRP-/
Cola+
n = 11

MRP+
/Cola+
n = 15

ANOVA
resp.

Kruskal-
Wallis

MRP-/
Cola-vs 
MRP+/
Cola-

MRP-/
Cola- vs 
MRP-/
Cola+

MRP-/
Cola- vs 
MRP+/
Cola+

MRP+/
Cola- vs 
MRP-/
Cola+

MRP+/
Cola-vs 
MRP+/
Cola+

MRP-/
Cola+

vs MRP+/
Cola+

Fluid consumption (/d/rat) 19.8 ± 3.6 17.3 ± 1.4 72.0 ± 5.0 63.2 ± 14.4 <0.001 >0.999 0.002 <0.001 <0.001 <0.001 >0.999
Initial weight (g) 156 ± 40 119 ± 30 159 ± 42 120 ± 32 0.043 0.414 >0.999 0.303 0.240 >0.999 0.169
Blood pressure (mmHg) 141 ± 19 123 ± 10 125 ± 12 127 ± 20 0.057
Heart rate 447 ± 49 429 ± 67 501 ± 28 485 ± 53 0.004 0.848 0.101 0.293 0.007 0.028 0.876
Insulin (mIU/L) 2.99 ± 2.39 2.22 ± 1.65 13.29 ± 7.26 8.80 ± 4.75 <0.001 >0.999 0.001 0.030 <0.001 0.003 >0.999
HOMA-IR 0.600 ± 0.453 0.588 ± 0.484 3.355 ± 1.736 2.536 ± 1.270 <0.001 >0.999 <0.001 0.009 <0.001 0.003 >0.999
Cholesterol (mmol/L) 1.62 ± 0.27 1.61 ± 0.31 1.85 ± 0.33 1.77 ± 0.34 0.245
TAG (mmol/L) 0.60 ± 0.21 0.59 ± 0.18 1.44 ± 0.64 1.20 ± 0.67 <0.001 >0.999 0.008 0.012 0.006 0.008 >0.999
AST activity (ukat/L) 1.66 ± 0.33 1.90 ± 0.44 1.82 ± 0.33 1.56 ± 0.26 0.076
AGEs fluorescence (AU/g alb) 278 ± 47 281 ± 99 246 ± 64 322 ± 127 0.156
Frustosamine (mmol/L) 1.49 ± 0.38 1.64 ± 0.24 2.39 ± 0.77 2.51 ± 0.68 <0.001 >0.999 0.009 0.003 0.060 0.017 >0.999
TBARS (umol/) 5.90 ± 0.83 5.10 ± 0.72 6.74 ± 0.75 6.91 ± 1.15 <0.001 0.142 0.144 0.034 <0.001 <0.001 0.964
FRAP (umol/) 165.3 ± 28.2 179.1 ± 32.5 225.0 ± 47.5 216.9 ± 59.4 0.005 0.869 0.017 0.035 0.057 0.114 0.969
Urine alb/crea (mg/mmol) 41.8 ± 24.8 33.2 ± 20.8 57.6 ± 30.4 59.0 ± 48.9 0.157
MRP – Maillard reaction products; HOMA-IR – model assessment of insulin resistance; TAG – triacylglycerols; AST – aspartate transaminase; AGEs – advanced 
glycation end products; TBARS – thiobarbituric acid reactive substances; FRAP – ferric reducing antioxidant power; alb/crea – albumine to creatinine ratio.

Figure 2. Relative weight gain was increased by prenatal 
intervention with Maillard reaction products (MRP) or its com-
bination with Coca-Cola intake, but not Coca-Cola intake itself. 
Data were presented as minimum, first quartile, median, third 
quartile and maximum. Kruskal-Wallis test with subsequent 
Dunn’s multiple comparison test to compare all pairs of groups 
were used. Significant differences between the groups were 
shown.
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Despite similar weight at the beginning of the interven-
tion (Table 1), higher weight gain was observed in MRP+ 
groups, but the increase was significant only in the group 
drinking water (Figure 2).

Blood pressure and heart rate

Blood pressure did not differ significantly between the 
groups and heart rate was slightly higher in Coca-Cola 
drinking groups (Table 1).

Glucose metabolism

Fasting glucose levels were significantly higher in both 
MRP+ groups than in MRPs- groups. A significant increase 
was noticed in Coca-Cola drinking groups (Figure 3). Both 
insulin concentration and insulin resistance, expressed as 
HOMA-IR, were higher in Coca-Cola drinking groups than 
in water drinking groups, regardless of prenatal interven-
tion (Table 1). The area under glucose curve during OGTT 
was slightly greater in Coca-Cola drinking groups, but the 
increase was significant only between MRP+/Cola- and 
MRP+/Cola+ (Figure 4).

