
RESEARCH ARTICLE

Earthquake prediction model using support

vector regressor and hybrid neural networks

Khawaja M. Asim1*, Adnan Idris2, Talat Iqbal1, Francisco Martı́nez-Álvarez3
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Abstract

Earthquake prediction has been a challenging research area, where a future occurrence of

the devastating catastrophe is predicted. In this work, sixty seismic features are computed

through employing seismological concepts, such as Gutenberg-Richter law, seismic rate

changes, foreshock frequency, seismic energy release, total recurrence time. Further, Maxi-

mum Relevance and Minimum Redundancy (mRMR) criteria is applied to extract the rele-

vant features. A Support Vector Regressor (SVR) and Hybrid Neural Network (HNN) based

classification system is built to obtain the earthquake predictions. HNN is a step wise combi-

nation of three different Neural Networks, supported by Enhanced Particle Swarm Optimiza-

tion (EPSO), to offer weight optimization at each layer. The newly computed seismic

features in combination with SVR-HNN prediction system is applied on Hindukush, Chile

and Southern California regions. The obtained numerical results show improved prediction

performance for all the considered regions, compared to previous prediction studies.

1 Introduction

Earthquakes are one of the major catastrophe and their unpredictability causes even more

destruction in terms of human life and financial losses. There has been a serious debate about

the predictability of earthquakes with two concurrent point of views related to their prediction.

One school of thought considers it impossible phenomenon to predict while other have spent

their resources and efforts to achieve this task. It is an undeniable fact that the seismologist

community has been unsuccessful in developing methods to predict earthquakes despite more

than a century of efforts. Earthquake prediction remained an unachieved objective due to sev-

eral reasons. One of the reasons is the lack of technology in accurately monitoring the stress

changes, pressure and temperature variations deep beneath the crust through scientific instru-

ments, which eventually results in unavailability of comprehensive data about seismic features.

The second probable cause is the gap between seismologists and computer scientist for explor-

ing the various venues of technology to hunt this challenging task. With the advent of modern

computer science based intelligent algorithms, significant results have been achieved in differ-

ent fields of research, such as weather forecasting [1], churn prediction [2] and disease diagno-

sis [3]. Therefore, by bridging gap between computer science and seismology, substantial

outcomes may be achieved.
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Contemporary studies show that scientists have conducted earthquake prediction research

through diverse techniques. Retrospective studies of various earthquake precursory phenom-

ena show anomalous trends corresponding to earthquakes, such as sub-soil radon gas emission

[4], total electron content of ionosphere [5], vertical electric field, magnetic field of earth [6]

and so forth. The bright aspect of recent achievements is the encouraging results for earth-

quake prediction achieved through Computational Intelligence (CI) and Artificial Neural Net-

works (ANN) in combination with seismic parameters [7–12], thus initiating new lines of

research and ideas to explore for earthquake prediction. There is a slight difference between

earthquake prediction and earthquake forecasting. It is a continuously evolving concept with

various definitions stated in literature [13]. In the view of authors, earthquake forecasting

relates to the concept in which a certain probability of future earthquake occurrence is given.

While prediction means that earthquake prediction is made in the form of Yes or No without

any associated probability factor, irrespective of confidence in prediction.

Earthquake prediction problem is initially considered as a time series prediction [14] Later,

seismic parameters are mathematically calculated on the basis of well-known seismic laws and

facts, corresponding to every target earthquake (Et). The calculation of seismic parameters cor-

responding to every Et provides a feature vector related to Et. Thus, earthquake prediction is

carried out on the basis of computed features in place of time series of earthquakes, thereby

converting a time series prediction problem into a classification problem. The mathematically

calculated seismic parameters are basically meant to represent the internal geological state of

the ground before earthquake occurrence. This research work employs the known mathemati-

cal methods and computes all the seismic features in a bid to retain maximum information,

which leads to sixty seismic features corresponding to every earthquake occurrence (Et). After

acquiring maximum available seismic features, Maximum Relevancy and Minimum Redun-

dancy (mRMR) based feature selection is applied to select most relevant feature having maxi-

mum information. Support Vector Regression (SVR) followed by Hybrid Neural Network

(HNN) model and Enhanced Particle Swarm Optimization (EPSO) is applied to model rela-

tionship between feature vectors and their corresponding Et, thereby generating robust earth-

quake prediction model (SVR-HNN). The distinctive contributions of this research

methodology is summarized as:

i. Sixty seismic features, calculated on the principle of retaining maximum information.

ii. A unique application of SVR in combination with HNN, on mRMR selected seismic

features.

Hindukush, Chile and Southern California are three of the most active seismic regions in

the world, thus considered in this study for studying problem of earthquake prediction. Earth-

quake prediction studies based on Artificial Neural Networks (ANN) have been performed on

the considered seismic regions [9, 11, 15]. The proposed prediction methodology is separately

applied to perform earthquake predictions for the said regions and results are evaluated. The

suggested earthquake prediction model showed improved results as compared to the other

models proposed for these regions.

The rest of the manuscript is structured as the section 2 contains literature survey. Section 3

details about the calculation of dataset, where section 4 explains the SVR-HNN based predic-

tion mode. Results are evaluated and discussed in section 5.

2 Related literature

Numerous researchers have performed earthquake studies from prediction and forecasting

perspectives through different angles. During earthquake preparation process beneath the

SVR-HNN for earthquake prediction
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surface, different geophysical and seismological processes occur. These happenings below the

surface are believed to cause changes in sub-soil emission, vertical electric field and ionosphere.

These precursory changes are studied and mapped retrospectively with major earthquakes [4,

5]. Earthquake prediction is also studied through observing behavioral changes in animals [16].

