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ABSTRACT Multidrug-resistant (MDR) Acinetobacter baumannii has emerged as a
very problematic pathogen over the past decades, with a high incidence in nosoco-
mial infections. Discovered in the late 1940s but abandoned in the 1970s, polymyx-
ins (i.e., polymyxin B and colistin) have been revived as the last-line therapy against
Gram-negative “superbugs,” including MDR A. baumannii. Worryingly, resistance to
polymyxins in A. baumannii has been increasingly reported, urging the development
of novel antimicrobial therapies to rescue this last-line class of antibiotics. In the
present study, we integrated genome-scale metabolic modeling with multiomics
data to elucidate the mechanisms of cellular responses to colistin treatment in A.
baumannii. A genome-scale metabolic model, iATCC19606, was constructed for strain
ATCC 19606 based on the literature and genome annotation, containing 897 genes,
1,270 reactions, and 1,180 metabolites. After extensive curation, prediction of growth
on 190 carbon sources using iATCC19606 achieved an overall accuracy of 84.3%
compared to Biolog experimental results. Prediction of gene essentiality reached a
high accuracy of 86.1% and 82.7% compared to two transposon mutant libraries of
AB5075 and ATCC 17978, respectively. Further integrative modeling with our correla-
tive transcriptomics and metabolomics data deciphered the complex regulation on
metabolic responses to colistin treatment, including (i) upregulated fluxes through
gluconeogenesis, the pentose phosphate pathway, and amino acid and nucleotide
biosynthesis; (ii) downregulated TCA cycle and peptidoglycan and lipopolysaccharide
biogenesis; and (iii) altered fluxes over respiratory chain. Our results elucidated the in-
terplay of multiple metabolic pathways under colistin treatment in A. baumannii and
provide key mechanistic insights into optimizing polymyxin combination therapy.

IMPORTANCE Combating antimicrobial resistance has been highlighted as a critical
global health priority. Due to the drying drug discovery pipeline, polymyxins have
been employed as the last-line therapy against Gram-negative “superbugs”; how-
ever, the detailed mechanisms of antibacterial killing remain largely unclear, ham-
pering the improvement of polymyxin therapy. Our integrative modeling using the
constructed genome-scale metabolic model iATCC19606 and the correlative multi-
omics data provide the fundamental understanding of the complex metabolic re-
sponses to polymyxin treatment in A. baumannii at the systems level. The model
iATCC19606 may have a significant potential in antimicrobial systems pharmacology
research in A. baumannii.
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Acinetobacter baumannii is a very problematic opportunistic Gram-negative patho-
gen with a high mortality in critically ill patients (1, 2). It causes a range of

nosocomial infections, including pneumonia, bacteremia, urinary tract infections, and
meningitis (3, 4). A. baumannii can rapidly develop resistance to multiple antibiotics via
acquiring heterogeneous genetic materials (5) or spontaneous mutagenesis (6, 7).
Recently, the World Health Organization prioritized carbapenem-resistant A. baumannii
as one of the three “Critical” bacterial pathogens that urgently require development
of novel antibiotics (http://www.who.int/medicines/publications/global-priority-list
-antibiotic-resistant-bacteria/en/).

Discovered in the 1940s, polymyxins waned in the 1970s due to their potential
nephrotoxicity and neurotoxicity (8). Until the last decade, they have been revived as
the last-line therapy against Gram-negative “superbugs,” including MDR A. baumannii
(8). Polymyxins are amphipathic, nonribosomal synthesized lipodecapolypeptides con-
taining five positively charged L-�,�-diaminobutyric acid residues (8). The purported
primary mechanism of polymyxin activity involves initial polar and hydrophobic inter-
actions with lipid A of lipopolysaccharide (LPS) in Gram-negative bacterial outer
membrane (OM), followed by the displacement of calcium (Ca2�) and magnesium
(Mg2�), and OM disorganization (8). Alternative secondary antibacterial mechanisms
were proposed, including through hydroxyl radical production and inhibition of the
inner membrane (IM) respiratory enzymes (e.g., type II NADH-quinone oxidoreductase)
(9, 10). Resistance to polymyxins in A. baumannii is mainly due to lipid A modifications
(with phosphoethanolamine or galactosamine by pmrC and naxD, respectively) or LPS
loss (mediated by mutations in lpxACD) (11–13). Several studies reported that metabolic
changes in pentose phosphate pathway (PPP) and glycerophospholipid and pepti-
doglycan biosynthesis are associated with polymyxin resistance in A. baumannii (14,
15). Nevertheless, there is limited information on the complex metabolic network that
controls responses to polymyxin killing in A. baumannii.

A genome-scale metabolic model (GSMM) assembles all biochemical reactions
possibly occurring in an organism to predict cellular metabolic functions (16), delineate
the mechanisms of antimicrobial killing (17, 18), and facilitate drug discovery (19).
GSMMs also provide systems platforms for integrative analysis of multiomics data (17,
20–22). Currently, there are only three existing GSMMs for A. baumannii, AbyMBEL891
and iCN718 for strain AYE (23, 24), and iLP844 for ATCC 19606 (25). However,
AbyMBEL891 lacks experimental validation for nutrient utilization prediction and em-
ployed a non-A. baumannii mutant library to assess the predicted gene essentiality (23).
Models iCN718 and iLP844 used 78 and 64 carbon sources, respectively, to validate
nutrient utilization prediction (24, 25). Model iLP844 integrated transcriptomics data
(untreated control and colistin treatment at 2 mg/liter for 15 and 60 min) to simulate
metabolic changes under treatment using the Metabolic Adjustment by Differential
Expression (MADE) algorithm (25, 26). However, MADE relies on simple discretization of
transcriptomic data and potentially imprecisely represents continuous gene expression
profiles, thereby leading to inaccurate predictions (27). Moreover, apart from transcrip-
tional regulation, many intermediate steps (e.g., metabolic regulation) may jointly affect
the overall metabolic activity. Therefore, further integrative analysis with metabolomics
data will be crucial for delineating the regulation.