SSAO activity

Higher SSAO activity was found in MRP+ /Cola + group 
than in MRP-/Cola- and MRP+/Cola- group (Figure 5).

Lipid metabolism and AST

Total cholesterol was not affected by any of the interven-
tions; higher levels of triacylglycerols were found in Coca-
Cola drinking groups, regardless of prenatal intervention. 

Figure 3. Fasting glucose levels were increased by prenatal 
Maillard reaction products (MRP) diet and by its combination 
with Coca-Cola intake. Data were presented as minimum, first 
quartile, median, third quartile and maximum. ANOVA test 
with subsequent Tukey’s multiple comparison test to compare 
all pairs of groups were used. Significant differences between 
the groups were shown.

Figure 4. The area under curve during oral glucose toler-
ance test (OGTT) was slightly greater in Coca-cola drinking 
groups, but the effect was significant only in groups prena-
tally exposed to Maillard reaction products (MRP). Data were 
presented as minimum, first quartile, median, third quartile 
and maximum. ANOVA test with subsequent Tukey’s multiple 
comparison test to compare all pairs of groups were used. 
Significant differences between the groups were shown.

Figure 5. Activity of semicarbazide-sensitive amine oxidase 
(SSAO) was increased by the combined intervention of pre-
natal Maillard reaction products (MRP) intake and postnatal 
Coca-Cola intake. Kruskal-Wallis test with subsequent Dunn’s 
multiple comparison test to compare all pairs of groups were 
used. Significant differences between the groups were shown.
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No differences in AST activity were observed between 
groups (Table 1).

Carbonyl stress

AGE-associated fluorescence of plasma did not differ signif-
icantly between the groups (Table 1). Higher plasma CML/
Alb was found in MRP+/Cola+ group than in MRP-/Cola- 

group (Figure 6). Higher concentrations of fructosamine 
were found in Coca-Cola drinking groups (Table 1).

Oxidative status

Plasma AOPP/Alb was significantly higher in MRPs + than 
in MRPs- groups (Figure 7). TBARS concentration was in-
creased in Coca-Cola drinking groups, with significant 
increase in MRP+/Cola + group (Table 1). TAC was low-
er in MRP+ groups, with significant decrease in MRP+/
Cola + group (Figure 8). FRAP was higher in Coca-Cola 
drinking groups (Table 1).

Renal function

Urinary albumin-to-creatinine ratio did not differ signifi-
cantly between the groups (Table 1).

Discussion

To the best of our knowledge, this is the first study inves-
tigating the effect of maternal diet rich in MRPs together 
with post-natal effect of drinking Coca-Cola on the met-
abolic profile of the offspring. Our results suggested that 
intrauterine exposure to MRP-rich diet resulted in certain 
metabolic alterations in the offspring, rendering them sus-
ceptible to the effects of sweetened soft beverages. Thus, 
pre-natal intervention resulted in weight gain, impaired 
glucose homeostasis, and increased AOPP levels, and post-
natal drinking of Coca-Cola further impaired glucose ho-

Figure 6. Circulating levels of carboxymethyllysine (CML) 
were increased by the combined intervention of prenatal Mail-
lard reaction products (MRP) intake and postnatal Coca-Cola 
intake. ANOVA test with subsequent Tukey’s multiple compari-
son test to compare all pairs of groups were used. Significant 
differences between the groups were shown.

Figure 7. Plasma advanced oxidation protein products-
to-albumine ratio (AOPP/Alb) was significantly increased 
by prenatal challenge of Maillard reaction products (MRP). 
Kruskal-Wallis test with subsequent Dunn’s multiple compari-
son test to compare all pairs of groups were used. Significant 
differences between the groupswere shown.

Figure 8. Total antioxidative capacity (TAC) was decreased 
by prenatal load of Maillard reaction products (MRP) with a 
significant decrease in rats drinking Coca-Cola. Significant dif-
ferences between the groups are shown.
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meostasis, elevated plasma CML levels, increased plasma 
activity of SSAO, and altered oxidative status.

Studies dealing with the impact of maternal diet on health 
status of the offspring employ generally either undernu-
trition or overnutrition models. Epidemics of obesity has 
been associated with consumption of Western diet rich in 
fat and saccharides. High fat content in the diet of mothers 
was shown to have negative effects on offspring’s health in 
mice (39) and rats (40), as well as in humans (41). However, 
a Western diet is not a general equivalent of MRP-rich diet: 
if boiled or steamed, rise in MRPs is negligible in compari-
son with frying, broiling, or roasting (10,28). Thus, to study 
the effect of oral MRP load we used bread crusts-enriched 
diet, as no fat is added to bread dough and it is baked un-
der high temperatures (220°C-260°C) (29). Consumption of 
analogous MRP-rich diet by adult rats in our previous ex-
periments was associated with rise in circulating and tissue 
AGEs, metabolic alterations including diabetogenic effects, 
and nephrotoxicity (42-44). Since we wanted to eliminate 
the metabolic effects of different amounts of consumed 
proteins (45), the rats in our study were pair-fed.