The animal behavioral study is carried out using motion-triggered cameras at Yanachaga

National Park, Peru. The decline in animal activity has been observed prior to Contamana

earthquake of magnitude 7.0 in 2011. However, the focus of this research is to study earthquake

prediction through computational intelligence and machine learning based methods.

Algorithm M8 which aims to forecast the earthquake of magnitude 8.0 and above tested

successfully at the different regions of the globe along with increased efficiency of intermediate

term earthquake forecasting. The study analyzes the earthquake catalog and gives the alarming

area in circular region for next five years [17, 18]. There are several studies conducted based

on this algorithm and its advanced stabilized version i.e. M8S algorithm to forecast the seismic

events of magnitude 5.5 and above [19].

The Three Dimensional Pattern Informatics (PI) approach is also applied which aims at the

forecast of earthquakes with natural and synthetic data sets [20]. Considering the regional seis-

mic environment, the method efficiently characterizes the spatial and temporal seismic activity

patterns with angular allusion occurred in the extent of associated space. This technique is the

improved version of two dimensional PI approach [21], in the sense that it resolves the verti-

cally distributed seismic anomalies in the presence of complex tectonic structures. Moreover,

it gives forecast by systematically analyzing the anomalous behaviors in the seismicity at

regional level.

In another research work, the earthquake prediction for the regions of Southern California

and San Francisco bay area have also been studied. Eight seismic parameters are mathemati-

cally calculated through the temporal sequence of past seismicity. The seismic parameters are

then used in combination with Recurrent Neural Networks (RNN), Back Propagation Neural

Network (BPNN) and Radial Basis Functions (RBF), separately. RNN yielded better results as

compare to the other two applied neural networks [9]. Later, the Probabilistic Neural Network

(PNN) has been applied for the same regions in combination with same seismic parameters

[8], where PNN is reported to have produced better results for earthquakes of magnitude less

than 6.0 than RNN. A similar approach with same eight seismic parameters has also been used

to perform earthquake prediction for Hindukush region [11]. Pattern Recognition Neural Net-

work (PRNN) is reported to have outperformed other classifiers, such as RNN, random forest,

and LPBoost ensemble of trees for Hindukush region.

Earthquake magnitude prediction for northern Red Sea area is carried out in [22]. The

methodology is based on the features extraction from the past available earthquake records fol-

lowed by feedforward neural network. These features include sequence number of past earth-

quakes, respective locations, magnitude and depth. The similar kind of features have also been

used for earthquake prediction for Pakistan region using BAT-ANN algorithm [23]. These fea-

tures do not involve any seismological facts and laws, rather the direct modelling of earthquake

sequence number, magnitude, depth and location with the future earthquakes is proposed.

Alexandridis et al. used RBF to estimate intervent time between large earthquakes of Cali-

fornia earthquake catalog [24]. Aftershocks and foreshocks are removed from catalog through

Reasenberg declustering technique before processing with neural network. Seismicity rates are

taken as input to the neural network, whereas the intervent time between major earthquakes is

taken as the output. Training of RBF is carried out through Fuzzy Mean algorithm.

The authors of [12, 15] proposed new mathematically computed seven seismic parameters

to be used in combination with ANN to predict earthquakes in Chile and Iberian Peninsula.

The methodology is capable of predicting seismic event of magnitude of 5.0 and above for

SVR-HNN for earthquake prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0199004 July 5, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0199004


horizon of 15 days. Further in [25], the results were improved by performing feature selection

through Principle Component Analysis. Similarly, Zamani et al. [26] carried out retrospective

studies for the September 10th, 2008 Qeshm earthquake in Southern Iran. The spatio-temporal

analysis of eight seismic parameters is performed through RBF and Adaptive Neural Fuzzy

Inference System (ANFIS). A sensitivity analysis of different geophysical and seismological

parameters is performed in [27]. Results for earthquake prediction are obtained for the regions

of Chile through varying combinations of parameters along with variations in training and

testing samples.

Last et al. [10] performed earthquake prediction for Israel and its neighboring countries.

The used earthquake data of past years has been treated to first clean foreshocks and after-

shocks and then seismic parameters are calculated. The computed parameters are then

employed for prediction in combination with Multi-Objective Info-Fuzzy Network (M-IFN)

algorithm. The proposed prediction system is capable of predicting maximum earthquake

magnitude and total number of seismic events for next year.

All the aforementioned methodologies study the earthquake prediction, while focusing

only one region. The prediction models are not applied and tested to other earthquake prone

regions and no comparisons are also carried out with the results of other research studies. In

this research, the prediction model is applied to more than one region and comparisons are

also drawn with the results, available in literature.

3 Regions selection and feature calculation

3.1 Region selection and earthquake catalog

In this study, three different regions, namely Hindukush, Chile, Southern California have been

selected for prediction of earthquakes of magnitude 5.0 and above. The same regions selected

in the precedent studies are also considered for this research [9, 11, 15]. The advantage of

selecting the same regions is that results can be compared in the end, so as to prove the superi-

ority of suggested methodology.

Earthquake catalogs of these regions have been obtained from United States Geological Sur-

vey (USGS) [28] for the period from January 1980 to December 2016. These catalogs are ini-

tially evaluated for cut-off magnitude. Cut-off magnitude corresponds to the earthquake

magnitude in the catalog above which catalog is complete and no seismic event is missing.

This depends upon the level of instrumentation. Dense instrumentation in a region leads to

better completeness of catalog with low cut-off magnitude. The cut-off magnitude for South-

ern California region is found to be less than 2.6, for Chile it is 3.4 and for Hindukush it is 4.0.

The completeness of magnitude for all three regions shows the density of instrumentation in

these regions. There are different methodologies proposed in literature for evaluation of cut-

off magnitude [29]. In this study, cut-off magnitude is determined through Gutenberg-Richter

law. The point where curve deviates from exponential behavior is selected as a cut-off magni-

tude. All the events reported below cut-off magnitude are removed from the catalog before

using for parameter calculation. Earthquake magnitudes and frequency of occurrences for

each region is plotted as shown in Fig 1. The curves follow decreasing exponential behavior,

which assures that each catalog is complete to its respective cut-off magnitude.

