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Abstract: In this paper, a Ni-doped MoS2 monolayer (Ni-MoS2) has been proposed as a novel
gas adsorbent to be used in SF6-insulated equipment. Based on the first-principles calculation,
the adsorption properties of Ni-MoS2 to SO2 and H2S molecules, the main decomposition components
of SF6 under a partial discharge (PD) condition have been studied. The adsorption energy,
charge transfer, and structural parameters have been analyzed to find the most stable gas-adsorbed
Ni-MoS2. Furthermore, the density of states (DOS), projected density of states (PDOS), and electron
density difference were employed to explore the interaction mechanism between SO2, H2S, and the
Ni-MoS2 surface. It is found that the H2S molecule and SO2 molecule interact with the Ni-MoS2

surface by strong adsorption energy. Therefore, we conclude that the interaction between these two
kinds of gases and the Ni-MoS2 monolayer belongs to chemisorption, and the Ni-MoS2 monolayer
might be a promising gas adsorbent for the fault recovery of SF6-insulated equipment. Additionally,
we have to point out that all of the conclusions only considered the final adsorption energy, the barrier
in the transition state has not been analyzed in this paper.
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1. Introduction

Due to the excellent insulation and arc extinguishing properties of SF6, it has obtained a wide
application in gas-insulated equipment, such as gas-insulated switchgear (GIS), gas-insulated breaker
(GIB), and gas-insulated transformer (GIT). In addition, SF6-insulated equipment exhibits a great deal
of advantages, such as a small occupied area requirement, little electromagnetic pollution, and high
safety and reliability [1,2]. However, a certain amount of insulation defects inevitably occur in
SF6-insulated equipment during the long-term running process, which may lead to partial discharge
(PD) and the decomposition from SF6 to SFx under the operating voltage [3,4]. Simultaneously, the SF6

gas-filled chamber inevitably contains trace amounts of impurities, such as H2O and O2 [5]. SFx will
quickly react with the H2O and O2 into various decomposition components (such as H2S, SO2, SOF4,
SO2F2, SOF2, HF, CF4, and CO2, etc.) [1,6–8]. These decomposition components can significantly
accelerate the corrosion and aging process of the insulation medium, resulting in insulation failure.
In order to ensure the running stability of SF6-insulated equipment, the primary task is to maintain the
purity of the filling gas, namely removing the decomposition components of SF6 [9,10]. Considering all
of the SF6 decomposition components, H2S, SO2 gases, the main decomposition components under
all types of PD conditions are the key removing target gases [11–13]. Thus, it is urgent to explore
an effective adsorbent for H2S and SO2 removal.
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Recently, along with the upsurge of research on graphene and other two-dimensional (2D)
layered nanomaterials [14–16], the graphene-like MoS2 monolayer, exhibiting good chemical stability
and thermal stability, high specific surface area, and high surface activity, has attracted much
research interest for various applications, including electrochemical lithium storage, solid lubrication,
catalysis, and gas adsorbents [17–22]. Among them, the application of MoS2 in gas adsorption
has attracted much research attention in recent years. Liu et al. developed an ethanol gas sensor
based on an indium oxide/molybdenum disulfide (In2O3/MoS2) nanocomposite, and investigated
its gas-sensing properties to ethanol gas [23]. Dongwei Ma et al. improved the sensing properties
of MoS2 to CO and NO by doping the MoS2 monolayer with Au, Pt, Pd, and Ni, concluding that
introducing appropriate dopants could be a feasible method to improve the gas sensing performance
of MoS2-based gas sensors [24]. The gas adsorption properties of common gases (CO, NO2, H2O, NH3)
on a pristine monolayer MoS2 and a metal (V, Nb, Ta)-doped MoS2 monolayer reported by Jia Zhu et al.,
indicated that metal doping can significantly improve the adsorption properties, chemical activity,
and sensitivity of the MoS2 monolayer [25].

