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Abstract

The COVID-19 pandemic led to widespread closure of universities. Many universities turned

to e-learning to provide educational continuity, but they now face the challenge of how to

reopen safely and resume in-class learning. This is difficult to achieve without methods for

measuring the impact of school policies on student physical interactions. Here, we show

that selectively deploying e-learning for larger classes is highly effective at decreasing cam-

pus-wide opportunities for student-to-student contact, while allowing most in-class learning

to continue uninterrupted. We conducted a natural experiment at a large university that

implemented a series of e-learning interventions during the COVID-19 outbreak. The num-

bers and locations of 24,000 students on campus were measured over a 17-week period by

analysing >24 million student connections to the university Wi-Fi network. We show that

daily population size can be manipulated by e-learning in a targeted manner according to

class size characteristics. Student mixing showed accelerated growth with population size

according to a power law distribution. Therefore, a small e-learning dependent decrease in

population size resulted in a large reduction in student clustering behaviour. Our results sug-

gest that converting a small number of classes to e-learning can decrease potential for dis-

ease transmission while minimising disruption to university operations. Universities should

consider targeted e-learning a viable strategy for providing educational continuity during

periods of low community disease transmission.

Introduction

The coronavirus disease 2019 (COVID-19) has had enormous socioeconomic impact [1].

Over the course of 14 months (as of March 17, 2021), more than 120 million COVID-19 cases

were confirmed, resulting in 2.67 million deaths across 192 countries/regions [2]. The severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 is spread by

virus-containing droplets released when an infected person speaks, sneezes, or coughs [3], or
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by aerosol particles produced by breathing or talking [4]. The spread of infection can be slowed

by public health measures that reduce person-to-person contact. Nonpharmaceutical interven-

tions that include restricted travel, staying at home, and physical distancing can delay and flat-

ten the peak of COVID-19 cases to avoid the overwhelming of medical services [5–7].

Nonpharmaceutical interventions therefore play a critical role in controlling the spread of dis-

ease until effective vaccines or drugs are widely available [8].

School closure is a key strategy for controlling the spread of infectious diseases [8–10].

Many epidemiological studies have shown that school closure can reduce the transmission of

seasonal and pandemic influenza among school-aged children [11]. This effect is sometimes

reversed when schools re-open, suggesting a causal role of school closure in reducing the inci-

dence of influenza. The extent to which school closure can mitigate the spread of COVID-19

and other coronaviruses is unclear [12]. Empirical and modelling studies show that closing

schools and universities can suppress COVID-19 transmission when combined with other

nonpharmaceutical interventions [6, 7, 13]. In the spring of 2020, closure of schools in the

United States was associated with a decline in the incidence of COVID-19 and mortality [14].

Conversely, reopening of colleges and universities in the fall semester was associated with a

surge in confirmed SARS-CoV-2 infections [15, 16]. These studies suggest that closing schools

can potentially reduce COVID-19 transmission but the effects are difficult to isolate because

other nonpharmaceutical interventions were enacted concurrently. Protracted closure of

schools and universities is a controversial policy because of high social and economic costs.

The COVID-19 pandemic resulted in an unprecedented number of school and university

closures, affecting over 1.2 billion learners worldwide [17]. Consequently, a massive shift from

classroom learning to distance learning occurred [18]. This created great strain on educational

institutions which function not only as places of learning, but also as major employers and

drivers of local economies. It is therefore important to consider less disruptive interventions to

ensure educational continuity [19]. Many higher education providers transitioned to a hybrid

learning approach comprising a combination of face-to-face and online learning methods [15,

20]. However, there is a major knowledge gap in how student mixing patterns on campus are

affected by school policies enacted during the disease outbreak.

Here, we conducted a natural experiment to test the impact of implementing e-learning

measures on student population dynamics during the COVID-19 outbreak. The research was

conducted at the National University of Singapore (NUS), which is the largest university by

student enrolment in Singapore. The short-term goal of our research was to help NUS leaders

make evidence-based decisions on how to resume in-class learning during the pandemic. The

broader scientific goal was to determine the underlying mathematical relationships between

students’ daily population size and mixing patterns on campus, which has implications for dis-

ease transmission risk. In line with the national public health response during the COVID-19

outbreak, NUS adopted nonpharmaceutical interventions that aimed to reduce risk of SARS--

CoV-2 transmission (S1 Table). Normal in-class learning took place during the first 4 weeks

of the semester, coinciding with the first imported case of COVID-19 (Fig 1A). Shortly after-

ward the first local transmission of COVID-19 was identified. This escalated the nationwide

pandemic response and prompted NUS to implement e-learning over the next several weeks

for all classes with>50 students. As the number of COVID-19 cases continued to climb in Sin-

gapore and globally as a pandemic, NUS implemented e-learning for all classes with>25 stu-

dents. One week later, nationwide ‘enhanced circuit-breaker’ measures were announced,

which led to the suspension of all in-class learning.

