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The antiphospholipid syndrome (APS) is characterized by thrombosis and pregnancy

morbidity in the presence of antiphospholipid antibodies (aPL). Complement is a system

of enzymes and regulatory proteins of the innate immune system that plays a key role

in the inflammatory response to pathogenic stimuli. The complement and coagulation

pathways are closely linked, and expanding data indicate that complement may be

activated in patients with aPL and function as a cofactor in the pathogenesis of

aPL-associated clinical events. Complement activation by aPL generates C5a, which

induces neutrophil tissue factor-dependent procoagulant activity. Beta-2-glycoprotein

I, the primary antigen for pathogenic aPL, has complement regulatory effects in vitro.

Moreover, aPL induce fetal loss in wild-type mice but not in mice deficient in specific

complement components (C3, C5). Antiphospholipid antibodies also induce thrombosis

in wild type mice and this effect is attenuated in C3 or C6 deficient mice, or in the

presence of a C5 inhibitor. Increased levels of complement activation products have been

demonstrated in sera of patients with aPL, though the association with clinical events

remains unclear. Eculizumab, a terminal complement inhibitor, has successfully been

used to treat catastrophic APS and prevent APS-related thrombotic microangiopathy

in the setting of renal transplant. However, the mechanisms of complement activation

in APS, its role in the pathogenesis of aPL related complications in humans, and the

potential of complement inhibition as a therapeutic target in APS require further study.

Keywords: antiphosholipid antibodies, complement, thrombosis, endothelial, beta2 - glycoprotein I

INTRODUCTION

Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis
affecting the venous or arterial vascular systems, and/or obstetrical morbidity along with
the persistent presence of antiphospholipid antibodies (aPL), including lupus anticoagulant,
anticardiolipin antibody and anti-beta-2-glycoprotein-I (β2GPI) (1). Rather than binding to
anionic phospholipids such as cardiolipin as was previously believed, aPL are directed against
phospholipid binding proteins bound to an appropriate biological surface such as a cellular
membrane (2). Anti-β2GPI antibodies are the primary pathogenic antibody in APS (3–5), although
aPL directed against other antigens such as prothrombin and phosphatidylserine have also been
described (3, 6). The mechanisms by which aPL induce thrombosis and pregnancy loss are not
fully understood. Though β2GPI is the primary antigen in APS, its inhibition does not directly
have thrombotic effects as evidenced by the lack of a thrombotic phenotype in β2GPI deficient
individuals (7, 8). Multiple pathogenic mechanisms have been proposed including inhibition of
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the natural anticoagulant and fibrinolytic systems (9–12),
activation of vascular cells including endothelial cells (13),
platelets (14), and monocytes (15), procoagulant effects of
extracellular vesicles (16), and disruption of the anticoagulant
annexin A5 shield on cellular surfaces (17). Over the past two
decades, complement activation has emerged as an attractive
target for mechanistic and therapeutic investigations based on
studies demonstrating evidence of complement activation in
patients with APS, and murine models that indicate a critical
role of complement in aPL-mediated thrombosis (18–21) and
obstetric (22–24) complications (25). It remains unclear whether
these are distinct mechanisms that reflect antibody heterogeneity
or are linked to an as yet undefined central mechanism.
Recurrent thrombosis and fetal loss are common despite
standard treatment. The variability of treatment effectiveness
in APS suggests that subsets of patients might benefit from
treatments beyond anticoagulation.

The complement system, consisting of over 50 plasma
proteins involved in host defense, is organized into three
pathways; the immune complex mediated classical pathway, the
lectin pathway, and the alternative pathway. These pathways
converge at the level of complement component C3 and the
terminal complement pathway that leads to generation of
C5a, a potent pro-inflammatory molecule, and C5b-9 (the
membrane attack complex) (Figure 1). Anti- β2GPI antibodies
are associated with complement activation, and the complement
and coagulation pathways are closely linked (26, 27); C5a
induces neutrophil tissue factor-dependent procoagulant activity
(26) and may inhibit fibrinolysis though increased activation
of thrombin activated fibrinolysis inhibitor (TAFI). C3a and
C5a also activate endothelial cells, inducing the expression of
adhesion molecules and procoagulant activity (28–30), as well
as platelets (31). Complement activation also causes placental
inflammation and injury (32), a hallmark of fetal loss in APS
(23). This review summarizes the current evidence supporting
the role of complement in aPL associated clinical events,
the interplay between complement and thrombosis in APS,
therapeutic perspectives on complement targeted agents in APS,
and areas of future research.