On the one hand, metal atom doping provides a large number of free electrons, namely improving
the electrical conductivity of the MoS2 monolayer. On the other hand, the strong orbital hybridization
between the metal atom and gas molecules enhances the gas adsorption capacity of the MoS2 monolayer
to gas molecules [24–27]. Herein, based on the first-principles calculation, we present an extensive
theoretical investigation of the structure, total density of states (TDOS), and projected density of states
(PDOS) of a Ni-doped MoS2 monolayer. Additionally, its gas adsorption performance towards the
typical SF6 decomposition components H2S and SO2 has been systematically studied based on the
analysis of structural parameters, TDOS, PDOS, and electron density difference. Furthermore, the gas
adsorption mechanisms of the Ni-doped MoS2 monolayer to H2S and SO2 was obtained based on the
research above. In order to ensure the practicability of the adsorbent, the adsorption property of the
Ni-MoS2 monolayer towards SF6 molecule has also been studied. In conclusion, the Ni-doped MoS2

monolayer shows an ideal adsorption property to the target gases, signifying that it is a promising
novel gas adsorbent used to ensure the running stability of SF6-insulated equipment.

2. Computational Details

All calculations were performed based on the density functional theory (DFT) [28,29].
Th generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) was chosen to
calculate the geometry optimization with the energy convergence accuracy, maximum stress, and max
displacement set to 1 × 10−5 Ha, 2 × 10−3 Ha/Å, and 5 × 10−3 Ha, respectively [30,31]. The effect of
spin-polarization was ignored in this paper, and Grimme dispersion correction has been introduced to
describe the weak interactions, like van der Waals force. The double numerical plus polarization (DNP)
was chosen as the basis set, the density functional semi-core pseudopotential (DSPP) was applied in
core treatment, and the Monkhorst-pack k point mesh of 5 × 5 × 1 was employed [32,33]. The self-
consistent (SCF) field tolerance was set to 1 × 10−6 Ha, and the DIIS size was set to 6 to speed up the
convergence of SCF [34].

A 4 × 4 × 1 MoS2 monolayer supercell with a 20 Å vacuum slab, including 32 S atoms and
16 Mo atoms, was built in order to avoid the interaction between the adjacent cells. The optimized
lattice constant of MoS2 is calculated to be 3.180 Å, which is in good agreement with other theoretical
calculation results [35]. One Ni atom was placed on the top site of the Mo atom at the center of the
4 × 4 × 1 MoS2 monolayer supercell, bonding with three S atoms.

The adsorption energy (Eads) was calculated by Equation (1) [36]:

Eads = ENi-MoS2/gas − ENi-MoS2 − Egas (1)

where ENi-MoS2/gas is the total energy of the gas adsorbed Ni-MoS2, while ENi-MoS2 and Egas represent
the total energy of the Ni-MoS2 monolayer and the total energy of free gas molecule, respectively.
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The more negative Eads obtained after geometry optimization, the easier for the free gas molecule to be
adsorbed on the Ni-MoS2 monolayer surface, indicating the adsorption system is more stable.

In addition, the charge transfer (Qt) between the gas molecule and Ni-MoS2 monolayer was
calculated by Equation (2):

Qt = Qa − Qb (2)

where Qa and Qb represent the amounts of carried charge of the gas molecules after and before gas
adsorption, which were calculated by electron population analysis [37]. It is worth putting out that the
value of Qb is always 0 e in this paper. According to the definition, if Qt is positive, the electrons transfer
from gas molecule to the Ni-MoS2 monolayer. Additionally, the density of states (DOS) was calculated
to analyze the interaction mechanism between gas molecules and the Ni-MoS2 monolayer [38].

3. Results and Discussion

3.1. Structures and Electronic Properties of H2S, SO2 and the Ni-MoS2 Monolayer

Firstly, the adsorption property of the Ni atom on the MoS2 monolayer was discussed according
to the adsorption energy analysis and population analysis. The adsorption energy (Eads) of Ni atom on
MoS2 monolayer was defined in the Equation (3):

Eads = ENi-MoS2 − ENi − EMoS2 (3)

The negative Eads in Equation (3) indicates that the binding process is exothermic. As the most
stable doping position of Ni on MoS2 monolayer is the top site of the Mo atom according to previous
studies [24], therefore, only the structure of Ni-MoS2 with Ni doping on the top site of the Mo is
discussed in this paper.