Prenatal MRPs-rich diet effects

In this study, prenatal MRPs load lead to higher weight 
gain in young adult rats. In our former experiment, adult 
rats on MRPs-rich diet gained more weight than rats on 
a standard rat chow, despite pair-feeding (43). The effect 
of MRPs-rich diet in utero on postnatal weight gain of the 
offspring deserves verification in further studies. A large 
prospective study in humans showed that maternal diet 
was associated with body composition of their adolescent 
offspring (41).

In our study, prenatal intervention was associated with im-
paired glucose homeostasis of the offspring. This finding 
corresponded with the data showing that a frequent fried 
food (generally rich in MRPs) consumption before pregnan-
cy was significantly associated with a greater risk of incident 
gestational diabetes mellitus (46). Moreover, correlations 
between serum levels of certain AGEs and serum insulin 
and HOMA of 12-month-old infants were observed (17).

AOPPs are formed by myeloperoxidase reaction, pointing 
to enhanced activity of phagocytes. In contrast to our pre-
vious study in which 3 weeks-long MRPs rich diet was not 
associated with significant change in AOPP levels (42), 

offspring in this study subjected to prenatal MRPs load 
had higher AOPPs than the offspring subjected to 

standard rat chow. These results definitely should be con-
firmed by other studies.

Effects of combined pre- and post-natal challenge

Administration of Coca-Cola to young adult rats was se-
lected to mimic the dietary pattern typical for youth in 
western countries. However, since the metabolic effects of 
consumption of cola beverages by adult rats have already 
been studied (47), we particularly focused on the impact of 
the combined pre- and post-natal dietary interventions.

In our study, following prenatal exposure to MRPs, the off-
spring were more sensible susceptible to the impact of 
sweetened beverage consumption on glucose homeo-
stasis, which was not evident in groups without prena-
tal intervention. These data were in accordance with the 
finding that after 3-month long administration of Coca-
Cola, rats did not show changes in glucose metabolism; 
drinking Pepsi-Cola was even associated with lower HO-
MA-IR (47). Thus, prenatal challenge with high dietary 
MRPs load might negatively modulate the response to 
high saccharide consumption in the form of saccharose/
fructose beverages.

SSAO represents a group of heterogeneous enzymes con-
verting primary amines such as methylamine and amino-
acetone, into corresponding aldehydes (eg, formaldehyde 
and methylglyoxal, respectively). Reactive aldehydes are 
generally toxic, eg, methylglyoxal, a precursor of AGEs, is, 
among others, implicated in pathogenesis of insulin resis-
tance (48,49). This enzymatic reaction also produces hy-
drogen peroxide, inducing or aggravating oxidative stress, 
which may alter the effects of insulin and glucose trans-
port (50,51). Moreover, SSAO is functionally identical and 
coincides with vascular adhesion protein-1 (VAP-1), which 
is expressed on the luminal surface of endothelial cells and 
plays a key role in lymphocyte trafficking into the site of 
inflammation (52). The unique dual action of SSAO/VAP-1 
predestinates its potential pathophysiological role in de-
velopment of type 2 diabetes (53,54). Despite unaltered ac-
tivity of SSAO under either single intervention in our study 
the combined challenge associated with its elevation. It 
remained unclear whether induction of SSAO activity con-
tributed to or resulted from impaired glucose homeostasis. 
In the same context potential association between SSAO 
and AOPPs requires further studies.

While AGE-associated fluorescence only tended to in-
crease as a result of combined challenge, levels of non-
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fluorescent AGE-CML increased significantly. CML is the 
most abundant AGE in human body, produced particu-
larly via glycoxidation reactions (55). Thus, elevated CML 
might reflect enhanced oxidative stress imposed by com-
bined dietary challenge. Moreover, CML acts as ligand to 
RAGE (56) and is elevated in diabetes (53) and implicated 
in pathogenesis of diabetes and its complications (57). 
Thus, the role of elevated CML in induction of glucose 
homeostasis alteration under combined challenge might 
not be excluded.

The intervention in our study also altered the oxidative sta-
tus of the offspring. However, these results were not com-
pletely consistent, probably because the employed assays 
estimate different components of antioxidative defense. 
Moreover, some dietary MRPs possess antioxidant capacity 
(58). Negative effect of Coca-Cola on TBARS was empha-
sized by prenatal MRPs load. Lower total antioxidative ca-
pacity was visible in both MRP groups, and drinking Coca-
Cola even sharpened the differences. On the other hand, 
Coca-Cola drinking groups had higher FRAP. In previous 
studies, cola beverages did not affect oxidative or carbo-
nyl stress (47,59). Potential associations between elevated 
SSAO-induced oxidative stress and observed alterations in 
oxidative status require further study.