After parameter calculation a feature vector is obtained corresponding to every target earth-

quake (Et). In this study, earthquake prediction problem is designed/modeled as a binary clas-

sification problem. Every earthquake magnitude is converted to Yes, No (1, 0) through

applying threshold on magnitude 5.0. It is too early in this field of research to predict actual

magnitudes of future earthquakes; however, endeavors are on the way to predict the categories

of future events.

SVR-HNN for earthquake prediction
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Fig 1. The curves demonstrates Gutenberg-Richter law, i.e. exponential rise in frequency of eathquakes with

decreasing magnitude. (a): For Hindukush region catalog is complete upto M = 4.0 (b): Catalog of Chile shows

completeness upto M = 3.4 (c): Southern California catalog is complete upto M = 2.6.

https://doi.org/10.1371/journal.pone.0199004.g001
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Fig 2 shows the overall flow of research methodology. The earthquake catalog is the starting

point of this process therefore, quality of catalog directly affects the prediction results. Further

processes involved are feature calculation, selection, training of model, and finally predictions

are obtained on unseen part of dataset. In the end performance of prediction model is evalu-

ated and comparison is drawn.

3.2 Parameter calculation

Features are the most important part of a classification problem. In this study, features are also

referred as seismic parameters. These seismic parameters are calculated mathematically and

are based upon well-known geophysical and seismological facts. There are different geophys-

ical and seismic parameters suggested in literature for earthquake prediction studies employ-

ing computational intelligence [9, 15, 26]. Discovering new geophysical and seismological

facts leading to earthquake prediction is another aspect of earthquake prediction studies,

which is currently not included in the scope of this research work. Seismic parameters calcu-

lated in this research are broadly classified into two main categories with regards of calculation

perspective, which are defined as:

• The seismic features whose calculation is not dependent upon any variable parameter are

called non-parametric seismic features.

• The seismic features whose calculation is dependent upon any variable parameter, such as a

threshold, are called parametric seismic features.

The important contribution of this research from the perspective of seismic parameters are:

1. All the available geophysical and seismological features employed for earthquake prediction

in contemporary literature are taken into account simultaneously, which has never been

done before.

Fig 2. Flow chart of research methodology.

https://doi.org/10.1371/journal.pone.0199004.g002
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2. Multiple values of parametric seismic features have been calculated based upon different

variations of a variable parameter, in order to retain maximum available information about

the internal geological state of the ground.

All the seismic features are calculated using the 50 seismic events before the event of interest

(Et), which is to be predicted using the feature vector. The numbers of features reach to 60 in

every instance according to suggested methodology. Later, in order to handle the issues related

to curse of dimensionality, the feature selection technique based on Maximum Relevance and

Minimum Redundancy (mRMR) is employed to choose the features having maximum rele-

vant and discriminating information.

3.2.1 Non-parametric seismic features. As the calculation of non-parametric seismic fea-

tures is not dependent on any variable parameter thus such variables have one possible value

for every instance.

• a and b value

These values are directly based on well-known geophysical law known as Gutenberg-Rich-

ter law. According to this law, number of earthquakes increase exponentially with decreasing

magnitude, mathematically shown in Eq 1, where Ni is the total number of seismic events cor-

responding to Magnitude Mi, b is slope of curve and a is y-intercept.

logNi ¼ a � bMi ð1Þ

The values of a and b are calculated numerically through two different methods. Eqs 2 and

3 represent the linear least square regression (lsq), while Eqs 4 and 5 show the maximum likeli-

hood (mlk) method for calculation of a and b values. In earthquake prediction study for South-

ern California, linear least square regression analysis based method is proposed [9]. While

maximum likelihood method is preferred for earthquake prediction for Chile [15].

blsq ¼
ðn
X
ðMilogNiÞ �

X
Mi

X
logNiÞ

ðð
X

MiÞ
2
� n
X

Mi
2Þ

ð2Þ

alsq ¼
X
ðlog

10
Ni þ blsqMiÞ=n ð3Þ

bmlk ¼
log

10
e

meanðMÞ� minðMÞ
ð4Þ

amlk ¼ log
10
N þ bmlkminðMÞ ð5Þ

• Seismic energy release

Seismic energy (dE) keeps releasing from ground in the form of small earthquakes as

shown in Eq 6. If the energy release stops, the phenomenon is known as quiescence, which

may release in the form of major event. State of quiescence may also lead to the reduction in

seismic rate for the region, thereby decreasing b value.

dE1
2 ¼

X
ð10ð11:8þ1:5MÞÞ

1
2

T
ð6Þ
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• Time of n events

Time (T) in days, during which n number seismic events have occurred before Et as shown

in Eq 7. In this study n is selected to be 50.

T ¼ tn � t1 ð7Þ

• Mean Magnitude

Mean magnitude (Mmean) refers to the mean value of n events as shown in Eq 8. Usually the

magnitude of seismic events rise before any larger earthquake.