As shown in Figure 1, The Ni atom above the Mo3 atom bonds with other three surrounding S
atoms with a length of 2.121 Å, and there is no chemical bond between the doped Ni atom and the Mo3
atom because of the long distance between them (2.596 Å). The bond angle of the Mo1-S1-Mo2 near
the Ni atom (81.3◦) has slightly changed compared with that of the MoS2 monolayer without doping
(82.0◦), indicating that the doped Ni atoms have a strong interaction with the initial MoS2 monolayer
structure, and the doping structure could be quite stable. Moreover, the large binding energy (3.495 eV)
further confirmed the conclusion above. In addition, the charge transfer from the Ni atom to the MoS2

monolayer is 0.021 e.
To further analyze the structural properties of Ni-MoS2 monolayer, the total density of states

(TDOS) and projected density of states (PDOS) have been calculated as shown in Figure 2. For TDOS
distribution, the electron distribution of the Ni-MoS2 monolayer around the Fermi level has slightly
increased compared with that of the MoS2 monolayer, implying that the doping of the Ni atom has
enhanced the metallic property of the MoS2 monolayer. As a result, the doped Ni atom acts as the
active site for building interaction between the Ni-MoS2 monolayer and the target gas molecules.
For PDOS distribution, the peaks of Ni-3d orbital and S-3p orbital overlap at −5.5 eV, −4.5 eV, −3.5 eV,
−2.5 eV, and 2.0 eV, indicating that the S-3p orbital strongly hybridize with the Ni-3d orbital. Therefore,
the Ni atom adsorbs on the surface of MoS2 monolayer by a stable structure.

The structures of the gas molecules are exhibited in Figure 3, and its specific structural parameters
of the gas molecules are listed in Table 1. Additionally, the carried charge of S and O atom in the SO2

are 0.453 e and −0.227 e, respectively. The H atom in the H2S has a positive charge of 0.174 e, and the S
atom has a negative charge of 0.348 e. For the SF6 molecule, the charge of the S atom is calculated to be
1.194 e, and the F atom is −0.199 e. These results are in agreement with the other theoretical calculation
reports [39].
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Figure 2. The TDOS and PDOS of Ni-MoS2, and the dashed lines represent the Fermi level. 
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Figure 3. The molecular structures of H2S, SO2, and SF6. 

Table 1. The structural parameters of H2S, SO2, and SF6. 

Gas Molecule 
Bond Angle (°) Bond Length (Å) 

Type Angle Type Length 

SO2 O1-S-O2 120.2 O1-S 1.480 

H2S H1-S-H2 91.2 H1-S 1.356 

SF6 F1-S-F2 90.0 F1-S 1.616 

  

Figure 2. (a) The TDOS of Ni-MoS2; (b) the PDOS of Ni-MoS2, the dashed lines represent the
Fermi level.
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Table 1. The structural parameters of H2S, SO2, and SF6.

Gas Molecule
Bond Angle (◦) Bond Length (Å)

Type Angle Type Length

SO2 O1-S-O2 120.2 O1-S 1.480
H2S H1-S-H2 91.2 H1-S 1.356
SF6 F1-S-F2 90.0 F1-S 1.616

3.2. Adsorption of H2S Gas on the Ni-MoS2 Monolayer

To analyze the adsorption properties of Ni-MoS2 monolayer to the target gas molecules,
various initial approaching sites of H2S to the Ni-MoS2 monolayer were calculated in order to obtain
the most stable adsorption structure. After optimization, only one typical adsorption structure was
received, as shown in Figure 4 in the top view and side view, and its Eads, Qt, and specific structure
parameters are shown in Table 2.
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Table 2. The Eads, Qt and structural parameters of the H2S-adsorbed Ni-MoS2 monolayer.