The multi-phased transition to e-learning during the COVID-19 outbreak provided a

unique opportunity to investigate student mixing patterns on campus. Previous studies have

shown that social interactions and their products show super-linear growth with population
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size [21–25]. Hence, interventions that reduce the number of students by a small amount

might decrease substantially the potential for person-to-person contact and disease transmis-

sion. Here, we tested the hypothesis that student population size on campus can be manipu-

lated by e-learning in a targeted manner to produce a large, non-linear drop in opportunities

for student mixing. This hypothesis was tested by analysing >24 million student connections

to the NUS Wi-Fi network, comprising several thousand Wi-Fi access points across campus.

These Wi-Fi connection data were used to investigate students’ spatiotemporal mixing pat-

terns (i.e., connected to the same Wi-Fi access point at the same time) before and during the

disease outbreak.

Fig 1. E-learning interventions decreased the number of students detected on campus during the COVID-19 outbreak. (A) The timeline of COVID-19

cases and events in Singapore is shown for the second semester of the 2019/20 school year at the National University of Singapore (NUS). Each e-learning

intervention was associated with a decrease in the daily number of students who connected to the NUS Wi-Fi network, assessed (B) campus-wide and (C)

for different types of locations on campus. (D) The daily percentage of students detected by Wi-Fi was about two-fold greater in students with at least one

class conducted by in-class learning, as compared with students with e-learning only or no scheduled class. In panels C and D, open circles indicate non-

class days. COVID-19, Coronavirus Disease 2019; WHO, World Health Organisation; PHEIC, Public Health Emergency of International Concern.

https://doi.org/10.1371/journal.pone.0249839.g001
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Materials and methods

Student data and ethics statement

Our study was performed using university archived data managed by the NUS Institute for

Applied Learning Sciences and Educational Technology (ALSET). The ALSET Data Lake

stores and links deidentified student data across different university units for the purpose of

conducting educational analytics research [26]. Data tables in the ALSET Data Lake are anon-

ymised by student tokens which map identifiable data to a hash string using a one-way func-

tion that does not allow recovery of the original data. The same student-specific tokens are

represented across tables, allowing different types of data to be combined without knowing

students’ identities. The data types used in our study included basic demographic information

(age, sex, ethnicity, citizenship, year of matriculation), class enrolment information, and Wi-Fi

connection metadata. Upon enrolling in the university, students provided written informed

consent to the NUS Student Data Protection Policy, which explains that their personal data

may be used for research including evaluating university policies. In accordance with NUS

guidelines for educational research, students were not required to consent to the specific set of

analyses in our study because the research involved retrospective analyses of de-identified

data. The research was approved by the NUS Learning Analytics Committee on Ethics

(LACE), which is a Departmental Ethics Review Committee (DERC) that oversees educational

research that qualifies for exemption from review by the NUS Institutional Review Board

(IRB). Analyses were performed and stored on the ALSET Data Lake data server in accordance

with NUS data management policies for students’ personal data.

Timeline of COVID-19 cases and university policies

The timeline of COVID-19 cases in Singapore was determined using daily situation reports

published online by the Ministry of Health (MOH) [27, 28]. Nationwide alerts and policies

regarding the public health response were taken from press releases available on the MOH

website [29]. University policies enacted during the COVID-19 outbreak were compiled from

circulars distributed to staff and students, and they are archived by the NUS Office of Safety,

Health, and Environment [30].

Student timetables and class size characteristics

Student data were analysed in the second semester of the 2018/19 and 2019/20 school years.