Mmean ¼

X

i

M

n
ð8Þ

• Seismic rate changes

Seismic rate change is the overall increase or decrease in the seismic behavior of the region

for two difference intervals of time. There are two ways proposed to calculate seismic rate

changes. z value shown in Eq 9 measures seismic rate change as proposed by [30], where R1
and R2 correspond the seismic rate for two different intervals. S1 and S2 represent the standard

deviation of rate. n1 and n2 show the number of seismic event in both intervals.

z ¼
R1 � R2ffiffiffiffiffiffiffiffiffiffiffiffi

S1

n1
þ

S2

n2

q ð9Þ

The other way for seismic rate change calculation is suggested in [31] and given in Eq.10,

where, n represents total events in the whole earthquake dataset, t is total time duration and δ
is the normalized duration of interest. M(t, δ) shows the number of events observed, defined

using end time t and interval of interest δ. Both z and β values possess opposite signs and are

independent from each other.

b ¼
Mðt; dÞ � nd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndð1 � dÞ

p ð10Þ

• Maximum magnitude in last seven days

The maximum magnitude recorded in the days previous to Et is also considered as an

important seismic parameter as reported in [12, 15] and represented as x6i. The representation

of this parameter is also kept the same as that of literature, so as to maintain better continuity.

It is mathematically represented as given in Eq 11.

x6i ¼ maxfMig; when t 2 ½� 7; 0Þ ð11Þ

Thus the total number of seismic parameters obtained from non-parametric features is

accounted to 10.

3.2.2 Parametric features. The formulae for parametric features contain a varying param-

eter, such as earthquake magnitude or b value. All these features are calculated through

SVR-HNN for earthquake prediction
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multiple available values of varying parameter. The details of all the parametric features are

given below.

• Probability of earthquake occurrence

The probability of earthquake occurrence of magnitude greater than or equal to 6.0 is also

taken as an important seismic feature. It is represented by x7i and calculated through Eq 12.

The inclusion of this feature supports the inclusion of Gutenberg-Richter law in an indirect

way. The value of x7i is dependent upon b value. Therefore, blsq and bmlk are separately used to

calculate x7i, thus giving two different values for this seismic feature.

x7i ¼ e
� 3bi
loge ð12Þ

• Deviation from Gutenberg-Richer law

It is the deviation η of actual data from the Gutenberg-Richter inverse law as shown in Eq

13. This feature indicates how much actual data follows the inverse law of distribution. Its cal-

culation is dependent upon a and b values, which in turn gives two values for η.

Z ¼

X
ðlogN� a� bMÞ2

n� 1
ð13Þ

• Standard deviation of b value

Standard deviation of b value σb is calculated using Eq 14. This feature is parametric

because it is based upon the b value, which have two values, therefore adding two values of σb.

sb ¼ 2:3b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðMi � meanðMÞÞ2

nðn� 1Þ

v
u
u
u
u
t

ð14Þ

• Magnitude deficit

Magnitude deficit (Mdef) is the difference between the maximum observed earthquake mag-

nitude and maximum expected earthquake magnitude (Eq 16). Maximum expected magnitude

is calculated through Gutenberg-Richter’s law as given in Eq 15. The two sets of a and b values

are separately used to calculate Mdef.

Mmax;expected ¼ a=b ð15Þ

Mdef ¼ Mmax;actual � Mmax;expected ð16Þ

• Total recurrence time

It is also known as probabilistic recurrence time (Tr). It is defined as the time between two

earthquakes of magnitude greater than or equal to M0 and calculated using Eq 17. This param-

eter is another interpretation of Gutenberg-Richter’s law. As evident from the statement of

inverse law, there will be different value of Tr for every different value of M0, which would

SVR-HNN for earthquake prediction
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increase with increasing magnitude. Available literature does not focus on which value of M0

to be selected in such a scenario therefore Tr is calculated for every M0 from 4.0 to 6.0 magni-

tudes following the principle of retaining maximum available information. So for two sets of a
and b values along with varying M0 adds 42 seismic features to the dataset.

Tr ¼
T

10a� bM0 ð17Þ

4 Earthquake prediction model

Unlike previous other simple earthquake prediction models proposed in literature, in this

paper a multistep prediction model is suggested (SVR-HNN). It is a combination of various

machine learning techniques with every technique complementing the other through knowl-

edge acquired during learning. Thus, every step in this model is adding further improvements

to the robustness therefore, resulting in a final improved version of prediction model. The lay-

out of overall prediction model is given in Fig 2. Dataset obtained for all the three regions, is

divided into training and testing sets. For training and validation purposes, 70% of the dataset

is selected, while testing is performed on rest of 30% hold out dataset. The final results shown

in Section 5 are the prediction results obtained on test dataset for every region, separately. The

configurations and setups arranged in order to train a model are kept same for all three

regions’ datasets. However, separate training has been performed for each region. The reason

for separate training is that every region has different properties and can be classified tectoni-

cally into different categories, such as thrusting tectonics, strike-slip tectonics and so forth.

Therefore every type of region possess different behaviors and relations to the earthquakes.

Thus separate training for every region is meant to learn and model the relationship between

seismic features and earthquakes for that particular region.

The proposed methodology includes the use of two step feature selection process. The fea-

tures are selected after performing relevancy and redundancy checks, to make sure that only

useful features are employed for earthquake prediction. The selected set of features are then

passed to Support Vector Regression (SVR). The trend predicted by SVR is further used in

combination with seismic features as input to the next stage of prediction model, i.e. ANN.

The inclusion of SVR-output as a feature to ANN is to pass on the information learnt through

SVR. After SVR, three different layers of neural networks are applied to the dataset in combi-

nation with Enhanced Particle Swarm Optimization (EPSO). The output of every ANN is used

as an input to the next ANN in place of SVR-output along with feature set. The weight adjust-

ments of each ANN layer is also passed to the next ANN, so that next ANN does not start

learning from scratch. The purpose of including EPSO is to optimize the weights of ANN,

which have tendency to get trapped in local minima. If during training ANN is stuck in local

minima, EPSO plays a vital role in that scenario. The similar type of approach has also been

used in other fields, such as wind power prediction [32, 33] with successful outcomes. The

flowchart of earthquake prediction methodology is provided in Fig 3.