Here we report the development and validation of a GSMM for A. baumannii ATCC
19606 using the literature, genome annotation, and experimental data from our
laboratory. Integrative analysis with transcriptomics and metabolomics data revealed
that the PPP, glyoxylate shunt, arginine biosynthesis, and LPS and peptidoglycan
biosynthesis played key roles in metabolic responses to colistin treatment. The simu-
lation results provide novel mechanistic insights into developing synergistic polymyxin
combinations to combat MDR A. baumannii.

(Part of this work was presented at the 13th Annual Conference of the Metabolomics
Society, 25 to 29 June 2017, Brisbane, Australia.)
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RESULTS
Construction of the genome-scale metabolic model iATCC19606. To expedite

the GSMM construction, a draft model was developed using AbyMBEL891 as a template
(23). First, 3,078 orthologs were identified between strains AYE and ATCC 19606 using
reciprocal BLASTp with identity of �70%, E value of �1E�5, and coverage of �70%
(28). AbyMBEL891 contained 650 genes in A. baumannii AYE, and 630 of them were
replaced with their corresponding orthologs in ATCC 19606 (23). Five AYE-specific
enzymatic reactions were deleted due to the lack of their counterparts in ATCC 19606.
Second, the ATCC 19606 genome was annotated using KEGG (Kyoto Encyclopedia of
Genes and Genomes) BlastKOALA (29), and 1,558 were assigned with KEGG Orthology.
The draft model was supplemented with 231 metabolites, 218 reactions, and 164 genes
from KEGG and MetaCyc (30). Extensive manual curation was conducted to fill pathway
gaps. Transport and exchange reactions were added, enabling nutrient uptake and
by-product secretion. Finally, the resulting model was designated iATCC19606 and
involved 1,180 metabolites, 1,270 reactions, and 897 genes, representing 23.4% of the
entire ATCC 19606 genome (Table 1; see also Data Set S1A and Data Set S2 in the
supplemental material). Among the 23 Clusters of Orthologous Groups (COGs), 18 were
covered by iATCC19606 (Fig. 1). The top three largest COG classes include amino acid
metabolism, energy production and conversion, and lipid metabolism. iATCC19606 and
iLP844 (25) shared 639 genes in common (Data Set S1B). Specifically, iATCC19606

TABLE 1 Genome contents and model components

Content

Data for strain and model

AYE; AbyMBEL891

ATCC 19606

iLP844 iATCC19606

Genome size (Mb) 4.04 3.97a 3.95
Assembly status Complete Contigs Contigs
GenBank accession number(s) CU459137–CU459141 ACQB00000000 JMRY00000000
GC content (%) 39.34 39.10 39.12
No. of genes 3,900 3,803 3,804
No. of CDS 3,703 (77b) 3,637 (102b) 3,669 (0b)
No. of contigs -c 100 18
No. of reactions 891 1,628 1,270
No. of metabolites 778 1,509 1,180
No. of involved genes 650 844 897
aDifferent sizes of ATCC 19606 draft assemblies.
bNumber of pseudogenes.
c-, complete genome with 1 chromosome and 4 plasmids.
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FIG 1 The COG functional classification of the involved genes in iATCC19606 and iLP844.
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exclusively incorporated 258 genes mainly from energy production, metabolism of
amino acids, lipids, and coenzymes (Fig. 1).

Prediction of bacterial growth on various nutrients. Using flux balance analysis
(FBA), iATCC19606 predicted bacterial exponential growth at 0.96, 0.71, 2.17, and
1.40 h�1 in M9 medium supplemented with citrate (M9C), M9 medium supplemented
with succinate (M9S), and Mueller-Hinton (MH) and Luria-Bertani (LB) media, respec-
tively. The predicted specific growth rates in MH and LB media were higher than those
(0.80 and 0.49 h�1 for growth in MH and LB, respectively) estimated from early-log (2-
to 6-h) growth kinetics (31, 32), because a loose constraint (1 millimole per gram [dry
weight] per hour [mmol · gDW�1 · h�1]) was initially set on nutrient uptake reactions to
test the growth capability without loss of generality. No growth was predicted on M9
medium supplemented with glucose, which was consistent with the previous phenome
results (33). The Biolog assay showed that ATCC 19606 utilized 64 of 190 carbon sources
(Fig. 2 and Data Set S1C). Model iATCC19606 predicted bacterial growth on 58 carbon
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FIG 2 Comparison of the Biolog result (left columns, denoted by E) and model prediction (right columns,
denoted by P). Blue indicates valid growth, and yellow indicates no growth. Only those carbon sources
with a valid predicted and/or experimental growth were displayed.
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sources and no growth on 122 carbon sources with the overall prediction accuracy
achieving 84.3% (Fisher’s exact test, P � 6.18E�17).

Prediction of essential genes, reactions, and metabolites for bacterial growth.
In silico single-gene deletion was conducted, and the specific growth rate for each
mutant was calculated. With FBA, 148, 148, 80, 117, and 94 genes were predicted to be
essential for bacterial growth on M9C, M9S, arbitrary nutrient, and MH and LB media,
respectively, whereas using the minimization of metabolic adjustment (MOMA) ap-
proach, 157, 157, 93, 126, and 103 essential genes were determined for the above
media, respectively (Fig. 3 and Data Set S1D) (34). Across five nutrient conditions, 80
and 88 core essential genes were identified by FBA and MOMA, respectively (Fig. 3 and
Data Set S1D), including those from biosynthesis of amino acids, nucleotides, lipids, and
cofactors and representing the most indispensable functions for bacterial growth.
Comparison with the three-allele transposon mutant library of strain AB5075 grown on
LB medium showed a high prediction accuracy of 86.1% by FBA and 85.8% by MOMA
(Data Set S1E) (35). Similarly, comparison with the transposon mutant library of ATCC
17978 grown on Vogel-Bonner medium (chemically defined medium with citrate as the
sole carbon source, similar to M9C) showed an accuracy of 81.8% by FBA and 82.7% by
MOMA (Data Set S1F) (36). Therefore, iATCC19606 is capable of predicting gene
essentiality precisely.