This allowed us to compare student behaviour before and during the COVID-19 outbreak

over an equivalent period (from January to May). Students’ class schedules and class sizes were

derived from student enrolment data provided by the NUS Registrar’s Office. At NUS, stu-

dents enrol in course modules, many of which are further divided into different lectures, class

groups, tutorials, or laboratory sessions. We analysed data in students taking at least one mod-

ule that required in-class learning (23,668 and 23,993 students in 2018/19 and 2019/20 school

years). Data were excluded from students taking only fieldwork or project-based modules with

no in-class component (2,722 and 3,240 students). Class size was defined as the number of stu-

dents who were scheduled to meet in the same place for a given course module. The timing

and location of classes were retrieved using the NUSMods application programming interface

(https://api.nusmods.com/v2/). Timetable data were sorted for each school day of the semester

to identify students with scheduled in-class learning. These data were also used to determine

which classes were converted to e-learning based on class size. This allowed us to calculate the

daily number of students with in-class learning, e-learning only, or no class.
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Wi-Fi connection data

Connections to the NUS Wi-Fi network are continually monitored by NUS Information Tech-

nology to evaluate and improve services provided to the university. The campus-wide wireless

network comprises several thousand Wi-Fi access points and deploys different types of routers

(Cisco Aironet 1142, 2702I and 2802I) and wireless protocols (802.11n 2.4 GHz, 802.11n 5

GHz, and 802.11ac 5 GHz). Each time that a person’s Wi-Fi enabled device associates with the

NUS wireless network the transmission data are logged. Students’ Wi-Fi connection metadata

were added daily to the ALSET Data Lake by a data pipeline managed by NUS Information

Technology. Each data point included the tokenised student identity, the anonymised media

access control (MAC) address used to identify the Wi-Fi enabled device of the student (e.g.,

smartphone, tablet, or laptop), the name and location descriptor of the Wi-Fi access point, and

the start and end time of each Wi-Fi connection. The name and location descriptor usually

carried information about the room or building in which the Wi-Fi access point was located.

By cross-referencing these data with the known timing and location of classes, we categorised

Wi-Fi access points into teaching facilities (lecture theatres or classrooms) and non-teaching

facilities.

Analyses of student mixing patterns

The Wi-Fi dataset comprised more than 24 million student connections to the wireless net-

work over 2 semesters. Students’ Wi-Fi connection data were binned in 15-min intervals to

reduce the size of the data, resulting in 11,328 epochs that spanned 118 days in each semester.

In instances where students were connected to more than one Wi-Fi access point in the same

epoch, they were assigned to the access point in which their Wi-Fi enabled device received the

greatest volume of data (i.e., based on megabytes of data received). The resulting table of Wi-Fi

connections and access points was used to derive time and location information for each stu-

dent over the semester. This enabled us to count the daily number of students who connected

to the Wi-Fi network, and the number of students who were connected to the same Wi-Fi

access point within a 15-min epoch. The latter was used to examine student clustering behav-

iour. We defined a cluster as>25 students connected to the same Wi-Fi access point because

of the high potential for spatiotemporal proximity and student interactions, and it aligned

with the university’s e-learning policy prior to suspension of in-class learning (i.e., e-learning

for class size>25). The duration of student clustering at each Wi-Fi access point was calculated

as the sum of 15-min epochs with>25 students. Data were analysed using R statistical software

(version 3.6.3) [31].

Geospatial clustering was visualised by plotting students’ data on a map of the NUS campus.

The researchers did not have access to the geospatial coordinates for Wi-Fi access points.

Therefore, general location information provided in the Wi-Fi metadata (e.g., name of the

building or room) was used to determine manually the building locations. Using sources that

included the official NUS campus map and venues listed on class timetables, we confirmed the

geospatial coordinates for 80% of Wi-Fi access points. Georeferencing was performed by map-

ping Wi-Fi access points to vector point shapefiles representing individual buildings. The

ESRI shapefiles required for mapping were obtained from the OpenStreetMap geodatabase for

the region of Malaysia, Singapore, and Brunei (map tiles in the OpenStreetMap are licensed

under CC BY-SA www.openstreetmap.org/copyright, © OpenStreetMap contributor). We

used QGIS software (version 3.12.1) to edit the vector points and to insert names of Wi-Fi

access points to the attribute table. Student clustering within each building was determined by

pooling the duration of clustering across all Wi-Fi access points within the building. Subse-

quently, we merged the clustering duration data with the ESRI shapefiles using the “sf” package
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(version 0.9–0) [32] in the R software environment. The QGIS platform was then used to visu-

alise student clustering for 124 buildings across the NUS campus. Buildings with incomplete

Wi-Fi data and student hostels were excluded from the analysis.