Neither nephrotoxic nor hepatotoxic effects of prenatal 
and/or postnatal intervention, assessed by urine albumine-
to-creatinine ratio and AST activity, were observed.

In conclusion, our results suggested that maternal diet rich 
in MRPs may adversely affect metabolic status of young-
adult female rat offspring and predispose them to high-
er susceptibility to post-natal Coca-Cola consumption. 
To verify these findings, there is a need for future studies 
dealing with the effects in the offspring of both sexes and 
prolonging the maternal intervention from pregnancy to 
lactation.

Funding Study was supported by Visegrad/V4EaP Scholarship 51400162 
and RECOOP HST Association.

Ethical approval received from the ethics committee of the Institute of Mo-
lecular Biomedicine, Comenius University in Bratislava, Slovakia (number 
025/2013/UPF, 6.6.2013).

Declaration of authorship PC and KS conceived the study design. RG, IK, 
and KJ performed the experiment. RG, IK, and KJ performed biochemical 
analysis: IK, TT, ES analyzed SSAO activity. VS developed the model of MRPs-
rich diet and provided bread crusts. RK, IK, and KS analyzed the data. RK 
and KS drafted the manuscript. All co-authors critically reviewed the manu-
script.

Competing interests The authors declare to have no business relations re-
lated to this work  Coca Cola company, or with other food or drink produc-
ers or distributors. There was no involvement of any private funding in the 
study.

All authors have completed the Unified Competing Interest form at www.
icmje.org/coi_disclosure.pdf (available on request from the corresponding 
author) and declare: no support from any organization for the submitted 
work; no financial relationships with any organizations that might have an 
interest in the submitted work in the previous 3 years; no other relationships 
or activities that could appear to have influenced the submitted work.

References
1	 Maillard LC. Action des acides aminés sur les sucres: formation des 

mélanoidines par voie méthodique. CR Acad Sci. 1912;154:66-8.

2	 Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation 

and the pathogenesis of diabetic complications. Ann Intern Med. 

1984;101:527-37. Medline:6383165 doi:10.7326/0003-4819-101-4-

527

3	 Cerami A, Vlassara H, Brownlee M. Protein glycosylation and the 

pathogenesis of atherosclerosis. Metabolism. 1985;34:37-42. 

Medline:3906359 doi:10.1016/S0026-0495(85)80008-1

4	 Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes 

mellitus and diseases of aging. Drugs Aging. 1996;9:69-77. 

Medline:8820792 doi:10.2165/00002512-199609020-00001

5	 Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, et al. RAGE: 

a novel cellular receptor for advanced glycation end products. 

Diabetes. 1996;45 Suppl 3:S77-80. Medline:8674899 doi:10.2337/

diab.45.3.S77

6	 Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold 

B, et al. Understanding RAGE, the receptor for advanced glycation 

end products. J Mol Med. 2005;83:876-86. Medline:16133426 

doi:10.1007/s00109-005-0688-7

7	 Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, 

et al. Orally absorbed reactive glycation products (glycotoxins): 

An environmental risk factor in diabetic nephropathy. Proc Natl 

Acad Sci U S A. 1997;94:6474-9. Medline:9177242 doi:10.1073/

pnas.94.12.6474

8	 Sebekova K, Somoza V. Dietary advanced glycation endproducts 

(AGEs) and their health effects–PRO. Mol Nutr Food Res. 

2007;51:1079-84. Medline:17854003 doi:10.1002/mnfr.200700035

9	D elgado-Andrade C. Maillard reaction products: some 

considerations on their health effects. Clin Chem Lab Med. 

2014;52:53-60. Medline:23612540 doi:10.1515/cclm-2012-0823

10	 Tessier FJ, Birlouez-Aragon I. Health effects of dietary Maillard 

reaction products: the results of ICARE and other studies. Amino 

Acids. 2012;42:1119-31. Medline:20949364 doi:10.1007/s00726-

010-0776-z

11	 Vlassara H, Striker G. Glycotoxins in the diet promote diabetes 

and diabetic complications. Curr Diab Rep. 2007;7:235-41. 

Medline:17547841 doi:10.1007/s11892-007-0037-z

12	H eerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal 

obesity and fetal metabolic programming: a fertile epigenetic 

soil. Am J Physiol Regul Integr Comp Physiol. 2010;299:R711-22. 