Likewise, 244/245, 244/245, 145/145, 149/188, and 168/169 essential reactions were
identified by FBA/MOMA when growing on M9C, M9S, arbitrary nutrient, and MH and
LB media, respectively (Fig. 3 and Data Set S1G); 292/292, 290/290, 210/212, 246/246,
and 225/225 metabolites were considered essential for surviving on the above media
by calculating the impaired growth when switching off the consuming fluxes (Fig. 3 and
Data Set S1H). Together, 144/144 core essential reactions and 210/212 core essential
metabolites were identified by FBA and MOMA, respectively (Fig. 3). High concordance
was observed between the core essential components predicted by FBA and MOMA.
Specifically, 79/143/210 core essential genes/reactions/metabolites were commonly
predicted by the two methods. Gene nadK (DJ41_1892, NAD� kinase) and its associated
reaction R00104 were identified by FBA as essential, whereas MOMA discovered that
atpIBEFJHAGDC (DJ41_3203 to DJ41_3211, F0F1-ATPase), its associated reaction R920,
and the cofactor pair ubiquinol/ubiquinone (C00390_c/C00399_c) were essential under
all conditions.

Constraint-based modeling with transcriptomics data predicted metabolic changes in
response to colistin treatment. Gene expression data (Gene Expression Omnibus
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FIG 3 Essential genes, reactions, and metabolites predicted under five nutrient conditions using FBA
with the different combinations of media on the y axis. The numbers beside bars indicate the number
of essential components. M9C, M9 with citrate as the sole carbon source; M9S, M9 with succinate as the
sole carbon source; A, arbitrary nutrient; MH, Mueller-Hinton medium; LB, Luria-Bertani medium.
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[GEO] accession no. GSE62794) from the samples of 2-mg/liter colistin treatment and
untreated control at 1 h were employed to constrain metabolic fluxes for modeling
using the E-Flux method (37). This method simply applies normalized gene expression
levels as flux upper bounds to constrain solution space. In responses to colistin
treatment, 267 metabolic fluxes in ATCC 19606 were significantly altered (fold change
of �2, false discovery rate [FDR] of �0.05; Data Set S1I). Colistin treatment (2 mg/liter)
reduced the specific growth rate from 0.82 h�1 to 0.57 h�1, slightly decreased oxygen
uptake (�5.3%) and CO2 emission (�3.8%), marginally increased (1.5%) respiration
quotient (qCO2/qO2), and impaired the uptake of amino acids and dipeptide nutrients
(Table 2).

Within central metabolism, the fluxes through malic enzyme (maeAB, DJ41_3218
and DJ41_1760), phosphoenolpyruvate synthase (ppsA, DJ41_69), and malate dehydro-
genase (mdh, DJ41_3006) were upregulated under 2-mg/liter colistin treatment, result-
ing in a 1.5-fold increase of gluconeogenic flux (Fig. 4A). The end metabolites glycer-
aldehyde 3-phosphate and fructose 6-phosphate were then utilized by the PPP to
generate precursors erythrose 4-phosphate (E4P) and 5-phosphoribosyl 1-pyrophos-
phate for aromatic amino acid and nucleotide biosynthesis (Fig. 4B). In the TCA cycle,
most metabolic fluxes were reduced by 12.7% to 49.3% under colistin treatment,
whereas the fluxes over glyoxylate shunt were significantly increased (Fig. 4C).

The biosynthesis of certain amino acids (e.g., L-leucine, L-threonine, L-arginine, and
L-lysine) was upregulated after a 1-h treatment with 2 mg/liter colistin. Notably, the
L-ornithine uptake (0.003 mmol · gDW�1 · h�1 in the control versus 0.87 mmol ·
gDW�1 · h�1 after treatment) and de novo synthesis were remarkably increased upon
colistin treatment. The L-ornithine flux in turn enhanced the production of L-arginine
(0.004 mmol · gDW�1 · h�1 in the control versus 0.91 mmol · gDW�1 · h�1 after
treatment) (Fig. 4D).

Within oxidative phosphorylation, electron transfer from NADH to ubiquinone
(R02163, complex I) increased by 66.8% when cells were treated with 2 mg/liter colistin
for 1 h, consistent with the transcriptional upregulation of the nuoABCDEFGHIJKLMN
operon (DJ41_959-DJ41_947) (37). The overall fluxes via complex II (R138, NADH:flavin
adenine dinucleotide [FAD] oxidoreductase), cytochrome bd oxidase, and cytochrome
o oxidase (R972 and R139, respectively) were reduced; however, the ATP generation via
complex V (i.e., F0F1-ATPase) increased by 6% under colistin treatment, owing to the
enhanced IM proton potential which possibly resulted from the upregulated cross-IM
proton efflux through complex I (Fig. 4E).

