metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Trichlorido(dimethyl sulfoxide- κ O)(di-2pyridylamine- $\kappa^2 N, N'$)indium(III)

Sadif A. Shirvan,^a* Sara Haydari Dezfuli^a and Elyas Golabi^b

^aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran, and ^bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran Correspondence e-mail: sadif_shirvan1@yahoo.com

Received 29 August 2012; accepted 5 September 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.042; wR factor = 0.080; data-to-parameter ratio = 18.0.

In the title compound, $[InCl_3(C_{10}H_9N_3)(C_2H_6OS)]$, the In^{III} atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating di-2-pyridylamine ligand, one O atom from a dimethyl sulfoxide ligand and three Cl atoms. Intermolecular C–H···Cl hydrogen bonds and π - π contacts between the pyridine rings [centroid-centroid distance = 3.510 (3) Å] are present in the crystal.

Related literature

For related structures, see: Abedi et al. (2011, 2012a,b); Ahmadi et al. (2008); Clemente (2005); Dong et al. (1987); Ilyuhin & Malyarik (1994); Kalateh, Ahmadi et al. (2008); Kalateh, Norouzi et al. (2008); Malecki et al. (2011); Malyarick et al. (1992); Shi & Jiang (2006); Shirvan & Haydari Dezfuli (2012); Yoshikawa et al. (2004); Yousefi et al. (2009).

Experimental

Crystal data $[InCl_3(C_{10}H_9N_3)(C_2H_6OS)]$ $M_r = 470.51$ Monoclinic C_2/c a = 29.283 (2) Å b = 7.7642 (7) Å c = 15.9459 (12) Å $\beta = 104.891 \ (6)^{\circ}$

V = 3503.7 (5) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 1.93 \text{ mm}^-$ T = 298 K $0.20 \times 0.18 \times 0.15~\text{mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.702, \ T_{\max} = 0.796$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	192 parameters
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$
3448 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

14020 measured reflections

 $R_{\rm int} = 0.075$

3448 independent reflections

2503 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11C\cdots Cl2^{i}$	0.96	2.74	3.499 (8)	137

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2584).

References

- Abedi, A., Safari, A. R. & Amani, V. (2012a). Z. Kristallogr. New Cryst. Struct. 227. 169-198
- Abedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012b). J. Coord. Chem. 65, 325-338.
- Abedi, A., Safari, N., Amani, V., Tavajohi, S. & Ostad, N. (2011). Inorg. Chim. Acta, 376, 679-686.
- Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clemente, D. A. (2005). Inorg. Chim. Acta, 358, 1725-1748.
- Dong, N., Hang, N.-D., Dong, Z.-C. & Hu, S.-Z. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 145-149.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ilyuhin, A. B. & Malyarik, M. A. (1994). Kristallografiya, 39, 439-443.
- Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.
- Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583-m1584.
- Malecki, J. G., Machura, B., Switlicka, A., Gron, T. & Balanda, M. (2011). Polyhedron, 30, 746-753.
- Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067-1073.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, P.-F. & Jiang, Q. (2006). Acta Cryst. E62, m1183-m1185.
- Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1189-m1190. Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Takashima, H. &
- Tsukahara, K. (2004). Acta Cryst. E60, m546-m547.
- Yousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9-m10.

supplementary materials

Acta Cryst. (2012). E68, m1256 [doi:10.1107/S1600536812038147]

Trichlorido(dimethyl sulfoxide- κO)(di-2-pyridylamine- $\kappa^2 N$, N')indium(III)