4.1 Feature selection

The total number of 60 seismic features are computed for every instance. The approach of fea-

ture calculation is useful that tends to gather maximum obtainable information however a

reduced feature set can be selected for learning process instead of utilizing the complete set of

60 features. The features having less discriminating information or redundant information can

be excluded. In order to deal with such a situation, two step feature selection is applied based on

maximum relevance and minimum redundancy. After the calculation of all available features

mRMR method selects the features having most relevant and discriminating information. This

SVR-HNN for earthquake prediction
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step also helps in avoiding the curse of dimensionality problem, which is a major issue in

machine learning algorithms. Feature selection step is embedded as a part of prediction model

because it is separately applied for each dataset. The different seismic regions considered in this

study, represent varying seismic properties recorded as per calculated features and thus results

in different seismic datasets. A feature in Hindukush dataset having insignificant information

content may possess opposite trend for Chile or Southern California, which can actually be

observed when feature selection is applied for all these regions. Therefore, it is inappropriate to

declare features selected for a specific region to be best for all the other regions.

4.1.1 Maximum relevance. Irrelevancy filter is first of the two steps of feature selection. It

removes all the features that are irrelevant and having less information content to be useful for

prediction. It is proposed in [34], while certain modifications in its formulation is suggested in

[35]. This technique has already been used for feature selection in different classification prob-

lems, such as medical image processing, cancer classification. However, it has been used for

the first time, for seismic feature selection. The methodology includes calculation of mutual

information (MI) of every feature corresponding to target earthquakes (Et) in binary form. A

suitable threshold is applied on MI and all the features having MI less than the threshold are

ignored. The value of threshold is kept fixed in this model for the considered earthquake

datasets.

Irrelevancy criterion filters out different features for all the three regions. For Hindukush

region, 5 features are filtered out after this step and rest of 55 features are passed to the next

step. Similarly for dataset of Chile, 4 features are excluded through irrelevance filter and 56 are

passed to next step. In Southern California dataset, 55 features are considered fit for the next

step after leaving out 05 features.

4.1.2 Minimum redundancy. There are features which are showing redundant informa-

tion in the dataset, therefore the inclusion of such features for earthquake prediction is of no

use. Removing the features with redundant information is the second phase in feature selec-

tion. The idea of feature redundancy filter is proposed in [34] and certain changes in the

implementation are given in [32]. The basic idea behind this technique is that MI is calculated

Fig 3. Flow chart of earthquake prediction model.

https://doi.org/10.1371/journal.pone.0199004.g003

SVR-HNN for earthquake prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0199004 July 5, 2018 11 / 22

https://doi.org/10.1371/journal.pone.0199004.g003
https://doi.org/10.1371/journal.pone.0199004


in-between all the features. Any two features possessing maximum MI are considered to be

having redundant information. Therefore a certain redundancy criterion (RC) is empirically

selected and kept fixed in the learning process for all the three regions.

Like irrelevancy filter, this technique may show different results for every region. In Hindu-

kush dataset, out of 55 relevant features, 32 are found to be redundant and left out, therefore,

leaving behind 23 effective features. Similarly, Chile’s dataset contains 42 redundant features

out of 56 relevant features and leaving behind 14 useful features and for Southern California

dataset 25 useful features are selected after excluding 30 redundant features.

4.2 Support vector regression

SVR is a machine learning technique that learns in a supervised manner. It is first proposed in

[36] and implementation is carried out using LIBSVM (A library for Support vector machine)

[37]. SVR has wide range of applications for both classification as well as regression problems.

The model generated through training of SVR, gives predictions about an estimated earth-

quake magnitude corresponding to the feature vectors. SVR then imparts its knowledge of pre-

dicted earthquake magnitudes to HNN in next step through auxiliary predictions, to be used

as a part of feature set. Experiments have proven that the auxiliary predictions from SVR when

used in combination with features, adds a distinctive classification capability to the prediction

model.

4.3 Enhanced Particle Swarm Optimization

There are different nature-inspired optimization algorithms in literature [38–44] however,

EPSO has been employed in this study for weight optimization of ANN. EPSO is an evolution-

ary algorithm. The idea of particle swarm optimization (PSO) is given in [45]. In this optimiza-

tion methodology, exploration is carried out for finding the best possible solution or position

in the search space, like a bird or an organism searches for food. Different factors affect the

hunt for best possible solution, like current position and velocity. The record of best local posi-

ton, global position and worst global position is also kept for generating optimized solution.

EPSO is also a well-considered an optimization methodology, which is being used in different

application fields and explained in detail in [32].

4.4 Hybrid Neural Networks

The next step of prediction model is to train hybrid neural network model. This step is the

combination of three different ANNs along with optimization support extended from EPSO.

The training is carried out through 1st ANN and weights are then passed to EPSO for further

optimization. In case, if ANN is stuck in local minima, EPSO has the capability to guide it out

from this situation. The optimization measure for EPSO is set to Matthews Correlation Coeffi-

cient (MCC). If the ANN has already learnt the best possible relation between features and

earthquakes, EPSO would return the same weight matrix. Thus, it can be said that EPSO is

included in this methodology, to save ANNs from being trapped in local minima.