Integrative analysis with metabolomics data using iATCC19606. Our previous
metabolomics data were integrated with the metabolic flux analysis to further examine the
metabolic regulations in response to colistin treatment (38). Among the 103 significantly
altered intracellular metabolites, 51 were successfully mapped to iATCC19606, and 37
carried nonzero flux sums (Date Set S1J) and were grouped into four categories: (i)
metabolites with decreased abundance and flux sums (14 metabolites), (ii) metabolites with
decreased abundance but upregulated flux sums (21 metabolites), (iii) metabolites with

TABLE 2 Calculated key fluxes by constraint-based metabolic modeling

Characteristic

Metabolic flux (mmol ·
gDW�1 · h�1)

FDRControl
Colistin
(2 mg/liter)

Biomass formation (h�1) 0.82 � 0.00 0.57 � 0.00 1.0 � 10�51

O2 uptake �45.3 � 0.02 �42.9 � 2.44 5.1 � 10�20

CO2 emission 48.1 � 0.22 46.3 � 2.44 2.6 � 10�12

Respiratory quotient 1.06 � 0.00 1.08 � 0.02 1.8 � 10�18

F0F1-ATPase 73.60 � 0.21 78.2 � 3.16 7.3 � 10�11

P/O ratio 1.70 � 0.01 1.87 � 0.04 2.9 � 10�13

Nutrient uptake (mmol of carbon · gDW�1 · h�1)a �77.6 � 0.12 �64.0 � 0.74 1.3 � 10�16

aCalculated by summing up the moles of carbon of each uptaking nutrient.
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metabolite abbreviations are as follows: G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-biphosphate; DHAP, dihydroxyacetone
phosphate; G3P, glyceraldehyde 3-phosphate; 1,3-DPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyru-
vate; PYR, pyruvate; MAL, (S)-malate; OAA, oxaloacetate; Ru5P, ribulose 5-phosphate; R5P, ribose 5-phosphate; Xu5P, xylulose 5-phosphate; S7P, sedoheptulose
7-phosphate; PRPP, phosphoribosyl pyrophosphate; AcCoA, acetyl-CoA; CIT, citrate; ACON, cis-aconitate; ICIT, isocitrate; �-KG, �-ketoglutarate; SUCC-CoA,
succinyl-CoA; SUCC, succinate; FUM, fumarate; ARG, L-arginine; GLU, L-glutamate; NAcGLU, N-acetyl-glutamate; NAcGLUP, N-acetyl-�-glutamyl-phosphate;
NAcGLU5SAD, N-acetyl-L-glutamate-5-semialdehyde; NAcORN, N-acetyl-ornithine; ORN, L-ornithine; CP, carbamoyl phosphate; HCO3, bicarbonate; CITR,
L-citrulline; ARGSUCC, argininosuccinate; UQL, ubiquinol-8; UQN, ubiquinone-8; IM, inner membrane.
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increased abundance but downregulated flux sums (L-aspartate only), and (iv) metabolites
with increased abundance and flux sums (4-methyl-2-oxopentanoate only, the precursor
for L-leucine biosynthesis) (Fig. 5).

The enhanced level of a metabolite could be a result of upregulated influxes
and/or downregulated effluxes, whereas downregulated influxes and/or upregu-
lated effluxes would reduce the metabolite pool. Category I represents those
depleted metabolites that were putatively due to the repressed biosynthesis activ-
ity under colistin treatment. Within the TCA cycle, cis-aconitate and fumarate were
both downregulated with the decreased flux sums (Fig. 4C and Fig. 5). In the
peptidoglycan biosynthesis pathway, the intermediate metabolites UDP-N-acetyl-
muramate, UDP-N-acetyl-D-mannosaminouronate, UDP-N-acetyl-D-glucosamine, and
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine were all
downregulated after colistin treatment with the flux sums over these four metab-
olites decreased by 31.6% (Data Set S1J). Meanwhile, the abundance of LPS inner
core biosynthesis precursor 3-deoxy-D-manno-octulosonate (KDO) was reduced by
70.5% upon colistin treatment. Consistently, the upstream fluxes via 3-deoxy-D-
manno-octulosonate 8-phosphate synthase (R03254) and 3-deoxy-D-manno-
octulosonate 8-phosphatase (R03350) decreased by 31.6% (Data Set S1J). Under

Metabolite Abundance log2FC Flux-sum log2FC Pathway
dTMP -1.84 -0.53 Nucleo de metabolism
dTDP -2.00 -0.53 Nucleo de metabolism

UDP-N-acetylmuramate -2.07 -0.53 Pep doglycan biosynthesis
UDP-N-acetylmuramoyl-L-Ala-D-γ-Glu-6-carboxy-L-Lys-D-Ala -1.77 -0.53 Pep doglycan biosynthesis

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine -0.82 -0.53 Pep doglycan biosynthesis
UDP-N-acetyl-D-glucosamine -1.89 -0.53 Carbohydrate metabolism

S-Adenosyl-L-methionine -1.98 -0.53 Amino acid metabolism
Cytosine -1.68 -0.53 Nucleo de metabolism

3-Deoxy-D-manno-octulosonate -1.74 -0.53 Glycan biosynthesis and metabolism
N6 -(1,2-Dicarboxyethyl)-AMP -2.00 -0.24 Nucleo de metabolism

NADP -1.91 -0.19 Energy metabolism
GTP -1.47 -0.15 Nucleo de metabolism

Fumarate -0.95 -0.14 Carbohydrate metabolism
Propanoyl phosphate -1.78 -0.10 Carbohydrate metabolism

ADP -1.90 0.01 Energy metabolism
ATP -1.95 0.01 Energy metabolism

D-Sedoheptulose 7-phosphate -1.83 0.02 Carbohydrate metabolism
NAD+ -2.02 0.05 Energy metabolism

L-Glutamate -1.93 0.29 Amino acid metabolism
D-Ribose 5-phosphate -1.52 0.71 Carbohydrate metabolism

Xanthosine 5'-phosphate -1.70 1.02 Nucleo de metabolism
Acetyl phosphate -1.86 1.27 Amino acid metabolism

UDP -1.91 1.27 Nucleo de metabolism
D-Erythrose 4-phosphate -1.83 1.36 Carbohydrate metabolism

GMP -1.76 1.42 Nucleo de metabolism
UMP -1.98 1.61 Nucleo de metabolism
UTP -1.88 1.71 Nucleo de metabolism
CDP -1.59 3.11 Nucleo de metabolism