The degree of Wi-Fi connection overlap for each student was determined by counting the

number of unique students with whom he/she shared a Wi-Fi connection. Spatiotemporal

overlap was determined for 4 representative weeks of the semester (weeks 4, 5, 11, 12). These

time intervals captured the transition from normal in-class learning to e-learning for classes

with>50 students (week 4 to 5), and the transition from e-learning for classes with>25 stu-

dents to e-learning for all classes (week 11 to 12). The decision to focus on these temporal win-

dows was driven by practical reasons related to computing resources required to analyse the

data. Effects of e-learning on student network structure were visualised using the “igraph”

package [33] (version 1.2.5) with the force-directed layout algorithm (layout_with_fr) in the R

software environment. The degree of Wi-Fi connection overlap was plotted for 100 randomly

selected participants to help illustrate changes in student network structure associated with

each e-learning transition. We performed 20 iterations to confirm that results for the first

group of 100 randomly selected participants were representative.

Student clustering behaviour on school days was modelled as a function of daily student

population size using a power law scaling equation: y = aNβ. In this equation, y is the measure of

student mixing (e.g., number of Wi-Fi access points with a student cluster, duration of student

clustering, or students’ degree of Wi-Fi connection overlap with other students); a is a constant;

N is the daily population size estimated by the number of students who connected to the NUS

Wi-Fi network; and the exponent β reflects the underlying dynamics (e.g., hierarchical structure,

social networks, and infrastructure) of the university ecosystem. We considered other mathe-

matical functions, including exponential and hyperbolic equations, but they did not fit as well to

the data. Variables that show power law scaling are linearly related when each variable is loga-

rithmically transformed. We therefore took the natural logarithm of each pair of variables (i.e.,

the student mixing variable and daily population size) and performed linear regression to con-

firm the expected linear relationship. The coefficient of determination (R2 value) was used to

evaluate goodness-of-fit for the regression model. Modelling and regression analyses were per-

formed using Sigmaplot software (Version 14; Systat Software, Inc) and R statistical software.

Results

During the school semester in which the COVID-19 pandemic occurred, there were about

24,000 undergraduate students who were enrolled in course modules with in-class learning

(S2 Table). In the early part of the semester when normal in-class learning took place, there

were about 16,500 students per school day who connected to the NUS Wi-Fi network (Fig

1B). The only notable exception was the eve of the Chinese New Year holiday, in which the

number of students detected by Wi-Fi dropped by about half. After the transition to e-learning

for classes with >50 students, there was a 30% decrease in the daily number of students

detected on campus. Wi-Fi connections decreased sharply in lecture theatres and moderately

in classrooms and non-teaching facilities (Fig 1C). The number of students detected by Wi-Fi

dropped by an additional 25% after e-learning was implemented for classes with>25 students.

Once e-learning was implemented for all classes and exams, the daily population size fell

below 1,800 students until the end of the semester. These findings contrast with results from

the previous academic year in which the daily number of students detected by Wi-Fi on school

days was stable across the semester (S1 Fig).

Effects of e-learning on the number of students on campus were determined by students’

class sizes and schedules. The transition to e-learning for classes with >50 or >25 students
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impacted a small proportion of total classes (9% and 19%, respectively) but these classes had

high student enrolment (S2 Fig). Therefore, most students had at least one class that was con-

verted to e-learning. On a typical school day, nearly 18,000 students had a scheduled class

compared with 6,000 students with no class (S2 Fig). Due to heterogeneity in students’ timeta-

bles, the transition to e-learning resulted in a subset of students each day with classes delivered

only by e-learning. This subset corresponded to about 5,000 and 9,000 students per day during

periods when e-learning was implemented for classes with >50 students and >25 students,

respectively. Students with e-learning only were detected on campus at about the same rate as

students who had no class (about 35–40%) (Fig 1D). In contrast, students with in-class learn-

ing were detected at nearly twice the rate (about 60–80%) as students with e-learning only or

no class. Linear regression analysis showed that 91% of the variance in the daily number of stu-

dents detected on campus was explained by the number of students with in-class learning (S3

Fig).

Next, we evaluated the impact of e-learning on student clustering behaviour, defined as

>25 students connected to the same Wi-Fi access point. We surveyed several thousand Wi-Fi

access points to determine the number of sites with student clustering and the duration of clus-

tering at each of these sites (S4 Fig). There were several hundred Wi-Fi access points where

student clustering occurred, with 20% of these sites accounting for about 80% of the total dura-

tion of clustering behaviour over the semester (S5 Fig). The daily rhythm in number of stu-

dents on campus drove the pattern of clustering behaviour (Fig 2A). In the early part of the

semester, student clustering tracked the timing of lectures, whereas this pattern was flattened

after e-learning was implemented (Fig 2B).