Sadif A. Shirvan, Sara Haydari Dezfuli and Elyas Golabi

Comment

Recently, we reported the synthesis and crystal structure of $[In(4,4'-dmbipy)Cl_3(MeOH)]$.MeOH, (II) (Shirvan & Haydari Dezfuli, 2012) (4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine). Several In^{III} complexes with a formula $[In(L_1)Cl_3(L_2)]$ (L_1 = an N,N'-chelating ligand, L_2 = DMSO, H₂O, MeOH or EtOH), such as $[In(bipy)Cl_3(H_2O)]$, (III), $[In(bipy)Cl_3(EtOH)]$, (IV), $[In(bipy)Cl_3(H_2O)]$.H₂O, (V) (Malyarick *et al.*, 1992), $[In(phen)Cl_3(DMSO)]$, (VI) (Dong *et al.*, 1987), $[In(phen)Cl_3(H_2O)]$, (VII), $[In(phen)Cl_3(EtOH)]$.EtOH, (VIII) (Ilyuhin & Malyarik, 1994), $[In(4,4'-dmbipy)Cl_3(DMSO)]$, (IX) (Ahmadi *et al.*, 2008), $[In(5,5'-dmbipy)Cl_3(MeOH)]$, (X) (Kalateh, Ahmadi *et al.*, 2008), $[In(4,4'-dmbipy)Cl_3(MeOH)]$, (X) (Alatei *et al.*, 2012*a*), $[In(4bt)Cl_3(MeOH)]$, (XIII) and $[In(4bt)Cl_3(DMSO)]$, (XIII) (Abedi *et al.*, 2012*a*), $[In(4bt)Cl_3(MeOH)]$, (XIII) and $[In(4bt)Cl_3(DMSO)]$, (XIII) (Abedi *et al.*, 2012*b*) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, DMSO = dimethyl sulfoxide, 4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbipy = 5,5'-dimethyl-2,2'-bipyridine, 4,4'-ditipy = 4,4'-di-tert-butyl-2,2'-bipyridine, 4bt = 4,4'-bithiazole), have been synthesized and characterized by single-crystal X-ray diffraction methods. Di-2-pyridyl-amine (DPA) is a good bidentate ligand, and numerous complexes with DPA have been prepared, such as that of $[Hg(DPA)Br_2]$, (XIV) (Kalateh, Norouzi *et al.*, 2008), $[Hg(DPA)Cl_2]$, (XV) (Yousefi *et al.*, 2009), $[Pt(DPA)Cl_4]$.DMF, (XVI) (Abedi *et al.*, 2011), $[Ir(DPA)_2Cl_2](PF_6)$, (XVII) (Yoshikawa *et al.*, 2004), $[Cu(DPA)_2](BF_4)_2$, (XVIII) (Clemente, 2005), $[Mn(DPA)_2(NCS)_2]$.0.5H₂O, (XIX) (Malecki *et al.*, 2011) and $[Au(DPA)Cl_2]Cl, (XX)$ (Shi & Jiang, 2006). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the In^{III} atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating DPA ligand, one O atom from a dimethyl sulfoxide ligand and three Cl atoms. In the crystal, intermolecular C —H…Cl hydrogen bonds (Table 1, Fig. 2) and π - π contacts between the pyridine rings, Cg3… $Cg3^{i}$ [symmetry code: (i) - x, -y, -z. Cg3 is the centroid of the N3/C6–C10 ring], with a centroid–centroid distance of 3.510 (3) Å, stabilize the structure.

Experimental

For the preparation of the title compound, a solution of di-2-pyridylamine (0.29 g, 1.65 mmol) in methanol (10 ml) was added to a solution of $InCl_3.4H_2O$ (0.48 g, 1.65 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction analysis were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.57 g, 73.4%).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 (CH), 0.96 (CH₃) and N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Trichlorido(dimethyl sulfoxide- κO)(di-2-pyridylamine- $\kappa^2 N, N'$)indium(III)

Crystal data

 $[InCl_3(C_{10}H_9N_3)(C_2H_6OS)]$ $M_r = 470.51$ Monoclinic, C2/c Hall symbol: -C 2yc a = 29.283 (2) Å b = 7.7642 (7) Å c = 15.9459 (12) Å $\beta = 104.891$ (6)° V = 3503.7 (5) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.702, T_{\max} = 0.796$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.080$ S = 0.99 F(000) = 1856 $D_x = 1.784 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14020 reflections $\theta = 2.6-26.0^{\circ}$ $\mu = 1.93 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.20 \times 0.18 \times 0.15 \text{ mm}$

14020 measured reflections 3448 independent reflections 2503 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.6^\circ$ $h = -29 \rightarrow 36$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 19$