Medline:20631295 doi:10.1152/ajpregu.00310.2010

13	 Taylor PD, Poston L. Developmental programming of obesity 

in mammals. Exp Physiol. 2007;92:287-98. Medline:17170060 

www.icmje.org/coi_disclosure.pdf
www.icmje.org/coi_disclosure.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6383165&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-101-4-527
http://dx.doi.org/10.7326/0003-4819-101-4-527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3906359&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3906359&dopt=Abstract
http://dx.doi.org/10.1016/S0026-0495(85)80008-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8820792&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8820792&dopt=Abstract
http://dx.doi.org/10.2165/00002512-199609020-00001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8674899&dopt=Abstract
http://dx.doi.org/10.2337/diab.45.3.S77
http://dx.doi.org/10.2337/diab.45.3.S77
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16133426&dopt=Abstract
http://dx.doi.org/10.1007/s00109-005-0688-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9177242&dopt=Abstract
http://dx.doi.org/10.1073/pnas.94.12.6474
http://dx.doi.org/10.1073/pnas.94.12.6474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17854003&dopt=Abstract
http://dx.doi.org/10.1002/mnfr.200700035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23612540&dopt=Abstract
http://dx.doi.org/10.1515/cclm-2012-0823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20949364&dopt=Abstract
http://dx.doi.org/10.1007/s00726-010-0776-z
http://dx.doi.org/10.1007/s00726-010-0776-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17547841&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17547841&dopt=Abstract
http://dx.doi.org/10.1007/s11892-007-0037-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20631295&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20631295&dopt=Abstract
http://dx.doi.org/10.1152/ajpregu.00310.2010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17170060&dopt=Abstract


RECOOP for Common Mechanisms of Diseases 102 Croat Med J. 2015;56:94-103

www.cmj.hr

doi:10.1113/expphysiol.2005.032854

14	 Godfrey KM, Barker DJ. Fetal programming and adult health. Public 

Health Nutr. 2001;4 2B:611-24. Medline:11683554 doi:10.1079/

PHN2001145

15	 Kind KL, Moore VM, Davies MJ. Diet around conception and during 

pregnancy–effects on fetal and neonatal outcomes. Reprod 

Biomed Online. 2006;12:532-41. Medline:16790095 doi:10.1016/

S1472-6483(10)61178-9

16	 Ferro Cavalcante TC, Marcelino da Silva AA, Lira MC, do Amaral 

Almeida LC, Marques AP, do Nascimento E. Early exposure of dams 

to a westernized diet has long-term consequences on food intake 

and physiometabolic homeostasis of the rat offspring. Int J Food 

Sci Nutr. 2014;65:989-93. Medline:25198159 doi:10.3109/09637486

.2014.950208

17	 Mericq V, Piccardo C, Cai W, Chen X, Zhu L, Striker GE, et 

al. Maternally transmitted and food-derived glycotoxins: a 

factor preconditioning the young to diabetes? Diabetes Care. 

2010;33:2232-7. Medline:20628088 doi:10.2337/dc10-1058

18	H ao L, Noguchi S, Kamada Y, Sasaki A, Matsuda M, Shimizu K, 

et al. Adverse effects of advanced glycation end products on 

embryonal development. Acta Med Okayama. 2008;62:93-9. 

Medline:18464885

19	N oguchi T, Sado T, Naruse K, Shigetomi H, Onogi A, Haruta S, et 

al. Evidence for activation of Toll-like receptor and receptor for 

advanced glycation end products in preterm birth. Mediators 

of inflammation. 2010;2010:490406. Medline:21127710 

doi:10.1155/2010/490406 

20	O liver EA, Buhimschi CS, Dulay AT, Baumbusch MA, Abdel-Razeq 

SS, Lee SY, et al. Activation of the receptor for advanced glycation 

end products system in women with severe preeclampsia. J Clin 

Endocrinol Metab. 2011;96:689-98. Medline:21325454 doi:10.1210/

jc.2010-1418

21	 Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, 

Willett WC, et al. Sugar-sweetened beverages, weight gain, 

and incidence of type 2 diabetes in young and middle-aged 

women. JAMA. 2004;292:927-34. Medline:15328324 doi:10.1001/

jama.292.8.927

22	 Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP. Colas, 

but not other carbonated beverages, are associated with low bone 

mineral density in older women: The Framingham Osteoporosis 

Study. Am J Clin Nutr. 2006;84:936-42. Medline:17023723

23	 Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages 

and weight gain: a systematic review. Am J Clin Nutr. 2006;84:274-

88. Medline:16895873

24	 Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose 

corn syrup in beverages may play a role in the epidemic of obesity. 

Am J Clin Nutr. 2004;79:537-43. Medline:15051594

25	D rewnowski A, Bellisle F. Liquid calories, sugar, and body weight. 

Am J Clin Nutr. 2007;85:651-61. Medline:17344485

26	 Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram 

S, Le M, et al. Sugar, uric acid, and the etiology of diabetes 

and obesity. Diabetes. 2013;62:3307-15. Medline:24065788 

doi:10.2337/db12-1814

27	A hmed N, Mirshekar-Syahkal B, Kennish L, Karachalias N, Babaei-

Jadidi R, Thornalley PJ. Assay of advanced glycation endproducts 

in selected beverages and food by liquid chromatography with 

tandem mass spectrometric detection. Mol Nutr Food Res. 