During normal in-class learning, there were about 150 Wi-Fi access points per day where a

student cluster was detected (Fig 2C), contributing to about 300 hours of clustering behaviour

(Fig 2D). The transition to e-learning for classes with>50 students was associated with a 70%

decrease in the number of sites with a student cluster, as well as the duration of clustering at

these sites. These findings differ from the prior academic year, in which student clustering

behaviour on school days changed little over the semester (Fig 2C and 2D). The transition to

e-learning for classes with>25 students effectively eliminated student clustering. These find-

ings were further visualised by plotting the data on a university map to identify hot spots of

clustering activity (Fig 2E). After e-learning was implemented, there was a marked reduction

in student clustering in buildings where students usually converged for classes and social

activities.

Each e-learning transition was associated with a decrease in the degree of overlap for indi-

vidual students (i.e., the number of unique pairs formed by a student with others) who con-

nected to the Wi-Fi network (Fig 3A). During normal in-class learning, students showed

spatiotemporal overlap with about 50 of their peers per day on average. The degree of student

overlap dropped by about 30% after the transition to e-learning for classes with>50 students,

and by an additional 50% after e-learning was implemented for classes with>25 students.

After all classes were delivered by e-learning, students detected on campus overlapped with

only about 5 of their peers per day. Weakening of the spatiotemporal student network with

each e-learning transition was further visualized by network plots, demonstrating a decrease in

both clustering and the degree of Wi-Fi connection overlap between students as more strin-

gent e-learning policies were implemented (Fig 3B).

Next, we investigated scaling properties of student mixing patterns with the number of stu-

dents detected on campus. The number of Wi-Fi access points with student clustering

increased with student population size according to a power law distribution (Fig 4A). The

relationship was super-linear whereby growth in the number of student clusters accelerated

with larger numbers of students on campus. Similar results were observed for the daily
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Fig 2. E-learning interventions reduced student clustering during the COVID-19 outbreak. Each e-learning intervention was associated with (A) a

decrease in the daily rhythm in students detected on campus, and (B) a flattening in the daily time course of locations with>25 students connected to the

same Wi-Fi access point. E-learning measures during the disease outbreak (2019/20 school year) were effective at decreasing (C) the daily number of Wi-Fi

locations with a student cluster, and (D) the duration of clustering at these sites, as compared with the prior academic year with normal in-class learning

(2018/19 school year). (E) The daily duration of student clustering in campus buildings decreased as more stringent e-learning policies were implemented.

In panels A and B, the daily mean ± 95% CI is shown for different parts of the semester. In panels C and D, open circles indicate non-class days. In panel E,

buildings are colour-coded by the daily average of clustering duration. Buildings with missing or incomplete Wi-Fi data are coloured grey.

https://doi.org/10.1371/journal.pone.0249839.g002
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duration of student clustering (Fig 4B). These findings were reproducible using data from the

prior academic year, demonstrating that scaling properties of student clustering behaviour

with population size were generalisable and not related to the COVID-19 pandemic or imple-

mentation of e-learning (S6 Fig). Power law scaling of student clustering behaviour was also

Fig 3. E-learning interventions reduced the number of pairs of students with spatiotemporal overlap during the

COVID-19 outbreak. (A) Each e-learning intervention was associated with a decrease in the degree of Wi-Fi

connection overlap per student. (B) Network plots for 100 randomly selected students show that more stringent e-

learning policies resulted in a sparser network structure with smaller clusters of students. In panel A, the mean ± 95%

CI is shown. In panel B, the size of each circle relates to the daily duration of time connected to Wi-Fi. The thickness of

the orange lines corresponds to the duration of spatiotemporal overlap between pairs of students. Data in the network

plots correspond to Mondays for each of the representative weeks with different e-learning policies.

https://doi.org/10.1371/journal.pone.0249839.g003
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observed for different types of locations on campus including teaching and non-teaching facil-

ities (S7 Fig). Moreover, power law scaling was observed when alternative definitions of cluster

size were tested, ranging from >5 to>50 students detected at the same Wi-Fi access point (S8

Fig). These analyses showed that larger clusters of students were more sensitive to changes in

population size (i.e., the exponent of the power law function was greater), and that e-learning

resulted in a marked decrease in the frequency and duration of clustering behaviour for all

cluster sizes. In line with these observations, students’ degree of Wi-Fi connection overlap

with their peers also exhibited super-linear scaling with daily population size (Fig 4C).