3448 reflections192 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0384P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{max} = -0.61 \text{ a} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.1269 (2)	0.2012 (6)	0.2648 (3)	0.0416 (13)
H1	0.1292	0.3198	0.2730	0.050*
C2	0.1331 (2)	0.0973 (7)	0.3361 (4)	0.0444 (13)
H2	0.1397	0.1439	0.3916	0.053*
C3	0.12911 (19)	-0.0815 (7)	0.3234 (4)	0.0422 (13)
H3	0.1334	-0.1557	0.3705	0.051*
C4	0.11901 (18)	-0.1440 (6)	0.2417 (3)	0.0363 (12)
H4	0.1167	-0.2623	0.2325	0.044*
C5	0.11200 (16)	-0.0330 (6)	0.1712 (3)	0.0301 (10)
C6	0.07132 (16)	-0.0304 (5)	0.0123 (3)	0.0276 (10)
C7	0.04239 (18)	-0.1417 (6)	-0.0476 (3)	0.0367 (12)
H7	0.0439	-0.2600	-0.0381	0.044*
C8	0.01195 (19)	-0.0754 (7)	-0.1202 (3)	0.0433 (13)
H8	-0.0075	-0.1478	-0.1605	0.052*
C9	0.01051 (18)	0.1023 (7)	-0.1329 (3)	0.0415 (13)
Н9	-0.0105	0.1510	-0.1810	0.050*
C10	0.04049 (17)	0.2029 (6)	-0.0735 (3)	0.0355 (12)
H10	0.0393	0.3215	-0.0819	0.043*
C11	0.2689 (2)	0.1898 (9)	0.1207 (5)	0.0667 (19)
H11A	0.2654	0.3090	0.1337	0.080*
H11B	0.2735	0.1797	0.0635	0.080*
H11C	0.2957	0.1425	0.1622	0.080*
C12	0.2306 (3)	-0.1246 (8)	0.0852 (6)	0.090 (3)
H12A	0.2358	-0.1087	0.0286	0.108*
H12B	0.2047	-0.2024	0.0812	0.108*
H12C	0.2586	-0.1717	0.1236	0.108*
N1	0.11766 (14)	0.1385 (4)	0.1824 (3)	0.0320 (9)
N2	0.09923 (15)	-0.1004 (5)	0.0877 (3)	0.0341 (10)
H2B	0.1104	-0.2010	0.0822	0.041*
N3	0.07196 (13)	0.1395 (4)	-0.0027 (2)	0.0289 (9)
01	0.17759 (11)	0.1461 (4)	0.0516 (2)	0.0371 (8)
In1	0.124091 (13)	0.32946 (4)	0.07746 (2)	0.02991 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

Cl1	0.12945 (6)	0.49624 (17)	-0.04921 (10)	0.0507 (4)
Cl2	0.18785 (6)	0.48512 (18)	0.17913 (10)	0.0562 (4)
C13	0.05889 (5)	0.49583 (15)	0.10961 (9)	0.0437 (3)
S 1	0.21736 (5)	0.07577 (18)	0.12573 (10)	0.0435 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.051 (3)	0.035 (3)	0.038 (3)	0.005 (2)	0.010 (3)	-0.001 (2)
C2	0.054 (4)	0.045 (3)	0.033 (3)	0.005 (3)	0.010 (3)	-0.006 (2)
C3	0.043 (3)	0.047 (3)	0.039 (3)	0.009 (2)	0.013 (3)	0.013 (2)
C4	0.045 (3)	0.021 (2)	0.044 (3)	0.005 (2)	0.012 (2)	0.004 (2)
C5	0.024 (2)	0.030 (2)	0.035 (3)	0.0034 (19)	0.007 (2)	-0.001 (2)
C6	0.029 (3)	0.023 (2)	0.031 (3)	-0.0002 (18)	0.008 (2)	0.0012 (18)
C7	0.042 (3)	0.026 (2)	0.042 (3)	-0.006 (2)	0.011 (2)	-0.006 (2)
C8	0.040 (3)	0.054 (3)	0.034 (3)	-0.011 (3)	0.006 (3)	-0.013 (2)
C9	0.030 (3)	0.058 (3)	0.034 (3)	0.002 (2)	0.003 (2)	0.003 (2)
C10	0.037 (3)	0.032 (3)	0.038 (3)	0.005 (2)	0.011 (2)	0.004 (2)
C11	0.040 (3)	0.089 (5)	0.066 (4)	-0.002 (3)	0.005 (3)	0.027 (4)
C12	0.077 (5)	0.051 (4)	0.134 (8)	0.032 (4)	0.014 (5)	0.002 (4)
N1	0.041 (2)	0.0216 (19)	0.032 (2)	0.0007 (16)	0.0073 (19)	0.0021 (15)
N2	0.048 (3)	0.0181 (16)	0.033 (2)	0.0054 (17)	0.004 (2)	-0.0015 (16)
N3	0.030 (2)	0.0252 (19)	0.029 (2)	0.0008 (15)	0.0041 (18)	0.0008 (15)
O1	0.0319 (18)	0.0387 (18)	0.0377 (19)	0.0067 (15)	0.0035 (15)	-0.0017 (15)
In1	0.03548 (19)	0.01872 (14)	0.03429 (18)	-0.00068 (16)	0.00671 (13)	-0.00053 (15)
Cl1	0.0634 (9)	0.0369 (6)	0.0565 (9)	0.0011 (6)	0.0239 (8)	0.0158 (6)
C12	0.0556 (9)	0.0504 (8)	0.0572 (9)	-0.0182 (7)	0.0048 (8)	-0.0175 (7)
C13	0.0470 (8)	0.0267 (6)	0.0591 (8)	0.0062 (5)	0.0170 (7)	-0.0020 (5)
S1	0.0354 (7)	0.0489 (8)	0.0454 (8)	0.0085 (6)	0.0092 (6)	0.0139 (6)