2005;49:691-9. Medline:15945118 doi:10.1002/mnfr.200500008

28	 Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. 

Advanced glycoxidation end products in commonly consumed 

foods. J Am Diet Assoc. 2004;104:1287-91. Medline:15281050 

doi:10.1016/j.jada.2004.05.214

29	L indenmeier M, Faist V, Hofmann T. Structural and functional 

characterization of pronyl-lysine, a novel protein modification in 

bread crust melanoidins showing in vitro antioxidative and phase 

I/II enzyme modulating activity. J Agric Food Chem. 2002;50:6997-

7006. Medline:12428950 doi:10.1021/jf020618n

30	 Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, et 

al. Determination of advanced glycation end products in serum 

by fluorescence spectroscopy and competitive ELISA. European 

journal of clinical chemistry and clinical biochemistry. 1997;35:669-

77. Medline:9352229 

31	 Chung HF, Lees H, Gutman SI. Effect of nitroblue tetrazolium 

concentration on the fructosamine assay for quantifying glycated 

protein. Clin Chem. 1988;34:2106-11. Medline:3168224

32	 Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-

Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein 

products as a novel marker of oxidative stress in uremia. Kidney 

Int. 1996;49:1304-13. Medline:8731095 doi:10.1038/ki.1996.186

33	A nderstam B, Ann-Christin BH, Valli A, Stenvinkel P, Lindholm 

B, Suliman ME. Modification of the oxidative stress biomarker 

AOPP assay: application in uremic samples. Clin Chim Acta. 

2008;393:114-8. Medline:18423381 doi:10.1016/j.cca.2008.03.029 

34	 Behuliak M, Palffy R, Gardlik R, Hodosy J, Halcak L, Celec 

P. Variability of thiobarbituric acid reacting substances 

in saliva. Dis Markers. 2009;26:49-53. Medline:19407359 

doi:10.1155/2009/175683

35	 Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as 

a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 

1996;239:70-6. Medline:8660627 doi:10.1006/abio.1996.0292

36	E rel O. A novel automated direct measurement method for total 

antioxidant capacity using a new generation, more stable ABTS 

radical cation. Clin Biochem. 2004;37:277-85. Medline:15003729 

doi:10.1016/j.clinbiochem.2003.11.015

37	 Tabi T, Szoko E, Merey A, Toth V, Matyus P, Gyires K. Study on SSAO 

enzyme activity and anti-inflammatory effect of SSAO inhibitors in 

animal model of inflammation. J Neural Transm. 2013;120:963-7. 

Medline:23263543 doi:10.1007/s00702-012-0961-1

38	A skenazi DJ, Moore JF, Fineberg N, Koralkar R, Clevenger S, 

Sharer JD. Comparison of methods, storage conditions, and 

http://dx.doi.org/10.1113/expphysiol.2005.032854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11683554&dopt=Abstract
http://dx.doi.org/10.1079/PHN2001145
http://dx.doi.org/10.1079/PHN2001145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16790095&dopt=Abstract
http://dx.doi.org/10.1016/S1472-6483(10)61178-9
http://dx.doi.org/10.1016/S1472-6483(10)61178-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25198159&dopt=Abstract
http://dx.doi.org/10.3109/09637486.2014.950208
http://dx.doi.org/10.3109/09637486.2014.950208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20628088&dopt=Abstract
http://dx.doi.org/10.2337/dc10-1058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18464885&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18464885&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21127710&dopt=Abstract
http://dx.doi.org/10.1155/2010/490406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21325454&dopt=Abstract
http://dx.doi.org/10.1210/jc.2010-1418
http://dx.doi.org/10.1210/jc.2010-1418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15328324&dopt=Abstract
http://dx.doi.org/10.1001/jama.292.8.927
http://dx.doi.org/10.1001/jama.292.8.927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17023723&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16895873&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15051594&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17344485&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24065788&dopt=Abstract
http://dx.doi.org/10.2337/db12-1814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15945118&dopt=Abstract
http://dx.doi.org/10.1002/mnfr.200500008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15281050&dopt=Abstract
http://dx.doi.org/10.1016/j.jada.2004.05.214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12428950&dopt=Abstract
http://dx.doi.org/10.1021/jf020618n
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9352229&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3168224&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8731095&dopt=Abstract
http://dx.doi.org/10.1038/ki.1996.186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18423381&dopt=Abstract
http://dx.doi.org/10.1016/j.cca.2008.03.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19407359&dopt=Abstract
http://dx.doi.org/10.1155/2009/175683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8660627&dopt=Abstract
http://dx.doi.org/10.1006/abio.1996.0292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15003729&dopt=Abstract
http://dx.doi.org/10.1016/j.clinbiochem.2003.11.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23263543&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23263543&dopt=Abstract
http://dx.doi.org/10.1007/s00702-012-0961-1