Configuration Eads (eV) Qt (e) dH1-S (Å) dNi-H2S (Å) ∠∠∠H1-S-H2 (◦)

Figure 4 −1.319 0.254 1.362 2.205 91.5

For adsorption system with structure shown in Figure 4a,b, a Ni-S bond with a length of 2.205 Å
forms in the adsorption process, and the amount of the electrons transferred from the H2S molecule
to Ni-MoS2 monolayer is up to 0.254 e, which means the S-Ni bond is not easy to break. However,
the structure of the H2S has slightly changed after adsorption. The length of the H-S bond increases
to 1.362 Å, the angle of the H1-S-H2 turned into 91.5◦. The Eads of H2S on the Ni-MoS2 monolayer is
−1.319 eV, which is large enough to completely adsorb H2S. Though barrier exists in the transition
state, but the change of the structure of H2S is not obvious, therefore, we conclude that the large Eads
can provide the energy to cross over the barrier. As a result, from the amount of electrons transfer and
Eads, we conclude that the structure is the most stable structure for H2S adsorption.

Figure 5 presents the TDOS and PDOS of Ni-MoS2 monolayer before and after H2S molecule
adsorption. The TDOS after H2S molecule adsorption shows a significant increase near −7 eV and
−15 eV. Due to the main contribution of the outer orbitals of interacted atom in the adsorption process,
only the PDOS of the S-3p and Ni-3d was discussed. The PDOS analysis shows that the S-3p orbitals
overlaps with the Ni-3d orbitals in the range from −6 eV to 0 eV, and the overlapped peaks of these
two orbitals appear at about −5 eV, −4 eV, −3.5 eV, −2.5 eV, and 1 5 eV. The wide range of overlap
fully verifies the strong hybridization between these two orbitals. The analysis of TDOS and PDOS
furtherly confirms the strong interaction between H2S and Ni-MoS2 monolayer, and its structure is
quite stable.
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Figure 5. (a) The TDOS of Ni-MoS2 with and without H2S adsorption; (b) the PDOS of main interacted
atoms, the dashed lines represent the Fermi level.

Figure 6 shows the electron density difference of the H2S adsorbed Ni-MoS2 monolayer from
different side views, where the increase and decrease of the electron density are represented by the
red and blue region, respectively. From the electron density difference, it is intuitive to analyze the
charge distribution after the gas adsorption. It can be found that both of the H atoms receive electrons,
while the electron density near the S atom and Ni atom suffer a reduction and increase, respectively,
which is in agreement with the conclusion that the H2S molecule transfers quite a number of electrons
to the monolayer. It is also interesting to notice that the electron density near the Mo atom below
the Ni atom suffers an obvious reduction, and we assume that the electrons from the Mo atom made
a contribution to the increase of the electron density surrounding H atoms. Therefore, the H2S molecule
brings a dramatic change of electron density to the Ni-MoS2 monolayer.
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Figure 6. Electron density difference of the H2S-adsorbed Ni-MoS2 monolayer: (a) side view 1; (b) side
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In conclusion, considering the structure parameters, charge transfer, adsorption energy, DOS,
and electron density difference of H2S adsorbed Ni-MoS2 monolayer, it is obvious that the
interaction between the H2S and the Ni-MoS2 monolayer belongs to chemisorption. In consequence,
this configuration is the most stable adsorption structure for H2S adsorption on a Ni-MoS2 monolayer.
The Ni-MoS2 monolayer shows an outstanding adsorption property to H2S molecules.

3.3. Adsorption of SO2 Gas on a Ni-MoS2 Monolayer.

For the adsorption of SO2 gas, the gas molecule is initially placed at various sites to approach the
surface of the Ni-MoS2 monolayer. Three typical adsorption structures were obtained after geometric
optimization, as shown in Figure 7. Table 3 shows the structural parameters of these configurations.
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Table 3. The structural parameters of adsorption configurations of the SO2-adsorbed Ni-MoS2 monolayer.