Discussion

Our study is the first to characterise university-wide student mixing patterns during a pan-

demic. We exploited a natural experiment to test the impact of a phased transition to e-learn-

ing on population dynamics at a large university. In doing so, we generated key findings that

can be used to make evidence-based decisions on providing educational continuity during a

pandemic. Taking into account students’ class schedules and timetables, we show that daily

population size can be manipulated in a predictable manner by implementing e-learning for

all classes that exceed a given class size. Critically, a small decrease in student population size

resulted in a large reduction in student clustering behaviour according to a power law func-

tion. This effect was observed by converting a relatively small number of large classes to e-

learning, while leaving the vast majority of classes unperturbed. The scaling properties of stu-

dent mixing patterns suggest that a targeted reduction in student clustering behaviour can be

achieved by using e-learning to control the number of students on campus. These findings

have important implications for strategies that seek to minimise student-to-student contact

during a disease outbreak.

The present study was motivated by the need to provide university decision-makers with

feedback on the impact of their e-learning policies on student population dynamics during the

pandemic. The analyses were performed and shared with university leaders during the period

of time when they were planning how to re-open the university in the following semester (i.e.,

Fig 4. Student clustering showed power law scaling with the number of students on campus. Student mixing

showed accelerated growth with daily population size, including (A) the number of Wi-Fi locations with a student

cluster, (B) the duration of student clustering, and (C) the degree of spatiotemporal overlap of students with their

peers. Data are shown for the second semester of the 2019/20 school year during the COVID-19 outbreak. Each dataset

was fitted with a power law function, with β representing the scaling exponent. Insets show results for linear regression

after taking the natural logarithm of each variable. Circle colours correspond to different parts of the semester with

normal in-class learning (green), e-learning for classes with>50 students (red), e-learning for classes with>25

students (blue), and e-learning for all classes (orange). In panels A and B, open circles indicate non-class days.

https://doi.org/10.1371/journal.pone.0249839.g004
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August, 2020). Taking into consideration student data collected during the pandemic, as well

as the improving COVID-19 situation in Singapore, NUS re-opened in the Fall semester with

mandatory e-learning for all classes with>50 students. A university-wide contact tracing plat-

form was also implemented based on student/staff connections to the Wi-Fi network. These

courses of action confirm that Wi-Fi connection data can be used to track student behaviour

and guide a university’s pandemic response. Notably, no known cases of COVID-19 transmis-

sion occurred on the NUS campus. While this precluded analyses on the impact of e-learning

policies on disease transmission rates, our findings demonstrate that opportunities for student

mixing were markedly reduced.

Our study took advantage of the university’s existing Wi-Fi network infrastructure to mea-

sure campus-wide spatiotemporal mixing of students. At its core, this method requires count-

ing of students connected to different Wi-Fi access points. Students are only detected if they

have a Wi-Fi enabled device that is actively scanning for a Wi-Fi access point. The location

where a student is connected also depends on the proximity and range of the nearest Wi-Fi

access point. Therefore, it was not possible in our study to estimate the physical distance

between students detected at the same Wi-Fi access point. Despite these limitations, prior

studies have shown that Wi-Fi connections are as accurate as dedicated physical sensors (e.g.,

infrared beam-break or thermal sensors) for estimating student occupancy of university

rooms and buildings [34, 35]. The daily pattern of student Wi-Fi connections also conforms to

expectations for different sites on campus including teaching spaces, libraries, food courts, and

residential buildings [34, 36–38], demonstrating that university Wi-Fi networks can be used to

monitor students’ use of university resources.

In the present study, Wi-Fi connection data were collected passively without the need for

students’ active participation. This enabled us to analyse data across all undergraduate students

who connected to the university’s Wi-Fi network (i.e. in 99.5% of students enrolled in classes).

There are other approaches for measuring student interactions including Bluetooth proximity

detection and direct observation, which can provide more detailed information on student

social networks. However, it was not possible to implement those approaches in our study

given the pandemic response timeline and practical considerations. Another limitation of our

study is that we did not investigate student mixing with university staff or visitors because we

only had Wi-Fi connection data for students. In future work, it will be important to evaluate

the scaling properties of clustering behaviour while considering all people on campus.