COMPLEMENT IN OBSTETRIC APS

Animal Models of Obstetric APS
The earliest and most compelling evidence for complement
involvement in APS comes from murine models of aPL-induced
pregnancy loss in which Branch et al. showed that passive transfer
of IgG fractions from patients with aPL led to fetal loss (33). On
histopathologic examination, IgG localized to the decidua, which
showed prominent necrosis. A subsequent series of experiments
confirmed this finding and elucidated the role of complement
in aPL induced fetal loss. In vivo experiments have shown that
β2GPI localizes to the decidua (34), and that aPL binding to
β2GPI inhibits trophoblastic proliferation, syncytia formation
and invasion into maternal decidua, which are required for
successful placentation (35).

Holers et al. showed that intraperitoneal injection of IgG from
patients with APS into pregnant mice led to fetal resorption in

40% of pregnancies and a 35% fetal weight reduction compared
with control mice (36). Inhibition of the complement cascade
with the C3 convertase inhibitor complement receptor 1–
related gene/protein y (Crry)-Ig prevented aPL mediated fetal
resorption. C3 deficient mice (C3−/−) were also resistant to aPL
mediated fetal loss (36). Girardi et al. later demonstrated that
C5 deficiency or treatment of mice with anti-C5a monoclonal
antibody protects against aPL induced pregnancy loss and
growth retardation (22). Placentae from the aPL IgG treated
mice showed human IgG deposition in the decidua, which
demonstrated focal necrosis and apoptosis with neutrophil
infiltrates (36). Neutrophils recruited by C5a expressed tissue
factor that potentiated neutrophil activation and the respiratory
burst leading to trophoblastic injury and fetal loss (24, 32). The
absence of aPL-induced growth retardation and fetal resorption
in mice deficient in C4 or C5 suggests that the classical pathway is
involved in initiating these effects. However, factor B is necessary
for aPL mediated fetal loss and its inhibition ameliorates these
effects supporting a role of the alternative pathway in amplifying
complement activation (37). Taken together, these studies suggest
that C3 and C5 activation is central to aPL-mediated fetal loss
in this model, with neutrophils and tissue factor playing pro-
inflammatory roles. Girardi et al. have also suggested that the
protective effect of heparin in APS pregnancies may reflect its
inhibitory effects on complement (23).

Complement Activation in Human Studies
of Obstetric APS
Studies in humans support the role of complement in
aPL mediated pregnancy complications. Hypocomplementemia,
suggesting complement activation, has been observed in patients
with SLE and APS (38), as well as those with primary APS
and obstetric complications (39–41); however others have not
found an association with hypocomplementemia and pregnancy
complications in APS (42). In the PROMISSE study, which
included nearly 500 pregnant women with lupus and/or aPL,
adverse pregnancy outcomes were associated with increased
serum levels of complement products Bb and C5b-9 early in
pregnancy (43). In addition to elevated levels of complement
activation products in serum, C4d was deposited at the feto-
maternal interface in the placentae of women with SLE or APS,
and correlated with fetal loss, decidual vasculopathy, increased
syncytial knots and villous infarcts (44, 45). Interestingly, C5b-9
deposition in the trophoblast was not increased compared with
control placentae, leading the authors to suggest that C5b-9 may
not play a central role in aPL mediated placental injury, which is
more likely to be caused by C3a and C5a mediated inflammation
(45). Overall, these findings support a role for complement
in aPL mediated pregnancy complications; however, the exact
mechanisms of complement activation remain to be determined.

COMPLEMENT IN VASCULAR APS

Animal Models of Thrombotic APS
Animal models of thrombotic APS support a role for
complement in aPL mediated thrombosis. Most early models of
aPL induced thrombosis included passive transfer of aPL along
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FIGURE 1 | Complement pathways. There are three well-recognized pathways of complement activation; (1) the classical pathway, (2) the lectin pathway, and (3) the

alternative pathway. The classical and lectin pathways are activated when specific triggers are recognized by host pattern-recognition receptors while the alternative

pathway is constitutively active. Activation of all there pathways ultimately leads to generation of a C3 convertase (C4b.C2a for the classical and lectin pathways and

C3b·B for the alternative pathway), which cleave C3 to generate C3a and C3b. C3a is an anaphylatoxin. C3b is quickly inactivated when it lands on a healthy host cell

but triggers a rapid amplification loop when it binds to a pathogen or altered host cell. C3b also complexes with the C3 convertases to form the C5 convertases

(C4b·C2a·C3b and C3b·Bb·C3b) that cleave C5 into C5a (an anaphylatoxin) and C5b. C5b combines with C6-9 to form C5b-9, also called the membrane attack

complex (MAC). Regulatory factors including decay accelerating factor (DAF, CD55), CD59, factor H (CFH), factor I (CFI), membrane cofactor protein (MCP) and