Configuration Eads (eV) Qt (e) dO1-S (Å) dO2-S (Å) dNi-S (Å) dNi-O1 (Å) ∠∠∠O1-S-O2 (◦)

M1 −0.823 −0.094 1.543 1.489 - 1.903 115.2
M2 −1.382 −0.016 1.481 1.481 2.059 - 119.2
M3 −1.327 −0.206 1.575 1.494 2.258 1.948 116.6

Figure 7a,b shows the top view and side view of the M1 system. It can be seen that the SO2

molecule adsorbs on the Ni-MoS2 monolayer through the Ni-O1 bond, and the length of the Ni-O1
bond is 1.903 Å. The O1-S bond of SO2 adsorbed on the monolayer is 1.543 Å, which slightly longer than
that of a free SO2 molecule (1.480 Å). The angle of the O1-S-O2 has decreased 5◦. Thus, the structure
of the SO2 molecule changes very little during the adsorption process. The Eads of the M1 system is
calculated to be −0.823 eV, 0.094 e transfers from the Ni-MoS2 monolayer to the SO2 molecule. Due to
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the strong interaction between SO2 and the Ni-MoS2 monolayer, the adsorption of the M1 system
belongs to chemisorption.

The top view and side view of the M2 system are given in Figure 7c,d, the SO2 molecule adsorbs
on the monolayer with a Ni-S bond length of 2.059 Å. From the structural parameters in Table 3, it is
found that the structure of the SO2 molecule changes little after adsorption. The Eads of the M2 system
has increased to −1.382 eV compared to that in the M1 system, which manifests the stability of the
M2 system. In Addition, only 0.016 e transfers from the SO2 molecule to the Ni-MoS2 monolayer in
the M2 system, and the charge transfers from the S atom, O1 atom, and O2 atom are 0.050 e, −0.033 e,
and −0.033 e, respectively.

The top view and side view of the M3 system are given in Figure 7e,f, the O1 atom and S atom are
trapped by the Ni-MoS2 monolayer with bond lengths of 1.948 Å (Ni-O1) and 2.258 Å (Ni-S). Due to
the strong interaction of the Ni-O1 bond and Ni-S bond, the Qt of the M3 system is calculated to be
−0.206 e, which is distinctly larger than that in the M1 and M2 system. From the structural parameters
in Table 3, the bond distance and angle in the SO2 molecule insignificantly change after adsorption.
The Eads of M3 exhibited in Table 3 is −1.327 eV, which is slightly smaller than that in the M2 system.

Above all, according to the large amount of Eads and charge transfer between the SO2 molecule
and the M2 system, chemisorption of Ni-MoS2 monolayer to SO2 can be concluded. Although the
Eads of M3 system is very close to that of the M2 system, these two new built bonds between the SO2

molecule and Ni atom in M3 system means a higher barrier during the adsorption process. Therefore,
the M2 system is the most stable configuration. To further verify the conclusion, the DOS and the
electron density difference are intensively discussed below.

Figure 8a shows the TDOS of the M2 system. It is obvious that a small change occurs in TDOS
around the area of −20 eV, −10.5 eV, −7 eV, −3 eV, and −1 eV for the SO2-adsorbed Ni-MoS2

monolayer. Similarly, as the adsorption process mainly contributed by of the outmost orbitals of atoms,
only the PDOS of the S-3p and Ni-3d are discussed, as shown in Figure 8b. According to the PDOS
results, the peaks of S-3p orbital and the Ni-3d orbital overlap at −5.5 eV, −4 eV, −2 eV, and 2 eV,
suggesting that the interaction between SO2 and Ni-MoS2 monolayer is strong chemisorption, and its
electronic structures are relatively active. Considering the large contribution of the S-3p orbital in the
adsorption process, we confirm that the SO2 adsorption structure in the M2 system is very stable.
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With respect to the electron density difference in the M2 system, shown in Figure 9, the increase 
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found that two O atoms in SO2 receive electrons, and the electron density near the S atom decreases 

during the adsorption. In generally, the SO2 molecule acts as an electron acceptor according to the 

electron density distribution. 