Geometric parameters (Å, °)

C1—N1	1.362 (7)	С9—Н9	0.9300
C1—C2	1.368 (8)	C10—N3	1.353 (6)
C1—H1	0.9300	C10—H10	0.9300
C2—C3	1.403 (7)	C11—S1	1.768 (6)
С2—Н2	0.9300	C11—H11A	0.9600
C3—C4	1.350 (7)	C11—H11B	0.9600
С3—Н3	0.9300	C11—H11C	0.9600
C4—C5	1.389 (7)	C12—S1	1.766 (7)
C4—H4	0.9300	C12—H12A	0.9600
C5—N1	1.347 (5)	C12—H12B	0.9600
C5—N2	1.390 (6)	C12—H12C	0.9600
C6—N3	1.342 (5)	N1—In1	2.279 (4)
C6—N2	1.380 (6)	N2—H2B	0.8600
C6—C7	1.401 (6)	N3—In1	2.267 (4)
С7—С8	1.367 (7)	O1—S1	1.531 (3)
С7—Н7	0.9300	O1—In1	2.232 (3)
C8—C9	1.394 (8)	In1—Cl1	2.4381 (14)
C8—H8	0.9300	In1—Cl2	2.4535 (14)

C9—C10	1.361 (7)	In1—Cl3	2.4658 (13)
N1—C1—C2	122.8 (5)	H11B—C11—H11C	109.5
N1—C1—H1	118.6	S1—C12—H12A	109.5
C2-C1-H1	118.6	S1—C12—H12B	109.5
C1-C2-C3	118.4 (5)	H12A—C12—H12B	109.5
C1-C2-H2	120.8	S1-C12-H12C	109.5
C3—C2—H2	120.8	H12A - C12 - H12C	109.5
C4-C3-C2	119.0 (5)	H12B— $C12$ — $H12C$	109.5
C4—C3—H3	120.5	C_{5} N1 $-C_{1}$	1179(4)
C2-C3-H3	120.5	C5-N1-In1	125.2(3)
C_{3} C_{4} C_{5}	120.5 (4)	C1-N1-In1	1162(3)
C3-C4-H4	119.7	C6-N2-C5	129.8(4)
C5-C4-H4	119.7	C6-N2-H2B	115.1
N1-C5-C4	121 2 (4)	C_{5} N2 H2B	115.1
N1-C5-N2	1195(4)	C6-N3-C10	118.0 (4)
C4-C5-N2	119.3 (4)	C6-N3-In1	125.2(3)
N3-C6-N2	120.7(4)	C10 N3 In1	125.2(3) 1167(3)
N3_C6_C7	120.7(4) 121.2(4)	$S1_01_1$	121.04(19)
$N_{2} - C_{6} - C_{7}$	121.2(4) 1180(4)	Ω_1 Π_1 N_3	83 32 (13)
$C_{8}^{-}C_{7}^{-}C_{6}^{-}$	119.6 (4)	O1—In1—N1	85.12 (13)
C8-C7-H7	120.2	N_3 _In1_N1	79.63 (13)
$C_{0} = C_{1} = H_{1}$	120.2	$\begin{array}{ccc} \mathbf{N} \mathbf{J} & -\mathbf{I} \mathbf{n} 1 \\ \mathbf{O} 1 & \mathbf{I} \mathbf{n} 1 \\ \mathbf{O} 1 \end{array}$	79.03 (13) 80.31 (0)
C_{0}	110.0 (5)	$N_{1} = In_{1} = C_{11}$	03.31(9)
$C_{7} C_{8} H_{8}$	119.0 (5)	$N_{1} = I_{1} = C_{1}$	93.18(10) 171.37(10)
$C_{1} = C_{2} = H_{2}$	120.5	$\Omega_1 = \ln 1 = C \Omega_1$	80.15 (0)
$C_{2} = C_{3} = 118$	120.5	$N_{1} = I_{1} = C_{12}$	168.87(10)