C3b/C4b receptor 1 (CR1) act at various stages of the cascade to control complement activation.

with direct vessel injury by pinching (19, 46) or other means to
induce thrombosis, which was reduced in mice with deficiencies
of complement proteins C3, C5, or C6 (19), or in the presence
of an inhibitory antibody against C5 (18). However, mechanical
or chemical endothelial injury to initiate thrombosis that is
propagated in the presence of aPL differs from the usual events
in APS, in which a localized vascular insult is usually absent.
Fischetti et al. used rats primed with lipopolysaccharide, which
does not cause thrombosis by itself (20). Administration of aPL
IgG to LPS primed mice led to thrombosis while administration
of control IgG did not. Intravascular microscopy showed
thrombosis in mesenteric vessels, and immunofluorescence
staining confirmed co-localization of IgG and C3 in the vessel
wall (20). Thrombosis was markedly attenuated in C6 deficient
(C6−/−) rats or animal treated with a C5 inhibitor (20). In
another set of experiments, a recombinant single-chain fragment
variable recognizing domain 1 of β2GPI induced thrombosis in
wild type male Wistar rats primed with lipopolysaccharide and
pregnancy loss in female mice, but these effects were blocked
in C6 deficient rats or C5 depleted mice (21). A CH2 deleted
version of this antibody still recognized β2GPI but failed to fix
complement and did not induce thrombosis or pregnancy loss.
In addition to demonstrating the critical role of complement in
aPL induced thrombosis, these experiments show that unlike
effects of anti-β2GPI on the placenta, the procoagulant effects

of aPL require a priming factor or “second hit” provided by
an inflammatory stimulus such as lipopolysaccharide (34). In
these murine models of thrombotic APS, C9 is deposited on the
vascular endothelium indicating the presence of the membrane
attack complex (20, 21). The membrane attack complex triggers
the extrinsic pathway of coagulation by inducing tissue factor
expression on the endothelial surface (47).

Complement Activation in Patients
With APS
A role for complement activation in patients with thrombotic
APS was first suggested nearly 25 years ago by the demonstration
of higher serum levels of C5b-9 in patients with aPL and
stroke compared with non-APS related stroke (48). Others
have reported hypocomplementemia (39) and higher levels of
complement fragment Bb and C3a (40, 49) in patients with APS;
however, the association with APS-related thrombotic events or
serologic characteristics is inconsistent (39, 49). More recently,
deposits of C1q, C4, C3, and C5b-9 were noted to co-localize
with β2GPI and IgG in the affected artery wall of a patient with
primary APS and arterial thrombosis who also had increased
plasma levels of C5a and C5b-9 (50).

A minority (1%) of patients with aPL develop catastrophic
APS (CAPS), manifesting as small vessel thrombosis in three or
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TABLE 1 | Reports of Eculizumab therapy for patients with catastrophic APS or severe APS.

Patient Prior therapies Eculizumab

dose/duration

Outcome

Shapira et al. (54) 28/M with SLE and APS

with a pulmonary embolism

at age 12, and arterial

ischemia leading to leg

amputation, mesenteric

ischemia and recurrent

CAPS

Heparin, argatroban,

fondaparinux,

cyclophosphamide,

steroids, intravenous

immunoglobulin, lepirudin,

bivalirudin, aspirin, and

clopidogrel, plasma

exchange

Eculizumab, 900mg, then

1,200 q 2weeks for 1 year

Resolution of anemia,

thrombocytopenia, and

thrombotic events

Appenzeller et al. (55) 30/F with ITP and primary

APS developed CAPS after

pregnancy. Complicated by

myocardial infarction and

renal failure

Hydroxychloroquine,

heparin, steroids, rituximab,

plasma exchange,

immunoadsorption,

hemodialysis

Eculizumab × 3 months,

mycophenylate, steroids

(homozygous for C3

mutation, c.1677C>T;

p.C559C)