The training of this step is carried out for a binary classification problem, in which inten-

tion is to predict the earthquakes of magnitude 5.0 and above. Initially the dataset along with

auxiliary prediction from SVR is passed to Levenberg-Marquardt neural network. The net-

work trains in back propagation manner, where error at the output layer is back propagated in

every epoch. When the training stops, the weight matrices are passed to EPSO along with

training features and targets. EPSO optimizes the weights in terms of MCC and returns the

optimized weights back to ANN. The predictions from optimized weights of EPSO are taken

as auxiliary predictions in place of SVR-output to be used along with features for next ANN.
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BFGS quasi-Newton backpropagation neural network (BFGSNN) is initialized with the

weights of previously learnt NN. In this way, the already learnt information is transferred to

the next NN along with auxiliary predictors. The network is trained similarly and the weights

along with training data are passed to EPSO for optimization via MCC. The optimized weights

are then used to initialize Bayesian Regularization Neural Network (BRNN) and training data

is passed in combination with BFGSNN auxiliary predictors. EPSO is again employed to opti-

mize the weights of NN. The pseudo-code is also included here for the consideration of the

reviewer:

Step by step procedure of SVR-HNNModel:
Inputs: T, N, RF, SVR, HNN, EPSO
[T = Training Dataset
N = Numbers of layers of Neural Network
RF = Relevant Features
SVR = Support Vector Regresser
NN = Neural Network
EPSO = Enhanced Particle Swarm Optimization
HNN = Hybrid Neural Network (Combined package of NN+EPSO)]
RF = mRMR (T)
[SVR_Model, SVR_Predictions] = SVR[RF]
for j = 1 to 3 (‘j’ indicates neural network and EPSO layer)
if (j = = 1)(First NN takes SVR_Predictions as auxiliary input)
[NNj_Model, NNj_Predictions] = NNj [RF, SVR_Predictions]
(EPSO optimizes NN, if it traps in local minima)

[NNj_Model, NNj_Predictions] = EPSOj[RF, NNj_Model,
SVR_Predictions]

else
(Predictions of previous NN, becomes input to next NN)
[NNj_Model, NNj_Predictions] = NNj [RF, NNj-1_Predictions]
[NNj_Model, NNj_Predictions] = EPSOj[RF, NNj_Model, NNj-

1_Predictions]
endif

Endfor
SVR_HNN_Model = NN3_Model (The model obtained after SVR and all lay-

ers of NN supported by EPSO)
Performance Evaluation = SVR_HNN_Model[Test Dataset, Actual Labels]

In this work, the output of SVR is treated as its own opinion about the earthquake occur-

rence. Thus, in a bid to improve the performance of earthquake prediction a combination

of three ANNs and EPSO, called as Hybrid Neural Network (HNN) is formulated. Seismic

Features are passed to HNN for yielding the predictions. At this point of stage, the results

obtained through SVR are considered as auxiliary predictions and passed on to HNN, along

with other features. The opinion of SVR would also hold importance in terms of discriminating

power between earthquake and non-earthquake occurrences. Therefore, when coupled with

dataset of other seismic features, it highly improves the discriminating power of earthquake pre-

diction, resulting in improved prediction performance of HNN. In HNN, the weights and out-

puts of each ANN is passed to the next layer of ANN, to make the consequent layer start

learning ahead of a certain point. Thus, the feedback of SVR or ANN at a specific layer enhance

the learning of HNN, leading to the improved earthquake prediction. The role of EPSO is to res-

cue ANN, when it is trapped in local minima through optimizing the weights. However, in case

when ANN is performing well, the EPSO refrains from updating the weight. The model is

trained using 70% of feature instances and later independent testing is performed on unseen

30% of data. In the training data two-third part is used for training the algorithm while one-

third is used for validation of model. The evaluation of model is performed on unseen feature

instances through considering well-known evaluation measures.
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5 Results and discussion

There are total 7656 feature instances for Chile out of which 2067 correspond to “Yes” earth-

quake while 5589 correspond to “No” earthquake. The total instances for Southern California

are 33543 out of which 7671 belong to “Yes” earthquake while 25872 belong to “No” earth-

quake. Similarly, for Hindukush dataset, out of 4350 instances 1379 correspond to “Yes” while

2971 correspond to “No”. Therefore, the data distributions of the considered regions are highly

imbalanced as shown in Fig 4.

5.1 Performance evaluation criteria

There are well-known performance metrics available for evaluation of binary classification

results, such as sensitivity, specificity, positive predictive value or precision (P1), negative pre-

dictive value (P2), Matthews correlation coefficient (MCC) and R score. Whenever, predictions

are made through an algorithm, it yields four categories of outputs, namely true positive (TP),

false positive (FP), true negative (TP) and false negative (FN). TP and TN are the correct pre-

dictions made by the prediction model while FP and FN are the wrong predictions of the

algorithm.

Sensitivity (Sn) is the rate of true positive predictions out of all positive instances while spec-

ificity (Sp) is the rate of true negative predictions out among all negative instances. P1 is the

ratio of correct positive predictions out of all the positive predictions made by prediction

model, whereas P0 refers to the correct negative predictions made by algorithm out of all

Fig 4. Distribution of feature vectors corresponding to earthquakes and Non-Earthquakes in datasets for (a): Hindukush

(b): Chile (c) Southern California.

https://doi.org/10.1371/journal.pone.0199004.g004
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negative predictions. P1 inversely relates to false alarms, which refers higher P1 means lesser

false alarms and vice versa. Similarly, R score and MCC are also proposed as a balanced mea-

sure for binary classification evaluation. These are calculated using all four basic measures (TP,

FP, TN, FN) and vary between -1 and +1. The values approaching +1 correspond to perfect

classification, while 0 refers to total random behavior of prediction algorithm and -1 relates to

opposite behavior of classification model. These two performance measures can be considered

as a benchmark measure for drawing comparison, because the four types of basic measures are

also incorporated in them as shown in Eqs 22 and 23. Accuracy is a very general criterion for

evaluation, used in many perspectives. It states the overall accurate predictions made by the

algorithm.

The purpose of analyzing the same results through these mentioned criteria is that each per-

formance metric highlights certain aspect of results. Therefore, the purpose is to highlight all

the merits and demerits of the results obtained through proposed prediction models. The for-

mula for calculation of all the mentioned criteria are given in Eqs 18 to 24.