Guanine -2.13 4.41 Nucleo de metabolism
Nico namide D-ribonucleo de -2.01 4.63 Metabolism of cofactors and vitamins

N-Acetyl-L-glutamate -1.80 4.81 Amino acid metabolism
(2S)-2-Isopropylmalate -1.89 4.92 Amino acid metabolism

4-Hydroxybenzoate -1.84 6.10 Metabolism of cofactors and vitamins
2-Deoxy-D-ribose 5-phosphate -1.00 6.54 Carbohydrate metabolism

N-(L-Arginino)succinate -1.76 7.82 Amino acid metabolism

L-Aspartate 1.76 -0.14 Amino acid metabolism
4-Methyl-2-oxopentanoate 1.85 4.92 Amino acid metabolism

Category I

Category II

Category III & IV

-1

+1

0

+

Log2FC

FIG 5 Comparison of flux sums and abundance changes of metabolites caused by 2-mg/liter colistin treatment for 1 h. Category I, metabolites with decreased
abundance and flux sums; category II, metabolites with decreased abundance but upregulated flux sums; category III, metabolites with increased abundance
but downregulated flux sums; category IV, metabolites with increased abundance and flux sums.
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colistin treatment, peptidoglycan and lipid A biosynthesis decreased at similar rates
because both are essential biomass constituents and were reduced proportionally
with bacterial growth declining. The lipid A modifications were neglected here, as
metabolic effects could be subtle considering that LPS accounts for only 0.5%
(wt/wt) of biomass in the model (Data Set S1A).

Category II contains the metabolites that were potentially drained off due to the
increased consuming requirements under colistin treatment. In the PPP, D-ribose
5-phosphate (R5P) and E4P were depleted under 2-mg/liter colistin treatment for 1 h
with their flux sums increased by 64.0 and 156.3%, respectively; these results indicated
that the metabolite reduction was probably due to the upregulated downstream
consuming fluxes toward nucleotide and amino acid biosynthesis (Fig. 4B and Fig. 5).
Likewise, the intermediate metabolites N-acetyl-L-glutamate, L-argininosuccinate, and
(2S)-2-isopropylmalate were downregulated, while the associated flux sums were en-
hanced, probably owing to the increased fluxes toward L-arginine and L-leucine bio-
synthesis (Fig. 4D and Fig. 5). To test the hypothesis that increasing PPP flux to
nucleotide biosynthesis could contribute to intrinsic colistin resistance in A. baumannii,
we measured colistin MICs of 7 mutants (Data Set S1K) from the AB5075 transposon
library; each of them had a PPP gene disrupted by a transposon insertion. Interestingly,
out of the seven mutants, only the tktB mutant (AB07666) showed a 4-fold increase of
colistin MIC (1 mg/liter versus 0.25 mg/liter for wild-type AB5075). The gene tktB
(ABUW_2927) encodes the � subunit of transketolase, which catalyzes the transfer of a
two-carbon glycolaldehyde unit from a ketose donor (xylulose 5-phosphate) to an
aldose acceptor (R5P and E4P). Inactivation of tktB would prevent the flux from
diverging at R5P and increase the flux toward nucleotide biosynthesis. Hence, colistin
in combination with a nucleotide synthesis inhibitor might exert synergistic activity
against A. baumannii. Together, the integrative genome-scale metabolic modeling with
systems pharmacology data generates key mechanistic insights into colistin activity
which may help optimization of polymyxin combination therapy.

DISCUSSION

The emergence of Gram-negative superbugs that are resistant to the last-resort
polymyxins highlights the urgent requirement for novel approaches to understand the
complicated mechanisms of antibiotic activity. GSMMs have been increasingly em-
ployed to decipher antibiotic killing and resistance (39–41), optimize combination
therapy (42), and design novel treatments (43). Here we report the development,
validation, and application of a GSMM designated iATCC19606 for the type strain A.
baumannii ATCC 19606. This strain was originally isolated from a patient urine sample
and has been widely used in microbiological and pharmacological studies (44–46).
Modeling with transcriptomics and metabolomics data using iATCC19606 revealed a
broad range of interesting metabolic changes in response to 2-mg/liter colistin treat-
ment at 1 h, including (i) upregulated gluconeogenesis, PPP, and amino acid biosyn-
thesis; (2) downregulated TCA cycle and peptidoglycan and LPS biosynthesis; and (3)
altered respiratory activities and energy generation.

Until now, there have been only three GSMMs available for A. baumannii, i.e.,
AbyMBEL891 (23), iLP844 (25), and iCN718 (24). Models AbyMBMEL891 and iCN718
were constructed specifically for strain AYE. Reciprocal BLASTp showed significant
genomic discrepancies between AYE and ATCC 19606; ATCC 19606 contains 606 of
3,669 (16.5%) unique genes, whereas AYE has 593 of 3,703 (16.0%) unique genes.
Importantly, the mechanisms of acquiring polymyxin resistance were well studied using
ATCC 19606 (11, 47); therefore, an ATCC 19606-specific model was developed in this
study. The recently published model iLP844 and our iATCC19606 share 679 reactions
and contain 949 and 591 unique reactions, respectively (see Data Set S1L in the
supplemental material). The differences between the two models were mainly due to
using different compartment settings, transport, and exchange reactions. In addition,
for iLP844, only 67 nutrients (actually 66 according to their supplemental material) were
tested for the validation (25). In contrast, our model iATCC19606 predicted bacterial
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growth on 190 carbon substrates and reached equivalent accuracy of 84.3% (Fig. 2 and
Data Set S1C). For the 66 metabolites that iLP844 used (25), the prediction with our
iATCC19606 achieved a higher accuracy of 86.3% (Data Set S1C). iATCC19606 and
iLP844 share 45 essential genes, representing 48.4% (iATCC19606) and 67.2% (iLP844)
of the total essential gene lists, respectively (Data Set S1D). Previous essentiality analysis
with iLP844 showed an overall prediction accuracy of 80.9%, with only 42 essential
genes being correctly predicted (25). Using the same mutant library of strain ATCC
17978 as the reference, our iATCC19606 showed a prediction accuracy increased up to
82.7% (Data Set S1F), possibly owing to different gene associations between the two
GSMMs. For instance, thymidylate synthase (thyA, DJ41_1187), catalyzing the conver-
sion from dUMP to deoxythymidine monophosphate, was demonstrated to be essential
for A. baumannii growth (35, 36). This gene was absent in iLP844 but was included in
iATCC19606 and correctly predicted as essential. Gene cyoD (DJ41_64, encoding cyto-
chrome o ubiquinol oxidase subunit IV) was predicted as nonessential in iLP844,
whereas our prediction classified cyoD (ABUW_1550 in the AB5075 genome) as essen-
tial, which agrees with the absence of a corresponding mutant in A. baumannii
transposon libraries (35, 36).