Resolution of MAHA and

thrombocytopenia. Later

had partial relapse, dialysis

dependent

Muller-Calleja et al. (56) 3 patients undergoing renal

transplant, 2 with prior

CAPS

Prednisone, rituximab,

anticoagulation

Eculizumab, 900mg weekly

begun the day after

transplant, then 1,200 q 2

weeks

Successful engraftment up

to 4 years, continued

treatment

Strakhan et al. (57) 36/F with hypertension,

acute renal failure, strokes,

acute coronary syndrome,

and MAHA

Plasma exchange, steroids Eculizumab 900 mg/wk × 4

then 1,200 q 2 weeks

Gradual improvement of

MAHA, continued dialysis

Wig et al. (58) 47/M with APS, multifocal

thrombi, and

thrombocytopenia followed

by renal and liver infarcts

Heparin, plasma exchange,

intravenous

immunoglobulin, steroids,

argatroban, heparin

Eculizumab 900mg × 2

weekly doses, then

1,200mg every 7–10 days

Gradual improvement in all

parameters, but remains

dialysis dependent

Gustavsen et al. (59) 22/F with arterial thrombosis

and ischemic ulcerations

during pregnancy

Warfarin, low molecular

weight heparin, aspirin

Eculizumab 600mg × 2

weekly doses, prior to

Cesarean section

Improvement of ischemic

pain, no further thrombosis,

no adverse fetal effects

Marchetti et al. (60) 33/F with factor V Leiden

and triple positive APS

developed TMA at 30

weeks of gestation

Rituximab, aspirin, heparin Eculizumab 600mg,

Cesarean section at 32

weeks, repeat Eculizumab

after surgery

Stabilization of

thrombocytopenia, renal

function and hematocrit

more organs within the span of a week in the absence of small
vessel inflammation on histopathologic examination (51); CAPS
is fatal in over 40% of cases (52). Increased serum C5b-9 has
been detected in CAPS with clinical improvement after treatment
with eculizumab correlating with a reduction in serumC5b-9 and
increase in C3 and C4 (53). While animal studies and anecdotal
success of complement inhibitory therapy support a role for
complement in aPL induced thrombosis (Table 1) (50, 54, 61),
there is a paucity of controlled clinical research studies, and the
mechanisms of complement activation in APS and its correlation
with vascular events remains incompletely understood.

MECHANISMS OF COMPLEMENT
ACTIVATION IN APS

The aPL profile can predict risk of thrombosis and pregnancy
morbidity. For example, LA was associated with a higher risk
of thrombosis (OR 3.6, 95% CI 1.2–10.9) than anti-β2GPI (OR
2.4, 95%CI 1.3–4.2) and anti-prothrombin (anti-PT) antibodies
(OR 1.4, 95% CI 1.0–2.1) in the Leiden thrombophilia study
(62). Retrospective and prospective studies have not shown a
consistent association between thrombosis and aCL (3, 63).

However, the differential ability of different aPL to activate
complement has not been studied extensively. Since β2GPI is
the primary antigen in APS, the anti-β2GPI antibody has been
proposed as the more clinically significant and predictive aPL
(62, 64, 65). Available studies highlight the role of β2GPI as
a complement regulator (66), though others suggest a role of
anti-C1q antibodies (67).

The mechanisms of complement activation in APS are not
fully understood. Some have suggested that immune complexes
in APS bind to C1q and activate the classical complement
pathway (68). However, aCL and anti-β2GPI are frequently of
the IgG2 subclass (69, 70), which has relatively weak ability to
activate complement compared with IgG1. Anti-C1q antibodies
have been detected in patients with SLE, in whom they correlate
with clinical manifestations particularly lupus nephritis (71, 72).
In a mouse model, an anti-C1q monoclonal antibody enhanced
complement activation by the classical pathway and caused
renal injury (67). Oku et al. (73) have reported that antibodies
against C1q were more prevalent in patients with primary
APS (36%) than controls with other non-SLE autoimmune
disorders, and concluded that these antibodies contribute to
complement activation, since titers of anti-C1q correlated with
levels of C4a. However, anti-C1q antibodies did not correlate
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FIGURE 2 | Procoagulant effects of complement activation. Activation of complement leads to generation of C5a and C5b, which combines with other terminal

complement components to form the membrane attack complex. C5a is an anaphylatoxin that recruits neutrophils and leads to expression of tissue factor on

neutrophils, monocytes and endothelial cells, which is associated with procoagulant activity. Deposition of the membrane attack complex on the endothelium leads to

endothelial injury and procoagulant changes including expression of adhesion molecules, secretion of von Willebrand factor, and release of procoagulant microvesicles

[adapted from Ritis et al. (26)].

with thrombosis or pregnancy loss although a small subset of
patients with recurrent thrombosis had a higher rate of anti-C1q
antibodies (73). Finally, there is essentially no data on activation
of complement by IgM anti-β2GPI antibodies.

