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SUMMARY

Epilepsy is one of the most common serious neurologic conditions. It is characterized
by the tendency to have recurrent seizures, which arise against a backdrop of appar-
ently normal brain activity. At present, clinical diagnosis relies on the following: (1)
case history, which can be unreliable; (2) observation of transient abnormal activity
during electroencephalography (EEG), which may not be present during clinical evalu-
ation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an
attempt to observe EEG abnormalities, which is costly. Herein, we describe the discov-
ery and validation of an epilepsy biomarker based on computational analysis of a short
segment of resting-state (interictal) EEG. Our method utilizes a computer model of
dynamic networks, where the network is inferred from the extent of synchrony
between EEG channels (functional networks) and the normalized power spectrum of
the clinical data. We optimize model parameters using a leave-one-out classification
on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38
normal controls. Applying this scheme to all 68 subjects we find 100% specificity at
56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker
could readily provide additional support to the diagnostic process.
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A Computational Biomarker of IGE

At present, a confirmed diagnosis of epilepsy is made
through a case history and a positive electroencephalogra-
phy (EEG), confirming the presence of epileptiform dis-
charges. However, a positive EEG occurs at best in only
60% of cases, resulting in diagnostic uncertainty for many
people,' with significant associated costs.” These costs pre-
dominantly result from additional longer-term EEG moni-
toring, repeated hospital admissions, as well as unnecessary
prescription of antiepileptic drugs (AEDs).

Idiopathic generalized epilepsy (IGE) is one of the main
classes of epilepsy. In recent years, studies comparing
cohorts of people with IGE and cohorts of healthy controls
have shown statistically significant alterations at the group
level when examining resting-state features of the EEG
using power spectrum,’ functional networks,* and a model-
driven analysis of functional networks.’ However, substan-
tial overlap of these markers between groups may render the
measurement unsuitable as a diagnostic test or biomarker®
for any one individual. Our aim therefore is to assess the
performance of each of these methods as a classifier that has
three outcomes for each individual: unequivocally IGE,
unequivocally normal, or uncertain. Such a classifier could
be used as a screening test in a nonspecialist primary care
setting, as well as a diagnostic validation test in a specialist
epilepsy setting. This would focus further medical investi-
gation and resources on a smaller subgroup, producing effi-
ciency gains and cost savings.

METHODS

We studied data from 38 healthy controls and 30 people
with IGE between the ages of 16 and 59 years. The individu-
als with IGE were drug naive and recruited through clinics
at St Thomas’s Hospital. A diagnosis of epilepsy was con-
firmed in each case by an experienced epilepsy specialist
through observation of typical generalized spike-wave
(GSW) activity on EEG either spontaneously or following
hyperventilation or photic stimulation. For 10 of these peo-
ple, the diagnosis was confirmed following an initial routine
EEG. For the remaining 20, diagnosis was confirmed fol-
lowing sleep-deprived or longer-term EEG monitoring (in-
cluding sleep). Similar healthy control EEG was collected
at King’s College Hospital EEG department. Controls pro-
vided written informed consent, and data collection was
approved by King’s College Hospital Research Ethics Com-
mittee (08/HO808/157). Under United Kingdom law, patient
data collected during normal clinical routine and anon-
ymized before research use may be used for research with-
out additional consent; this procedure was reviewed and
approved for this project by St. Thomas’s Hospital and
King’s College Hospital’s Research and Development
departments.

A trained clinical EEG technician identified a 20-s-long
GSW and artifact-free segment of eyes-closed ‘“resting

state” EEG activity from the initial stage of the recordings
from each participant. These data were band-pass filtered
using a Butterworth filter between 0.5 and 70 Hz, and band-
stop filtered between 48 and 52 Hz to remove power-line
artifacts. Because signal amplitude may vary between indi-
viduals due to different anatomic features (such as the size
and shape of the cranium) the data were normalized by
dividing the power spectrum in each channel by the total
power in the spectrum averaged across all channels. This
normalized power preserves relative differences in power
between channels. We then band-pass filtered the EEG seg-
ments into either the alpha (8—13 Hz) or low alpha bands’
(6-9 Hz). For segments band-pass filtered in the low alpha
band, we further inferred functional networks using the
Phase-Locking Factor® (PLF) and phase-lags (as described
previously).?