The power law scaling we observed for student mixing behaviour with population size is

consistent with prior work demonstrating accelerated growth of human interactions with city

population size [21–25]. Epidemiological models indicate that these scaling relationships drive

super-linear growth of disease transmission rates as cities get bigger [22, 24, 25]. Like cities,

universities are complex systems composed of different infrastructural and social elements

whose hierarchical structures give rise to scaling laws [21, 39]. However, we found that the

growth rates of student mixing patterns on campus (determined by β, the exponent of the

power law scaling function) were greater compared with studies on scaling of human interac-

tions with city size. This may be related to differences in student network dynamics and uni-

versity infrastructural components compared with cities in which they reside. Earlier work

found that that β ranged from 1.05 to 1.20 for social connectivity patterns derived from mobile

phone call records and internet interactions [24, 25]. In those studies, degrees of connectivity

were calculated based on direct communication between users. In contrast, students in our

study were not necessarily in close proximity when connected to the same Wi-Fi access point.

This may have led to an overestimation in the number of student interactions with increasing

population size, resulting in a higher scaling exponent for degrees of Wi-Fi connection overlap

(β = 1.7) compared with previous studies of communication networks. Notably, the scaling
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exponents for student clustering behaviour were even higher (range, β = 1.3 to 5.7), demon-

strating a marked acceleration in the number of clusters with increasing population size. Addi-

tional studies are needed to understand the factors giving rise to these scaling relationships,

and whether they are generalizable to other universities.

During the COVID-19 pandemic, many universities adopted a hybrid learning model in

which students took a combination of in-person and online classes [15]. Additional research is

needed to determine whether this approach was effective in mitigating the spread of COVID-

19. Likewise, the relative impact of school closures on incidence of COVID-19 is uncertain

[14]. We found, however, that converting a small number of classes to e-learning sharply

reduced student mixing patterns across the entire university campus. This would be expected

to decrease the potential for disease transmission. Network-based simulation models show

that infectious diseases spread from person to person within a community through the social

contact network [40]. These networks can be controlled by targeted physical distancing strate-

gies. The present study identifies e-learning as a potential strategy for controlling student con-

tacts within the campus community and reducing disease transmission.

Conclusions

In conclusion, a targeted decrease in student mixing behaviour during a disease outbreak can

be achieved by implementing a partial transition to e-learning. Based on the success of this

approach at NUS in providing educational continuity during the pandemic, we recommend

that e-learning and monitoring of students’ mixing patterns (e.g., using Wi-Fi connection

data) be incorporated into each university’s pandemic preparedness plan. First, universities

should evaluate their daily class size distribution to determine the impact of a given e-learning

policy on the number of students with in-class learning. This information makes it possible to

achieve a targeted reduction in student population size because the number of students on

campus is dependent on the proportion of students with in-class learning. Second, universities

should develop the capability to count the number of students on campus because population

size is a main driver of student clustering behaviour and mixing patterns. We showed that this

can be achieved using existing Wi-Fi network infrastructure, and the data can be used to derive

scaling properties of student mixing with population size. Third, universities should consider

how to implement e-learning in view of the local and nationwide health response to a disease

outbreak. In the present study, a partial transition to e-learning took place near the start of the

pandemic when community spread was low. This approach was implemented a second time

during recovery to normal school operations. A full transition to e-learning may be necessary

during periods of high community disease transmission, especially if government mandated

stay-at-home orders are in place. Taken together, our study establishes a roadmap that univer-

sities can follow for making evidence-based decisions on students’ learning and safety during

the COVID-19 pandemic and future disease outbreaks.

Supporting information

S1 Fig. Students detected on campus during normal university operations. Data are shown

for the second semester of the 2018/19 school year at the National University of Singapore

(NUS), assessed one year before the COVID-19 outbreak. The number of students per day

who connected to the NUS Wi-Fi network is shown for (A) the entire campus and (B) differ-

ent types of locations on campus. (C) The daily percentage of students detected by Wi-Fi was

about two-fold greater in students with in-class learning versus no scheduled class. In panels B

and C, open circles indicate non-class days.

(TIF)
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S2 Fig. Class size characteristics at the National University of Singapore (NUS). (A) The

distribution of class sizes is shown for the second semester of the 2019/20 school year in which

the COVID-19 outbreak occurred. Class sizes were categorised as small (green;�25 students),

medium (blue; >25 to�50 students), or large (red; >50 students). (B) The combined student

enrolment in medium and large classes was greater than enrolment in small classes. (C) The

cumulative distribution plot shows the number of students whose smallest class of the day

exceeded a given class size threshold. The black trace with shaded grey lines shows the daily

mean and range. The red dropline shows that the transition to e-learning for classes with>50

students resulted in about 5,000 students per day who had classes delivered only by e-learning.

The blue dropline shows that the transition to e-learning for classes with>25 students resulted

in about 9,000 students per day who had classes delivered only by e-learning. When all classes

were shifted to e-learning there were about 18,000 students per day taking their classes online.