Sn ¼
TP

TPþ FN
ð18Þ

Sp¼
TN

TNþ FP
ð19Þ

P1¼
TP

TPþ FP
ð20Þ

P0¼
TN

TNþ FN
ð21Þ

MCC ¼
TPxTN � FPxFN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð22Þ

R ¼
ðTPxTNÞ � ðFPxFNÞ
ðTPþ FNÞðFPþ TNÞ

ð23Þ

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð24Þ

5.2 Earthquake prediction results

SVR-HNN based model is separately trained for all three regions, using 70% of all the datasets.

Prediction results are evaluated for all the regions. Accuracy is used for performance evalua-

tion in many aspects. But in unbalanced classification problems, it may not be the best choice

to only use accuracy for evaluation. When in a dataset, one class is in abundance and other is

less, it is said to be unbalanced dataset. For example, in a dataset of 100 instances, if only 10

instances correspond to earthquake occurrence while rest of 90 belong to no-earthquake then

a prediction algorithm with minimal prediction capability predicts all of them as no-earth-

quakes. In this scenario, the algorithm has no knowledge of predictability but its accuracy

would still be 90%, therefore misguiding the overall capability of prediction model. However,

MCC and R score would yield 0 value for this scenario, thereby giving better insights into the

competence of prediction model. This is the reason different aspects of a prediction model is

evaluated for better analysis. Earthquake prediction is highly delicate issue and false alarms
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may lead to financial loss and cause panic, therefore, cannot be tolerated. A prediction model

with even less than 50% sensitivity but better P1 is preferable over another prediction model

having around 90% sensitivity but lesser P1. Considering the fact that there exists no earth-

quake prediction system till date, thus results obtained through SVR-HNN model are

commendable.

5.2.1 Predictions for Hindukush region. Asim et al. [11] carried out earthquake predic-

tion studies for Hindukush region where considerable prediction results are obtained through

different machine learning techniques. Pattern recognition neural networks (PRNN) yields

better results than other discussed methods, therefore PRNN is chosen in this work, for com-

parison with SVR-HNN based prediction methodology. Table 1 shows that SVR-HNN based

prediction results are outperforming PRNN based predictions by wide margin in all aspects,

except sensitivity. The value of MCC has been improved considerably from 0.33 to 0.6 and R

Score from 0.27 to 0.58. Improvement is also observed in P1 from 61% to above 75%, thus

improving false alarm generation for Hindukush region from 39% to less than 25%. Decreased

sensitivity is acceptable with notable improvement in P1, MCC, R score and accuracy. A model

with increased sensitivity may sensitize false earthquakes, leading to the generation of false

alarms. Therefore, a model robust towards false alarms may have less sensitivity, which is

acceptable given the other performance evaluation criteria have improved.

5.2.2 Predictions for Chile region. The results are even more improved for Chile region

through SVR-HNN based prediction model. Previously, Reyes et al. [15] carried out earth-

quake prediction for four Chilean regions through applying different machine learning tech-

niques with ANN achieving the best results. The ANN based results for all the Chilean regions

are averaged (average of TPs, FPs, TNs, and FNs) in this study for drawing comparison with

SVR-ANN based results. The proposed SVR-HNN approach has underperformed the ANN

based Chilean results in the all aspects by considerable margins, except marginal difference in

Specificity as evident from Table 2. False alarm generation reduced from 39% to less than 27%

along with 5% increase in accuracy as well. The considerable difference can be observed in

MCC and R score which increased from 0.39 to 0.61 and 0.34 to 0.60, respectively.

Table 2. Earthquake prediction results for Chile region.

Performance Evaluation Reyes et al. [15] SVR-HNN

Sn (%) 43.1 69.8

Sp (%) 91.3 90.5

P1 (%) 61.1 73.2

P0 (%) 83.5 89.0

Acc (%) 79.7 84.9

MCC 0.392 0.613

R Score 0.344 0.603

https://doi.org/10.1371/journal.pone.0199004.t002

Table 1. Earthquake prediction results for Hindukush region.

Performance Evaluation Asim et al. [11] SVR-HNN

Sn (%) 91 69.6

Sp (%) 36 89.1

P1 (%) 61 75.4

P0 (%) 79 85.9

Acc (%) 65 82.7

MCC 0.33 0.60

R Score 0.27 0.58

https://doi.org/10.1371/journal.pone.0199004.t001
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5.2.3 Predictions for Southern California region. Southern California region is consid-

ered earlier for earthquake prediction using ANN by Panakkat and Adeli [9]. Recurrent Neural

Network (RNN) is reported to have produced better results in terms of R Score. The results

were evaluated in terms of false alarms ratio (FAR), Probability of detection (POD) or sensitiv-

ity, frequency bias (FB) and R score. To discuss the results through the same evaluation crite-

ria, the values of basic performance parameters (TP, TN, FP and FN) are calculated through

set of four equations of FAR, POD, FB and R Score. After calculating basic performance

parameters, other evaluation criteria are calculated and given in Table 3. The results generated

through SVR-HNN based methodology are better than RNN based results of [9]. False alarm

generation are decreased considerably from 29% to less than 7%. A noteworthy increase in

MCC and R score is also observed from 0.51 to 0.722 and .051 to 0.62, respectively. Hence

proving the SVR-HNN based prediction methodology better than already available prediction

models. SVR-HNN is outperforming previous prediction models because it is a multilayer

model with every layer adding to its robustness. SVR provides initial estimation of the earth-

quake predictions, which is further refined by three different ANNs and EPSO supporting it

through optimization.