For the purpose of biomarker discovery, we consider
measures that have demonstrated group-level differences
between people with IGE and healthy controls using rest-
ing-state EEG. First, the peak in alpha power across occipi-
tal EEG channels, which is known to shift toward lower
frequencies in people with IGE.> Second, the mean degree
of the PLF-inferred low alpha functional network, which is
elevated in people with IGE.* Third, a model-driven analy-
sis where the low alpha functional network inferred from
the EEG of each individual is integrated within a phase
oscillator model (of Kuramoto type).” Here the local cou-
pling constant within each node of the network is inferred
by multiplying the variance of the signal in the correspond-
ing EEG channel by a uniform parameter K, to give a sub-
ject-specific dynamic network model of the brain. The
seizure-generating capability of each region within this
model is then evaluated computationally, as the average
level of emergent seizure activity across the whole network
driven by the region of interest (see Fig. 1A).

The performance of all three candidate biomarkers was
evaluated using “leave-one-out” classification,’ in which all
30 people with IGE and 38 controls are pooled, the data
from one subject is successively left aside, and the remain-
ing data is used as the training set. In each case, thresholds
are determined to give the highest sensitivity for 100%
specificity and the highest specificity for 100% sensitivity
in the training set. In turn, these thresholds are applied to
classify the test subject as follows: If the value of local cou-
pling is on the IGE side of both thresholds, then the individ-
ual is classified as unequivocally having epilepsy. The
individual is classified as unequivocally normal if their
value is on the control side of both thresholds. If their value
lies between these thresholds they are classified as uncer-
tain. A graphical representation of this approach is shown in
Figure 1B. Because each outcome is discrete and non-nor-
mal, we use the Friedman test'® (nonparametric repeated
measures analysis of variance [ANOVA]) to assess the rela-
tive performance of each biomarker.
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Figure 1.

Schematic of acquiring the local coupling biomarker and illustrative performance assessment. (A) The local coupling biomarker, which
was identified as the best performing biomarker in this study, is acquired by inferring the global (between-channel) network structure and
the local (within-channel) coupling strength from resting-state EEG (top panel), and incorporating them into an oscillator model. In this
scenario, each node within the network corresponds to an EEG channel (middle panel). The biomarker is quantified by placing each node
within the model into a state of synchrony (by increasing its internal coupling strength beyond a threshold), and the level of emergent syn-
chrony across the whole network is calculated (bottom panel). This level of synchrony across the network is the model proxy for sei-
zures, which might be thought of as a “seizure likelihood.” This biomarker depends on channel location and model parameters, and thus
we can perform procedures to optimize its performance. (B) To assess the performance of this biomarker as a classifier, we use the
leave-one-out approach, in which one subject is left aside, and test subject and all other subjects form the training set on which parame-
ters are optimized. This optimization process results in a threshold for the biomarker (thl) that yields the highest level of sensitivity at
100% specificity and another optimized set of parameters and threshold (th2) that yields the highest level of specificity at 00% sensitivity.
This is illustrated for a single realization of the leave-one-out approach in the top and bottom panels. These thresholds are then applied to
the test subject, where the outcome will be “IGE,” “normal,” or “uncertain” depending on where the value of the biomarker for the test
subject lies.
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R coupling biomarker resulted in 56.7% sensitivity (given
ESULTS 100% specificity) and 65.8% specificity (given 100% sensi-

Successively optimizing the channel location and value tivity). Specifically, 17 of 30 people with IGE were classi-

of the local coupling constant to give the highest levels of ~fied as unequivocally having epilepsy, 10 received an
sensitivity and specificity in each training set, the local uncertain classification, and 3 were misclassified. Of the 38
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healthy controls, 25 were correctly classified and 13
received an uncertain classification.