(TIF)

S3 Fig. The daily number of students detected on campus was predicted by the number of

students with in-class learning. Data are shown for the second semester of the 2019/20 school

year at the National University of Singapore (NUS) during the COVID-19 outbreak. The num-

ber of students per day who connected to the NUS Wi-Fi network is plotted against the daily

number of students who had at least one class session that took place on campus. Circle col-

ours correspond to different parts of the semester with normal in-class learning (green), e-

learning for classes with>50 students (red), e-learning for classes with>25 students (blue),

and e-learning for all classes (orange). The solid black trace shows the best-fit linear regression

model, and the dashed black trace is the unity line.

(TIF)

S4 Fig. Campus-wide detection of students at different Wi-Fi access points at the National

University of Singapore (NUS). The daily peak in the number of students who connected to

each Wi-Fi access point is shown for (A) the second semester of the 2018/19 school year, and

(B) the second semester of the 2019/20 school year in which the COVID-19 outbreak

occurred. Each peak value corresponds to largest number of students per day detected at a

given Wi-Fi access point over a 15-min period. Each row in the heat map represents a different

Wi-Fi access point with green and magenta colours indicating the number of students who

were detected.

(TIF)

S5 Fig. Distribution of student clustering across Wi-Fi access points at the National Uni-

versity of Singapore (NUS). The cumulative duration of student clustering (>25 students

connected to the same Wi-Fi access point) is shown for (A) the second semester of the 2018/19

school year, and (B) the second semester of the 2019/20 school year in which the COVID-19

outbreak occurred. Data are plotted for Wi-Fi access points with at least one student cluster

detected during the semester (785 out of 6,573 locations in 2018/19; 564 out of 6,313 locations

in 2019/20). Wi-Fi access points in each plot are ordered from left to right by the cumulative

duration of student clustering over the entire semester.

(TIF)

S6 Fig. Student clustering showed power law scaling with the number of students on cam-

pus. Students’ Wi-Fi connection data were analysed for the second semester of the 2018/19

school year and compared with the second semester of the 2019/20 school year in which the

COVID-19 outbreak occurred. In both semesters, student clustering behaviour showed accel-

erated growth with increasing number of students detected on campus, including (A) the
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number of Wi-Fi locations with a student cluster (>25 students connected to the same Wi-Fi

access point), and (B) the duration of student clustering at these locations. Each dataset was fit-

ted with a power law function, with β representing the scaling exponent. Insets show results

for linear regression after taking the natural logarithm of each variable for the 2018/19 school

year. Filled circles show school days and open circles indicate non-class days.

(TIF)

S7 Fig. Student clustering at different campus locations showed power law scaling with the

number of students detected on campus. Data are shown for the second semester of the

2019/20 school year at the National University of Singapore (NUS) during the COVID-19 out-

break. In both (A) teaching facilities and (B) non-teaching facilities, the number of Wi-Fi loca-

tions with>25 students (left panels) and the duration of clustering behaviour (right panels)

showed accelerated growth with increasing number of students detected on campus. Each

dataset was fitted with a power law function, with β representing the scaling exponent. Insets

show results for linear regression after taking the natural logarithm of each variable. Circle col-

ours correspond to different parts of the semester with normal in-class learning (green), e-

learning for classes with>50 students (red), e-learning for classes with>25 students (blue),

and e-learning for all classes (orange). Open circles indicate non-class days.

(TIF)

S8 Fig. Power law scaling of different student cluster sizes with number of students

detected on campus. Data are shown for the second semester of the 2019/20 school year at the

National University of Singapore (NUS) during the COVID-19 outbreak. Different definitions

of a student cluster were tested ranging from >5 to>50 students detected at the same Wi-Fi

access point. For all cluster sizes, student clustering behaviour showed accelerated growth with

increasing number of students detected on campus, including (A) the number of Wi-Fi loca-

tions with a student cluster, and (B) the duration of student clustering at these locations. Each

dataset was fitted with a power law function, with β representing the scaling exponent. Insets

show results for linear regression after taking the natural logarithm of each variable. Circle col-

ours correspond to different parts of the semester with normal in-class learning (green), e-

learning for classes with>50 students (red), e-learning for classes with>25 students (blue),

and e-learning for all classes (orange). Open circles indicate non-class days.

(TIF)

S1 Table. University policies and advisories during the COVID-19 outbreak.

(DOCX)

S2 Table. Student characteristics and general information.

(DOCX)
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