5.2.4 Interregional comparison of earthquake prediction. SVR-HNN based prediction

model has shown improved results for Southern California as compared to the other two

regions with 0.722, 0.623 and 90.6% of MCC, R score and accuracy, respectively. While Chilean

region is holding second best position with MCC of 0.613, R score of 0.603 and accuracy of

84.9%. The SVR-HNN based proposed model has shown least results for the Hindukush region

with MCC, R score and accuracy of 0.6, 0.58 and 82.7%, respectively. Fig 5 graphically compares

the prediction results for all the three regions, scaled between 0 and 1. This inter-region results

comparison has led to the practical visualization of the fact that lower cut-off magnitude and

better completeness of earthquake catalog would lead to the improved results for earthquake

prediction. The completeness magnitude of Southern California is taken as 2.6, for Chile its 3.4

and for Hindukush its 4.0. Hence demonstrated that earthquake prediction results are inversely

related to the cut-off magnitude. In other words, it can be inferred that dense instrumentation

for earthquake monitoring plays key role for better earthquake prediction.

The overall achievements of this study are presented as:

1. SVR-HNN based prediction methodology generated considerably improved results for

Hindukush, Chile and Southern California. It has exceedingly outperformed other available

predictions results in literature.

2. Inter-regional comparison of prediction results shows that the region with better main-

tained earthquake catalog having low cut-off magnitude is capable of generating better pre-

diction results. It highlights the need of better instrumentation for earthquake catalog

maintenance.

Table 3. Earthquake prediction results for Southern California.

Performance Evaluation Panakkat et al. [9] SVR-HNN

Sn (%) 80 63.5

Sp (%) 71 98.7

P1 (%) 71 93.8

P0 (%) 86 90

Acc (%) 75.2 90.6

MCC 0.5108 0.722

R Score 0.5107 0.623

https://doi.org/10.1371/journal.pone.0199004.t003
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5.2.5 Comparison between individual techniques and SVR-HNN. In order to prove the

superiority of SVR-HNN model, the earthquake prediction performance is also computed sep-

arately using SVR and HNN. An independent arrangement has been made to get the earth-

quake prediction results for SVR and HNN. The performance of SVR and HNN is compared

with the combine results of both (SVR-HNN). A notable difference between the performances

of individual techniques and their combination can be observed. MCC of 0.43 and 0.41 is

obtained for Hindukush region using SVR and HNN, respectively. The combination of two

techniques by including SVR as auxiliary predictor for HNN improves MCC to 0.58. A similar

trend in improvement is also observed for other performance measures, as shown in Table 4,

for the three considered regions. Thereby, proving the superiority of SVR-HNN over their sep-

arate counter parts.

The role of EPSO is to optimize the weights of neural networks. Artificial neural networks

have tendency of getting trapped in local minima. If such a situation happens during the train-

ing of a neural network, EPSO helps ANN in escaping local minima and guides in towards

optimum solution. But this is not the case every time that ANN is trapped in local minima. It

may happen occasionally. If ANN is already performing well and learning in the right direc-

tion, the inclusion of EPSO does not affect the weights of ANN in such a situation. The term

HNN stands for combination of three different neural networks coupled with EPSO. Some-

times HNN without EPSO would show the similar results as compare to HNN with EPSO,

however, on some other training occasions, it may show lesser performance.

Fig 5. Interregional comparison of earthquake prediction results for three regions.

https://doi.org/10.1371/journal.pone.0199004.g005

Table 4. Performance comparison of SVR, HNN with SVR-HNN.

Region Hindukush Chile Southern California

Criteria SVR HNN SVR-HNN SVR HNN SVR-HNN SVR HNN SVR-HNN

Sn (%) 50.0 0.541 69.9 43.7 54.7 69.8 55.8 55.0 63.5

Sp (%) 89.0 85.4 89.1 93.6 92.4 90.5 98.1 97.2 98.7

P1 (%) 69.2 64.0 75.4 72.3 73.8 73.2 89.9 86.8 93.8

P0 (%) 78.3 79.4 85.9 81.4 83.9 89.0 87.9 87.9 90.0

Acc (%) 76.1 75.2 82.7 79.9 81.8 84.9 88.2 87.7 90.6

MCC 0.43 0.41 0.6 0.44 0.52 0.613 64.6 0.62 0.722

R Score 0.39 0.39 0.58 0.37 0.47 0.603 53.7 0.52 0.623

https://doi.org/10.1371/journal.pone.0199004.t004
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5.2.6 Performance stability. The performance of SVR, HNN and EPSO are dependent on

respective parameter selection. Thus, the collective performance obtained in SVR-HNN model

is governed through selection of appropriate parameter values. The extensive experimentation

is performed to empirically select the values for parameters, which obtain good results for each

of the used algorithms (SVR, HNN, and EPSO). The proposed model has shown consistent

performance for the three regions, which approves the appropriate selection of values for

parameters. The ten simulation runs of SVR-HNN model show little variation, which strength-

ens the claim of appropriate selection of parametric values, leading to a stable earthquake pre-

diction performance in three regions. The graphs given in Fig 6 show, the performance

stability of SVR-HNN model for the three considered regions.

Conclusions

In this study, interdisciplinary research has been carried out for earthquake prediction through

interaction of seismology-based earthquake precursors and computer science based computa-

tional intelligent techniques. A robust multilayer prediction model is generated in combina-

tion with the computation of maximum obtainable seismic features. Sixty seismic features are

computed for Hindukush, Chile and Southern California regions. Separate feature selection is

performed for every region through maximum relevance and minimum redundancy (mRMR)

approach. The selected features are employed for training of an earthquake prediction model.

The prediction model consists of Support Vector Regressor (SVR) followed Hybrid Neural

Fig 6. Performance of SVR-HNN over multiple runs of simulation.

https://doi.org/10.1371/journal.pone.0199004.g006
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Networks (HNN) and Enhanced Particle Swarm Optimization (EPSO). SVR provides an ini-

tial estimation for earthquake prediction which is passed to HNN as an auxiliary predictor in

combination with features. Three different neural networks are further employed along with

EPSO weight optimization. Thus SVR-HNN based prediction model is trained and tested suc-

cessfully with encouraging and improved results for all three regions.
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