In contrast, average power of the EEG power spectrum
and the mean degree of the inferred functional network per-
formed poorly with low sensitivity and specificity. The peak
in alpha power resulted in 0% sensitivity (given 100%
specificity) and 0% specificity (given 100% sensitivity). It
classified no people with IGE as having epilepsy; 29 were
classified as uncertain and one was misclassified. Of the 38
healthy controls, none were correctly classified, 37 received
an uncertain classification, and one was misclassified. Mean
degree resulted in 3.3% sensitivity (given 100% specificity)
and 15.8% specificity (given 100% sensitivity). It classified
one person with IGE as having epilepsy, 28 were classified
as uncertain, and one was misclassified. Of the 38 healthy
controls, 6 were correctly classified, 31 received an uncer-
tain classification, and one was misclassified.

The Friedman test confirms that the classification results
of the local coupling biomarker are statistically significant
for people with IGE (x> = 26.77, p < 0.001) and controls
(x* = 22.83,p < 0.001) in comparison to the other potential
biomarkers. Using pairwise comparison, we show that the
local coupling performs consistently better than either
average power (IGE: y* = 14.22, p < 0.001; controls:
x* =17.14, p = 0.007) or mean degree (IGE: y* = 13.24,
p < 0.001; controls: Xz =19.17,p < 0.001).

Di1SCUSSION

Herein we describe the comparative analysis of three
candidate biomarkers of IGE using 20 s segments of “rest-
ing-state” EEG from cohorts of drug naive people with
IGE and age- and gender-matched healthy controls. To
our knowledge these three candidates are the only pub-
lished methods to date that have shown statistically signif-
icant differences at the group level using “resting-state”
EEG. The best performing algorithm, based upon a com-
puter model of local and global brain networks, achieved
nearly 60% sensitivity given 100% specificity and >60%
specificity given 100% sensitivity. We assessed perfor-
mance in this manner, since an ideal screening test to use
in a nonspecialist setting needs 100% sensitivity to ensure
all people with IGE are captured (but some false positives
are tolerable), whereas a decision support tool in the spe-
cialist setting needs 100% specificity to avoid false posi-
tives, but less than perfect sensitivity can be compensated
for by further expert-driven evaluation.

The use of routinely acquired EEG data, combined with
minimal computational cost for evaluating the biomarker,
makes this an attractive proposition from the perspective of
clinical decision support. At present, the most time-consum-
ing part is visual identification of ‘“resting-state” EEG,
which in our study was performed by a trained EEG techni-
cian. Automating this process would permit delivery of a
result in real-time (potentially while EEG was still being

collected). A critical advantage of this method is that there
is no requirement to observe epileptiform discharges in
EEG to make a diagnosis, since the method relies only on
brief segments of “resting-state” EEG. This yields the
potential for a screening service to be offered in a nonspe-
cialist primary care environment, a resource-poor setting, or
even using nonspecialist EEG carried out in the patient’s
home.

Although these results are promising, it is important to
note potential confounds that may limit the sensitivity and
specificity achievable. Of note, cortical excitability (and by
assumption seizure likelihood) is known to vary according
to time of day; varying in response to both physiologic fac-
tors and external stimuli.'' It has very recently been shown
that endocrine activity displays the strongest relationship
with this circadian change.' In this study, most recordings
were taken in the late morning or early afternoon and we
found no significant difference (Wilcoxon test: p = 1, t-test:
p = 0.758) in the times when recordings were taken and
whether a subject was correctly classified (mean time —
12:52 + 1:36) or not (mean time — 12:38 4+ 2:19).

The full code written in MATLAB'? can be found online
(Data S1).
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