Gropp et al. have reported a complement regulatory role
of β2GPI, which inhibits complement activation by enhancing
C3/C3b degradation (66). It has been proposed that when bound
to a surface, β2GPI undergoes a conformational change from a
circular form to an elongated form that can bind C3; in turn,
C3 undergoes a conformational change to expose binding sites
that make it susceptible to degradation by complement factor
H (CFH) and factor I (66). In addition to its inhibitory effects
on complement activation, CFH also has structural similarity to
β2GPI and appears to share its property of inhibiting of contact
pathway activation triggered by anionic phospholipids (74).
Some APS patients, particularly those with recurrent thrombotic
events, have autoantibodies against CFH suggesting a role of
these antibodies in the predisposition to thrombosis (75, 76). A
recent study reported low levels of CFH in patients with primary
APS who also had low C3 suggesting complement activation (77).

COMPLEMENT AND
VASCULAR THROMBOSIS

Though the mechanisms of complement activation in APS are
unclear, several mechanisms by which activated complementmay
contribute to thrombotic events have been suggested. Activation
of complement leads to cleavage of C5, generating C5a and
C5b (leading to membrane attack complex formation). Ritis

et al. demonstrated that aPL-induced complement activation
may lead to neutrophil expression of TF mediated through
the C5a receptor, leading to expression of procoagulant activity
(Figure 2) (26). C5a also induces TF expression on monocytes
and endothelial cells (78, 79). In addition, deposition of C5b-9
on the endothelial surface leads to secretion of high molecular
weight multimers of von Willebrand factor (80), expression
of P selectin (81), and plasma membrane vesiculation that
exposes a catalytic surface for the prothrombinase complex
(82). Interestingly, a recent experiment by Müller-Calleja et al.
indicated that a cofactor (β2GPI) -independent aPL induced
exposure of procoagulant phosphatidylserine and activated TF
on monocytes and induced thrombosis, and that C3 but
not C5 was required (56). Complement activation can also
contribute to depressed fibrinolysis, a recognized thrombogenic
mechanism in APS (83–85). Events occurring during thrombosis
and fibrinolysis can also activate complement leading to
the generation of C5a and a functional membrane attack
complex (86, 87), further amplifying activation of coagulation
and thrombosis.

THERAPEUTIC IMPLICATIONS

Though long-term anticoagulation with vitamin K antagonists
and a combination of aspirin with low molecular weight heparin
are the mainstay of therapy for thrombotic and obstetric
APS, respectively, some patients develop recurrent aPL-related
clinical events despite “adequate” therapies, indicating a need
for other treatments (52). The expanding data supporting a
role of complement in aPL associated complications makes
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complement inhibition an attractive clinical target in APS.
Moreover, complement targeted therapeutics are an active
area of investigation, and the terminal complement inhibitor,
eculizumab, is already widely used for the treatment of
paroxysmal nocturnal hemoglobinuria and atypical hemolytic
uremic syndrome. Although no complement inhibitors are
approved for use in APS, eculizumab has been used successfully
in patients with CAPS (54, 57, 61), to prevent recurrent CAPS
in patients undergoing renal transplantation (88), and to prevent
re-thrombosis in a patient with APS and recurrent arterial
thrombosis (50). Recent reports of its successful use in CAPS
(Table 1) are particularly encouraging since mortality in CAPS is
as high as 40% with current treatment modalities (89). Pregnancy
is considered a high-risk period for patients with aPL, with a
high rate of fetal loss and pregnancy complications, and may
serve as the “second hit” that leads to vascular complications.
Preeclampsia and HELLP syndrome are also more common in
women with aPL (55, 60), and may be complement mediated
(90–92). Eculizumab crosses the placenta only minimally and
does not affect the fetus (93). Hence, complement blockade
may be an effective therapeutic modality for severe aPL related
complications, including CAPS, during pregnancy (59, 94, 95).

Despite these encouraging data, there is still insufficient data
to support the routine use of anti-complement therapy in APS,
particularly patients without CAPS, and further mechanistic
studies and randomized clinical trials are required. Ideally,
complement-related biomarkers would be able to identify
patients who are more likely to be refractory to standard therapy,
and those who would benefit from complement inhibition as

an adjunct to anticoagulation and antiplatelet therapy. However,
standard measures of circulating complement cleavage products
have not yet been shown to correlate with or predict the
development of thrombosis.

CONCLUSIONS

Recent experimental data indicate that complement activation
plays a critical role in the pathogenesis of thrombosis
and pregnancy complications in APS (25). However, the
mechanisms by which aPL activate complement are not fully
understood. Complement inhibition may provide a useful
adjunctive therapy for patients with APS refractory to standard
therapies, which is supported by reports of successful use
of complement inhibition in patients with CAPS (54, 61).
Mechanistic and clinical studies are needed to evaluate the
efficacy of complement inhibition in APS and to develop
biomarkers that can identify patients who might benefit from
complement inhibition.
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