103Gurecká et al: Metabolic effects of pre- and post-natal dietary intervention in rats.

www.cmj.hr

time to analysis of serum and urine creatinine measured from 

microsamples by liquid chromatography mass spectrometery (LC/

MS) vs. Jaffe. J Clin Lab Anal. 2014;28:405-8. Medline:24652788 

doi:10.1002/jcla.21701

39	 Pruis MG, Lendvai A, Bloks VW, Zwier MV, Baller JF, de Bruin A, et 

al. Maternal western diet primes non-alcoholic fatty liver disease 

in adult mouse offspring. Acta Physiol (Oxf ). 2014;210:215-27. 

Medline:24224789 doi:10.1111/apha.12197

40	 MacPherson RE, Castelli LM, Miotto PM, Frendo-Cumbo S, Milburn 

A, Roy BD, et al. A maternal high fat diet has long-lasting effects 

on skeletal muscle lipid and PLIN protein content in rat offspring 

at young adulthood. Lipids. 2015;50:205-17. Medline:25552350 

doi:10.1007/s11745-014-3985-5

41	 Yin J, Quinn S, Dwyer T, Ponsonby AL, Jones G. Maternal 

diet, breastfeeding and adolescent body composition: a 

16-year prospective study. Eur J Clin Nutr. 2012;66:1329-34. 

Medline:23047715 doi:10.1038/ejcn.2012.122

42	 Sebekova K, Klenovics KS, Boor P, Celec P, Behuliak M, Schieberle 

P, et al. Behaviour and hormonal status in healthy rats on a 

diet rich in Maillard reaction products with or without solvent 

extractable aroma compounds. Physiol Behav. 2012;105:693-701. 

Medline:22019827 doi:10.1016/j.physbeh.2011.10.004

43	 Sebekova K, Hofmann T, Boor P, Sebekova K Jr, Ulicna O, 

Erbersdobler HF, et al. Renal effects of oral maillard reaction 

product load in the form of bread crusts in healthy and subtotally 

nephrectomized rats. Ann N Y Acad Sci. 2005;1043:482-91. 

Medline:16037270 doi:10.1196/annals.1333.055

44	 Somoza V, Lindenmeier M, Hofmann T, Frank O, Erbersdobler 

HF, Baynes JW, et al. Dietary bread crust advanced glycation end 

products bind to the receptor for AGEs in HEK-293 kidney cells 

but are rapidly excreted after oral administration to healthy and 

subtotally nephrectomized rats. Ann N Y Acad Sci. 2005;1043:492-

500. Medline:16037271 doi:10.1196/annals.1333.056

45	 Klenovics KS, Boor P, Somoza V, Celec P, Fogliano V, Sebekova 

K. Advanced glycation end products in infant formulas do not 

contribute to insulin resistance associated with their consumption. 

PLoS ONE. 2013;8:e53056. Medline:23301020 doi:10.1371/journal.

pone.0053056

46	 Bao W, Tobias DK, Olsen SF, Zhang C. Pre-pregnancy fried food 

consumption and the risk of gestational diabetes mellitus: 

a prospective cohort study. Diabetologia. 2014;57:2485-91. 

Medline:25303998 doi:10.1007/s00125-014-3382-x

47	 Celec P, Palffy R, Gardlik R, Behuliak M, Hodosy J, Jani P, et al. 

Renal and metabolic effects of three months of decarbonated 

cola beverages in rats. Exp Biol Med. 2010;235:1321-7. 

Medline:20921275 doi:10.1258/ebm.2010.010051

48	 Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, 

Van Obberghen E. Methylglyoxal impairs the insulin signaling 

pathways independently of the formation of intracellular reactive 

oxygen species. Diabetes. 2006;55:1289-99. Medline:16644685 

doi:10.2337/db05-0857

49	 Schalkwijk CG, Brouwers O, Stehouwer CD. Modulation of insulin 

action by advanced glycation endproducts: a new player in 

the field. Hormone and metabolic research. 2008;40:614-9. 