Model iLP844 was integrated with transcriptomics data of 2-mg/liter colistin treatment
and untreated control samples at 1 h to simulate the metabolic responses to colistin, by
simply converting continuous gene expression to binary states using the MADE algorithm,
with 0 indicating downregulation and 1 indicating upregulation (25). Hence, the flux-
carrying capacity for a reaction could be either zero or the maximum value. This discreti-
zation could cause coarse-grained representation of gene expression and thus affect
the prediction accuracy. For instance, the expression of isocitrate lyase-encoding gene
DJ41_2528 was at a low level in the untreated control (135.3 � 13.6 in reads per kilobase
of transcript per million mapped reads [RPKM]; GEO accession no. GSE62794) and upregu-
lated by 2.2-fold after 2-mg/liter colistin treatment for 1 h (37). Implementation of the
MADE algorithm completely shut down the associated reaction rxn00336_c0 (25),
whereas nonzero fluxes (R00479, 0.002 and 0.08 mmol · gDW�1 · h�1 for control and
colistin treatment, respectively [Data Set S1I]) were obtained using E-Flux. Furthermore,
most flux upper bounds in iLP844 were set to the maximum capacity by MADE,
resulting in an overestimated growth rate (i.e., 36.4 h�1 and 42.7 h�1 for the control
and colistin treatment at 1 h, respectively), whereas previous experimental results
showed that A. baumannii usually grew at approximately 0.80 h�1 in MH medium (31).
In addition, the modeling of iLP844 employed only transcriptomics data as flux con-
straints. As biological systems regulate metabolic responses at multiple levels (48, 49),
lack of experimental validation from the metabolomic level may compromise the
prediction reliability. Having incorporated transcriptomic constraints using the E-Flux
method (17), our modeling maintained the continuous nature of gene expression
changes (Data Set S1I). Furthermore, metabolomics data from the same condition (38)
were also employed for integrative analyses in our study (Data Set S1J). Therefore, our
integrative modeling with multiomics data provides a comprehensive understanding
from both transcriptional and metabolic perspectives.

Bacterial metabolism plays a vital role in mediating the cellular responses to
treatments with antibiotics (50), such as the polymyxins (38). Individual omics ap-
proaches (e.g., transcriptomics and metabolomics) have revealed that many cellular
processes participated in the response to polymyxins, including cellular respiration,
carbon catabolism, iron homeostasis, amino acid and nucleotide biosynthesis, and redox
balance (38, 47, 51). However, major gaps exist between transcriptomics and metabolomics,
such as (i) changes in gene expression do not necessarily induce alterations of metabolic
activity and (ii) changes in metabolite intensity do not necessarily indicate the results
of transcriptional regulation. Hence, we developed iATCC19606 to bridge the gaps
between transcriptomics and metabolomics. By imposing the transcriptomic con-
straints, iATCC19606 allowed simulating reaction flux and metabolic network utilization
for untreated and colistin-treated A. baumannii, providing a global view of metabolic
responses to antibiotic killing (Fig. 4 and Data Set S1I). Integrative analysis of the
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metabolic fluxes and metabolomics further identified meaningful regulations between
fluxes and metabolites in response to colistin treatment (Fig. 5 and Data Set S1J). For
example, our simulation results showed a decreased flux via LPS biosynthesis, consis-
tent with the 1.9-fold-downregulated expression of lpxA (DJ41_250) and 3.3-fold-
decreased level of LPS inner core precursor KDO (38). Gram-negative bacterial OM
fortifies the cell against environmental stresses, and A. baumannii can develop colistin
resistance via loss of LPS (52, 53). For peptidoglycan biosynthesis, the metabolic fluxes
and metabolomics data collectively showed significant downregulation, indicating that
less peptidoglycan was synthesized under colistin treatment (Data Set S1I).

Within amino acid biosynthesis, the upregulation of amino acid N-acetyltransferase
(DJ41_3725, argA, 7.6-fold) and acetylglutamate kinase (DJ41_2686, argB, 2.0-fold)
resulted in upregulated arginine biosynthesis flux and a decreased intermediate me-
tabolite pool of N-acetyl-L-glutamate (3.5-fold) and L-argininosuccinate (3.4-fold,
Fig. 4D). The acetylglutamate synthesis function of ArgA can be complemented by
ornithine N-acetyltransferase (argJ, DJ41_1001), which recycles the acetyl group from
acetylornithine to glutamate (54). It has been found that the ArgJ-mediated arginine
biosynthesis pathway played a key role in the persistence of Staphylococcus aureus after
gentamicin treatment (55). The upregulated expression of argAB was also reported in
LPS-loss mutants of A. baumannii ATCC 19606, indicating that enhanced arginine
biosynthesis is a conserved response to colistin in A. baumannii (14). Together, A.
baumannii may upregulate arginine biosynthesis to increase cell survival during colistin
action via (i) production of ammonia which mitigates against toxic hydroxyl radicals
and (ii) generation of polyamines to attenuate the colistin-LPS electrostatic interaction
in the OM (56).