$C_{10} = C_{9} = C_{8}$	110.5 (5)	$N_{3} = H_{11} = C_{12}$ $N_{1} = L_{12}$	108.87(10)
C_{10} C_{20} H_{0}	120.8	NI - IIII - CI2	91.00(10)
$N_{2} = C_{10} = C_{0}$	120.0	C_{11} $ C_{12}$ C_{12} C_{13}	94.92(3)
$N_{2} = C_{10} = U_{10}$	123.4 (4)	V_1 I_{m1} C_{12}	1/1.9/(9)
N_{3} C_{10} H_{10}	118.5	$N_{3} = H_{11} = C_{13}$	90.74 (10)
$C_{2} = C_{10} = H_{110}$	110.5	NI - IIII - CI3	88.30(10)
SI_CII_HIIA	109.5	C12 In1 C12	90.44 (3)
	109.5	C12—IIII— $C12$	95.91 (5)
HIIA—CII—HIIB	109.5	01 - S1 - C12	105.1(5)
SI-CII-HIIC	109.5		100.0(3)
HIIA—CII—HIIC	109.5	C12—S1—C11	98.9 (4)
N1—C1—C2—C3	-0.7 (9)	C9—C10—N3—In1	172.6 (4)
C1—C2—C3—C4	-0.6 (8)	S1—O1—In1—N3	-128.7 (2)
C2—C3—C4—C5	-0.9 (8)	S1—O1—In1—N1	-48.6 (2)
C3—C4—C5—N1	3.8 (8)	S1—O1—In1—Cl1	138.0 (2)
C3—C4—C5—N2	-176.7 (5)	S1—O1—In1—Cl2	43.1 (2)
N3—C6—C7—C8	-4.3 (8)	C6—N3—In1—O1	53.4 (4)
N2—C6—C7—C8	175.6 (5)	C10—N3—In1—O1	-123.6 (3)
C6—C7—C8—C9	0.1 (8)	C6—N3—In1—N1	-32.9 (4)
C7—C8—C9—C10	1.7 (8)	C10—N3—In1—N1	150.2 (4)
C8—C9—C10—N3	0.5 (8)	C6—N3—In1—Cl1	142.3 (4)
C4—C5—N1—C1	-5.0 (7)	C10—N3—In1—C11	-34.6(3)

N2-C5-N1-C1	175.5 (4)	C6—N3—In1—Cl2	5.6 (8)
C4—C5—N1—In1	165.3 (4)	C10—N3—In1—Cl2	-171.3 (4)
N2-C5-N1-In1	-14.3 (6)	C6—N3—In1—Cl3	-121.2 (4)
C2-C1-N1-C5	3.5 (8)	C10—N3—In1—Cl3	61.9 (3)
C2-C1-N1-In1	-167.6 (4)	C5—N1—In1—O1	-48.7 (4)
N3—C6—N2—C5	35.4 (8)	C1—N1—In1—O1	121.6 (4)
C7—C6—N2—C5	-144.5 (5)	C5—N1—In1—N3	35.3 (4)
N1-C5-N2-C6	-32.5 (7)	C1—N1—In1—N3	-154.3 (4)
C4—C5—N2—C6	147.9 (5)	C5—N1—In1—Cl2	-137.7 (4)
N2-C6-N3-C10	-173.5 (4)	C1—N1—In1—Cl2	32.6 (4)
C7—C6—N3—C10	6.4 (7)	C5—N1—In1—Cl3	126.4 (4)
N2—C6—N3—In1	9.6 (6)	C1—N1—In1—Cl3	-63.2 (4)
C7—C6—N3—In1	-170.5 (3)	In1—O1—S1—C12	153.0 (3)
C9—C10—N3—C6	-4.5 (7)	In1—O1—S1—C11	-103.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11C···Cl2 ⁱ	0.96	2.74	3.499 (8)	137

Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.