Medline:18792872 doi:10.1055/s-0028-1082085

50	 Yu PH, Wang M, Fan H, Deng Y, Gubisne-Haberle D. Involvement 

of SSAO-mediated deamination in adipose glucose transport and 

weight gain in obese diabetic KKAy mice. Am J Physiol Endocrinol 

Metab. 2004;286:E634-41. Medline:14656718 doi:10.1152/

ajpendo.00272.2003

51	 Jalkanen S, Salmi M. Cell surface monoamine oxidases: enzymes in 

search of a function. EMBO J. 2001;20:3893-901. Medline:11483492 

doi:10.1093/emboj/20.15.3893

52	 Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning 

of vascular adhesion protein 1 reveals a novel multifunctional 

adhesion molecule. J Exp Med. 1998;188:17-27. Medline:9653080 

doi:10.1084/jem.188.1.17

53	 van Eupen MG, Schram MT, Colhoun HM, Scheijen JL, 

Stehouwer CD, Schalkwijk CG. Plasma levels of advanced 

glycation endproducts are associated with type 1 diabetes and 

coronary artery calcification. Cardiovasc Diabetol. 2013;12:149. 

Medline:24134530 doi:10.1186/1475-2840-12-149

54	O bata T. Diabetes and semicarbazide-sensitive amine 

oxidase (SSAO) activity: a review. Life Sci. 2006;79:417-22. 

Medline:16487546 doi:10.1016/j.lfs.2006.01.017

55	 Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of 

the glycoxidation product N(epsilon)-(carboxymethyl)lysine in 

human tissues in diabetes and aging. J Clin Invest. 1997;99:457-68. 

Medline:9022079 doi:10.1172/JCI119180

56	 Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, et al. 

N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands 

for receptor for advanced glycation end products that activate 

cell signaling pathways and modulate gene expression. J Biol 

Chem. 1999;274:31740-9. Medline:10531386 doi:10.1074/

jbc.274.44.31740

57	A hmed KA, Muniandy S, Ismail ISN. (epsilon)-(Carboxymethyl)

lysine and coronary atherosclerosis-associated low density 

lipoprotein abnormalities in type 2 diabetes: current status. J Clin 

Biochem Nutr. 2009;44:14-27. Medline:19177184 doi:10.3164/

jcbn.08-190

58	 Chuyen NV. Maillard reaction and food processing. Application 

aspects. Adv Exp Med Biol. 1998;434:213-35. Medline:9598202 

doi:10.1007/978-1-4899-1925-0_18

59	 Tothova L, Hodosy J, Mettenburg K, Fabryova H, Wagnerova 

A, Babickova J, et al. No harmful effect of different Coca-

cola beverages after 6 months of intake on rat testes. Food 

and chemical toxicology. 2013;62:343-8. Medline:24001441 

doi:10.1016/j.fct.2013.08.073 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24652788&dopt=Abstract
http://dx.doi.org/10.1002/jcla.21701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24224789&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24224789&dopt=Abstract
http://dx.doi.org/10.1111/apha.12197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25552350&dopt=Abstract
http://dx.doi.org/10.1007/s11745-014-3985-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23047715&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23047715&dopt=Abstract
http://dx.doi.org/10.1038/ejcn.2012.122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22019827&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22019827&dopt=Abstract
http://dx.doi.org/10.1016/j.physbeh.2011.10.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16037270&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16037270&dopt=Abstract
http://dx.doi.org/10.1196/annals.1333.055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16037271&dopt=Abstract
http://dx.doi.org/10.1196/annals.1333.056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23301020&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0053056
http://dx.doi.org/10.1371/journal.pone.0053056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25303998&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25303998&dopt=Abstract
http://dx.doi.org/10.1007/s00125-014-3382-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20921275&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20921275&dopt=Abstract
http://dx.doi.org/10.1258/ebm.2010.010051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16644685&dopt=Abstract
http://dx.doi.org/10.2337/db05-0857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18792872&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18792872&dopt=Abstract
http://dx.doi.org/10.1055/s-0028-1082085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14656718&dopt=Abstract
http://dx.doi.org/10.1152/ajpendo.00272.2003
http://dx.doi.org/10.1152/ajpendo.00272.2003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11483492&dopt=Abstract
http://dx.doi.org/10.1093/emboj/20.15.3893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9653080&dopt=Abstract
http://dx.doi.org/10.1084/jem.188.1.17
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24134530&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24134530&dopt=Abstract
http://dx.doi.org/10.1186/1475-2840-12-149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16487546&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16487546&dopt=Abstract
http://dx.doi.org/10.1016/j.lfs.2006.01.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9022079&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9022079&dopt=Abstract
http://dx.doi.org/10.1172/JCI119180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10531386&dopt=Abstract
http://dx.doi.org/10.1074/jbc.274.44.31740
http://dx.doi.org/10.1074/jbc.274.44.31740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19177184&dopt=Abstract
http://dx.doi.org/10.3164/jcbn.08-190
http://dx.doi.org/10.3164/jcbn.08-190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9598202&dopt=Abstract
http://dx.doi.org/10.1007/978-1-4899-1925-0_18
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24001441&dopt=Abstract
http://dx.doi.org/10.1016/j.fct.2013.08.073