Figure 8. (a) The TDOS of Ni-MoS2 with and without SO2 adsorption; (b) the PDOS of the main
interacted atoms in the M2 system. The dashed lines represent the Fermi level.

With respect to the electron density difference in the M2 system, shown in Figure 9, the increase
and decrease of the electron density are represented by the red and blue regions, respectively. It is
found that two O atoms in SO2 receive electrons, and the electron density near the S atom decreases
during the adsorption. In generally, the SO2 molecule acts as an electron acceptor according to the
electron density distribution.
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3.4. Adsorption of SF6 Gas on the Ni-MoS2 Monolayer

In order to ensure the practicability of the Ni-MoS2 adsorbent, the adsorption property of the
Ni-MoS2 monolayer towards the SF6 molecule has also been studied, as SF6 will always be the largest
part of components in SF6-insulated equipment. Various initial approaching sites of SF6 to the Ni-MoS2

monolayer were calculated in order to obtain the most stable adsorption structure. Two adsorption
structures were received after geometric optimization, as shown in Figure 10 with different views.
In addition, its adsorption energy, charge transfer, and other specific structural parameters are given in
Table 4.
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monolayer. Figure 10. The adsorption configurations of the SF6 adsorbed Ni-MoS2 monolayer: (a,b) top and side
view of M1; (c,d) top and side view of M2.
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Table 4. The structural parameters of adsorption configurations of the SF6 adsorbed Ni-MoS2 monolayer.

Configuration Eads (eV) Qt (e) dNi-F1 (Å) dNi-F2 (Å) dF1-S (Å) dF2-S (Å) ∠∠∠F1-S-F2 (◦)

M1 −0.174 −0.445 1.875 3.560 1.796 1.684 89.3
M2 −0.181 −0.454 1.871 3.511 1.851 1.685 89.0

As the parameters show in the Table 4, the Eads is only −0.174 eV for M1, and 0.181 eV for M2.
Qt is −0.445 e and −0.454 e for the M1 and M2 structures, respectively. Though the dF1-S of SF6 suffers
a very small increase compared with that of free SF6 molecule, it is still difficult to break its chemical
bonds by the weak adsorption energy. Therefore, the SF6 molecule interacts with Ni-MoS2 monolayer
by physisorption. Once H2S and SO2 decomposition components occur in SF6-insulated equipment,
H2S and SO2 quickly fill the role of the adsorption of SF6 because of its strong adsorption energy of
H2S and SO2. Additionally, the repulsion between gas molecules will block the interaction between the
SF6 molecule and Ni-MoS2 monolayer. As a result, the Ni-MoS2 monolayer can be a good adsorbent to
H2S and SO2 in a SF6 atmosphere.

4. Conclusions

In this study, a Ni-MoS2 monolayer material has been proposed as a potential adsorbent to remove
the typical decomposition components of SF6 under partial electric discharge: H2S and SO2. All of the
calculations performed with respect to density functional theory analysis and all of the conclusions
only considered the final adsorption energy; the barrier in transition state has not been analyzed in
this paper. Various adsorption models of H2S and SO2 molecules on the Ni-MoS2 monolayer were
built to find the most stable adsorption structure by analyzing the adsorption energy, charge transfer,
and other structural parameters. To further analyze the interaction mechanism, the DOS, PDOS and
electron density difference were presented and analyzed. We concluded that H2S and SO2 tend to
adsorb on the surface of Ni-MoS2 monolayer by chemisorption, and the adsorption energy of the H2S
and SO2 is up to −1.319 eV and −1.382 eV, respectively, indicating that the interaction between these
two kinds of gases and the Ni-MoS2 monolayer is pretty strong. Additionally, the weak physisorption
between SF6 and the Ni-MoS2 monolayer provides the basis for selectively adsorbing H2S and SO2

from the SF6 atmosphere. Therefore, the Ni-MoS2 monolayer might be a promising gas adsorbent to
remove these two typical decomposition components of SF6, which plays a key role in enhancing the
running stability of SF6-insulated equipment.
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