In the TCA cycle (Fig. 4C), most of the genes were upregulated after 2-mg/liter colistin
treatment at 1 h, including citrate synthase (DJ41_3568, 1.5-fold), aconitate hydratase
(DJ41_1103, 2.7-fold), 2-oxoglutarate dehydrogenase (DJ41_3573 and DJ41_3574, 1.9 and
2.5-fold, respectively), succinyl-CoA ligase (DJ41_3576 and DJ41_3577, 2.1-fold for both),
fumarate hydratase (DJ41_227, 2.6-fold), and malate dehydrogenase (DJ41_3006, 1.8-fold).
However, the fluxes and metabolites throughout the TCA cycle decreased. In contrast,
upregulated malate synthase (DJ41_669, 1.6-fold) and isocitrate lyase (DJ41_2528, 2.2-fold)
resulted in increased fluxes over glyoxylate shunt, bypassed the lower TCA cycle, and
increased flux via malate dehydrogenase (DJ41_3006, 1.8-fold). A previous study discovered
that stalled TCA cycle and enhanced glyoxylate shunt conferred Pseudomonas aeruginosa
cell tolerance to aminoglycoside antibiotics (57). Our observation indicates that A. bauman-
nii may also upregulate glyoxylate shunt in response to colistin treatment.

The metabolic changes characterized above are likely to occur in colistin-susceptible
strains under colistin treatment. For instance, 2-mg/liter polymyxin B treatment for 2 h
induced significant depletion of intermediate metabolites in the PPP and TCA and
nucleotide biosynthesis pathway in ATCC 17978 (31), similarly to that in ATCC 19606
(38). These metabolic changes could be essential for bacterial responses to polymyxin
treatment in susceptible strains. Interestingly, depletion of the intermediate metabo-
lites in the PPP and TCA also occurred in LPS-deficient, polymyxin-resistant 19606R,
compared to its paired polymyxin-susceptible ATCC 19606 (15). This may indicate that
the adaptation to metabolic changes in these pathways might contribute to polymyxin
resistance in 19606R.

Conclusions. We have constructed and validated a GSMM, iATCC19606, for type

strain A. baumannii ATCC 19606. Importantly, integrative modeling with correlative
transcriptomic and metabolomic data provided, for the first time, key mechanistic
insights into metabolic responses to colistin treatment in A. baumannii. Our metabolic
model can be used as a powerful tool for systematically assessing key genes and
metabolic pathways that contribute to bacterial responses to antibiotic treatment and
elucidation of the molecular mechanisms. Combined with antibiotic pharmacokinetics/
pharmacodynamics, iATCC19606 will be able to predict the time course of bacterial
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responses to antibiotic treatment at the network level in A. baumannii and provides an
in silico platform for developing precision antimicrobial therapy.

MATERIALS AND METHODS
Strains and media. A. baumannii ATCC 19606 was obtained from the American Type Culture Collection

and cultured on nutrient agar (NA) and in cation-adjusted Mueller-Hinton broth (CaMHB) and Luria-Bertani
(LB) medium. Tryptic soy broth containing 20% (vol/vol) glycerol was used for stock at �80°C.

Construction of a genome-scale metabolic model. The genome assemblies and annotations of A.
baumannii AYE (GenBank accession numbers CU459137 to CU459141) and ATCC 19606 (GenBank
accession numbers ACQB01000000 and JMRY00000000) were obtained from the GenBank database.
Reciprocal BLASTp was implemented to determine the orthologs between AYE and ATCC 19606, with
sequence identity of �70%, E value of �1E�5, and coverage of �70% (28). The existing model
AbyMBEL891 for AYE (23) was employed as a starting template to expedite model construction.
Specifically, for each reaction in AbyMBEL891, the associated genes were replaced with the correspond-
ing orthologs in ATCC 19606. The reactions without any orthologs in ATCC 19606 were considered AYE
specific and removed from the reaction list. Isolated metabolites were removed as well, followed by
supplementation of missing metabolites, reactions, and genes according to the genome annotation of
ATCC 19606 and biochemical databases KEGG (58) and MetaCyc (30). Extensive manual curation was
conducted, including (i) adding transport reactions and extracellular metabolites, (ii) filling pathway gaps,
and (iii) checking the mass and charge balance of each reaction. The resulting model was compiled in
Systems Biology Markup Language (59), and VANTED (60) was employed for metabolic network visual-
ization and analysis. The Memote test suite (61) was used to confirm that the constructed model met the
basic standards for consistency, formatting, and reusability. The biomass formation equation from
AbyMBEL891 was used in the present study.

Biolog assay and prediction of nutrient utilizations. ATCC 19606 was streaked out from glycerol
stock on NA and subcultured at 37°C for 20 h. Bacterial cells were swapped into a sterile capped tube
containing 16 ml IF-0 solution (Cell Biosciences, West Heidelberg, Australia) until the turbidity reached 42%
transmittance in a turbidimeter (Pacificlab, Blackburn, Australia). The cell suspension was then diluted 5 times
with IF-0 solution and dye (Cell Biosciences) to final 85% transmittance. Biolog phenotype microarrays (PMs)
1 and 2 (Cell Biosciences) were employed to test the utilization of 190 carbon sources, with two independent
biological replicates. Bacterial growth was detected after 18 and 24 h of incubation at 37°C by measuring the
optical density at 595 nm using an Infinite M200 microplate reader (Tecan, Mannedorf, Switzerland). Readings
of �1.3-fold of blank medium controls indicated the utilization of nutrients.

The constructed GSMM iATCC19606 was then employed to predict the bacterial growth on a
chemically defined medium with 190 individual carbon sources using the FBA method (62). Biomass
formation was maximized with the maximum specific carbon nutrient uptake rate set at 1 mmol ·
gDW�1 · h�1 under aerobic conditions.

max vbiomass

s.t. S · v � 0

aj � vj � bj, j � 1, 2, · · ·, n

where S represents the stoichiometric matrix with m metabolites and n reactions. Each flux vj is
constrained by the lower bound aj and upper bound bj. The calculated growth phenotypes were
compared with Biolog results to assess prediction accuracy using a commonly accepted method (63).
Specifically, a correct prediction of a utilizable or nonutilizable carbon source for growth in LB was
considered a true positive (TP) or true negative (TN), respectively, whereas an incorrect prediction of a
utilizable or nonutilizable carbon source was considered a false negative (FN) or false positive (FP). The
overall accuracy of prediction was then evaluated by accuracy � (TP � TN)/(TP � TN � FP � FN). The
significance was evaluated by Fisher’s exact test.

Gene essentiality analysis. In silico single-gene deletion was conducted using both FBA and MOMA
(34) algorithms. Minimization of metabolic adjustment (MOMA) was developed to predict the metabolic
flux redistribution in a gene knockout mutant. MOMA hypothesizes that the metabolism of the mutant
tends to approximate the wild type (34). Therefore, MOMA was employed to calculate gene essentiality
as a complementation of the FBA method. Nutrient uptake constraints were set to M9, arbitrary nutrient,
MH, and LB media (64) (see Data Set S1M in the supplemental material). Likewise, essential reactions and
metabolites were predicted by calculating the growth rate when switching off either the corresponding
reaction or consuming fluxes, respectively (65). The recently generated three-allele transposon mutant
library for A. baumannii AB5075 (35) and transposon library for ATCC 17978 (36) were employed as
references to assess the prediction accuracy. Specifically, a correct prediction of an essential or nones-
sential gene for bacterial growth in LB medium was considered a true positive (TP) or true negative (TN),
respectively, whereas an incorrect prediction of an essential or nonessential gene was considered a false
negative (FN) or false positive (FP). The overall accuracy of prediction was then evaluated by accuracy �
(TP � TN)/(TP � TN � FP � FN). The significance was evaluated by Fisher’s exact test. The two mutant
libraries were employed for validation, because to the best of our knowledge, they are the only A.
baumannii libraries providing gene essentiality information. BLASTp was performed to identify the
orthologs between AB5075, ATCC 17978, and ATCC 19606, with the criteria of sequence identity of
�70%, Expect value (E-Val) of �1E�5, and coverage of �70% (28). Totally, 453 and 398 essential genes
were identified for the two strains, respectively (35, 36); between the two, 168 common essential
orthologs were discovered.
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Prediction of metabolic responses to colistin treatment by constraining metabolic fluxes with
transcriptomics data. The RNA-Seq data (GEO accession number GSE62794) for ATCC 19606 growth in
CaMHB with the absence (control) and presence of 2 mg/liter colistin (treatment) at 1 h were employed
as flux constraints using the E-Flux algorithm (17); these transcriptomics data were used only for
modeling metabolic responses to colistin treatment. For each gene in the model, the RPKM value was
calculated using the edgeR package (66) and normalized to constrain the flux upper limits using the
E-Flux algorithm (17). The maximum uptake rates of amino acids, vitamins, and dipeptides in iATCC19606
were set to 1 mmol · gDW�1 · h�1 (67), given that in CaMHB these nutrients serve as the major carbon
sources for bacterial growth. For either the control or colistin treatment condition, the metabolic solution
space was sampled with 10,000 random points using the ll-ACHRB (loopless Artificially Centered
Hit-and-Run on a Box) algorithm, by allowing the growth rate varying within 99 to 100% of its maximum
value (68). Statistical significance of differential flux distributions was computed using the Z-score
method with FDR of �0.01 and fold change of �2 (69). FDR represents the false discovery rate calculated
from the P value using the Benjamini-Hochberg method (70). This method was used to control the false
discovery rate when conducting multiple comparisons. The metabolic fluxes with dramatic flux changes
were then referred to the metabolic pathways from KEGG and MetaCyc for further analyses.

Integrative analysis with correlative metabolomics data. Our liquid chromatography-mass spec-
trometry (LC-MS)-based untargeted metabolomics data of ATCC 19606 (38) were employed for integra-
tive analysis of metabolic responses. ATCC 19606 (108-CFU/ml inoculum) was aerobically grown in
CaMHB at 37°C, in the absence (control) and presence of 2 mg/liter colistin (treatment). Intracellular
metabolomics data from the control and treatment at 1 h (n � 4) were employed in this study. A total
of 1,535 and 1,526 unique metabolites were putatively identified for the control and treatment condi-
tions at 1 h, respectively. One-way ANOVA (analysis of variance) was used to determine differentially
abundant metabolites, with criteria of fold change of �1.5, P of �0.05, and FDR of �0.1. For each
intracellular metabolite in iATCC19606, the relative abundance change after 2-mg/liter colistin treatment
at 1 h was correlated with the calculated flux sums (i.e., turnover rates) (71), to analyze how metabolic
flux changes resulted in metabolite pool alterations under colistin treatment. For each obtained random
solution, flux sums (�) were calculated by summing up all producing fluxes (influxes) or consuming fluxes
(effluxes) at metabolite nodes (71).

�i � �
j

n

|Sijvj|, i � 1, 2, · · ·, m

where �i represents the ith metabolite in iATCC19606. Differentially altered flux sums were identified
using the above Z-score methods with FDR of �0.01 (69). Metabolites with significantly changed
abundance and altered flux sums were selected for downstream analysis. Specifically, the reduced
metabolite pool could be a consequence of decreased production or increased consumption of that
metabolite, whereas the increased metabolite pool could be caused by increased production or
decreased consumption of that metabolite.
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