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Background: Although multiple metabolic pathways are involved in the initiation,
progression, and therapy of lung adenocarcinoma (LUAD), the tumor microenvironment
(TME) for immune cell infiltration that is regulated by metabolic enzymes has not yet been
characterized.

Methods: 517 LUAD samples and 59 non-tumor samples were obtained from The
Cancer Genome Atlas (TCGA) database as the training cohort. Kaplan-Meier analysis and
Univariate Cox analysis were applied to screen the candidate metabolic enzymes for their
role in relation to survival rate in LUAD patients. A prognostic metabolic enzyme signature,
termed the metabolic gene risk score (MGRS), was established based on multivariate Cox
proportional hazards regression analysis and was verified in an independent test cohort,
GSE31210. In addition, we analyzed the immune cell infiltration characteristics in patients
grouped by their Risk Score. Furthermore, the prognostic value of these four enzymes was
verified in another independent cohort by immunohistochemistry and an optimized model
of the metabolic-immune protein risk score (MIPRS) was constructed.

Results: The MGRS model comprising 4 genes (TYMS, NME4, LDHA, and SMOX) was
developed to classify patients into high-risk and low-risk groups. Patients with a high-risk
score had a poor prognosis and exhibited activated carbon and nucleotide metabolism,
both of which were associated with changes to TME immune cell infiltration characteristics.
In addition, the optimized MIPRS model showed more accurate predictive power in
prognosis of LUAD.

Conclusion: Our study revealed an integrated metabolic enzyme signature as a reliable
prognostic tool to accurately predict the prognosis of LUAD.
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INTRODUCTION

Lung cancer, one of the most prominent malignant tumors, has
the highest mortality rate in humans worldwide. A previous
study demonstrated that approximately 80% of lung cancers
are non-small cell lung cancer (NSCLC), 50–55% of which are
lung adenocarcinoma (LUAD) (Relli et al., 2019). Despite
improvements in primary prevention gaining more
attention in recent years, LUAD is still difficult to diagnose
at an early stage due to the delayed occurrence of symptoms.
Recently, an accumulating collection of research indicates that
abnormal cancer metabolism has a critical role in cancer
metastasis, immune escape, and drug resistance. Proteins,
lipids, and nucleic acids are the most common
macromolecular classes affected in cancer metabolism, as
biosynthesis of all three classes is activated in tumorigenesis
(Bader et al., 2020; Bose et al., 2020; Dong et al., 2020; Navas
and Carnero, 2021; Yang et al., 2021). Thus, the regulatory
mechanisms that regulate cancer metabolism have attracted
great attention as a prognostic marker and a potential
therapeutic target.

Tumor microenvironment (TME) is closely related to
tumor progression. At present, more and more studies
show that the changes of tumor microenvironment may be
related to abnormal tumor metabolism. Immunotherapy
targeting immune checkpoint proteins, such as CTLA-4
and PD-1/L1, has benefited a growing number of patients
(Kordbacheh et al., 2018; Zhao et al., 2019; Liu and Zheng,
2020). The infiltration of immune cells into TMEs is a key
factor in determining the efficiency of immunotherapy.
Furthermore, the production of immune-suppressive
metabolites can dampen the antitumor activity of immune
cells and promote tumor immunity escape by affecting the
expression of cell surface markers (Marin-Acevedo et al.,
2021; Memmott et al., 2021; Qiao et al., 2021). Immune
checkpoint blockades, such as PD1 and B7-H3, can restore
glucose in the TME and permit T cell glycolysis and cytokine
production. Immune responses can also be fostered by
targeting tumor-intrinsic metabolism (Noël et al., 2018).
Although targeting metabolism, such as glutamine
metabolism and hexosamine biosynthesis, cannot suppress
or activate the immune system completely as it still selectively
regulates immune responses (Byun et al., 2020; Lam et al.,
2021). Immune checkpoint inhibitors combined with
targeting metabolism might be a novel strategy to
overcome the immune resistance in immunotherapy.
Therefore, comprehensively understanding the effect of
tumor metabolism on immune cell infiltration within TME
will be helpful for the development of new therapy.

In previous studies, all prediction models were constructed
based on RNA-seq data, which focused on only single
metabolic genes or immune-related genes, failing to
consider the influence of multiple factors. In this study, we
used Multivariate Cox Proportional Hazards Regression
Analysis to construct an optimized metabolic-immune
protein risk score (MIPRS) model based on the protein
expression of metabolic and immune proteins to classify

LUAD into two subtypes with discrete survival rates.
Compared to previous biomarkers, MIPRS is a technically
simple and reliable tool to predict the prognosis of LUAD
patients.

MATERIALS AND METHODS

Data Acquisition
We downloaded the gene expression matrix and clinical
information of 517 LUAD samples and 59 non-tumor
samples from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/repository) as the training set.
We then downloaded 266 LUAD samples from the microarray
dataset GSE31210 (http://www.ncbi.nlm.nih.gov/geo/) as the
first validation set. GSE135222, produced by Illumina HiSeq
2500, was also downloaded from GEO for pharmacodynamic
evaluation. In addition, we used 50 LUAD patients from the
Xiangya Hospital Central South University as the second
validation set, the clinical information of which is shown in
Supplementary Table S1. The data of metabolizing enzyme
genes was downloaded from the KEGG PATHWAY database
(https://www.genome.jp/kegg/pathway.html). The abundance
of 22 immune cells infiltration were calculated by
CIBERSORT.

Multivariate Cox Proportional Hazards
Regression Analysis
Multivariate Cox proportional hazards regression analysis
utilized by the R package “survival” and “survminer” was
performed to screen suitable biomarkers. Subsequently, TYMS,
NME4, LDHA and SMOX were finally selected as four key
metabolic enzyme genes. According to the regression
coefficients of four genes, we established a model in the
training set to calculate the risk score of LUAD patients. The
formula of risk score (metabolic genes risk score (MGRS)) is as
follows:

MGRS � 0.28 × TYMS + 0.25 × NME4 + 0.41 × LDHA + 0.20

× SMOX

Immunohistochemical Assay
Paraffin-embedded lung tissue sections (5-µm) were prepared.
After conventional dewaxed to water, the sections were boiled
in a pressure cooker with EDTA buffer (pH 8.0) for 2.5 min at
125°C. We then incubated the sections in 5% BSA for 1 h at
37°C. Sections were incubated with primary rabbit anti-LDHA
antibody (19987-1-AP; dilution, 1:100; proteintech), anti-
TYMS antibody (15047-1-AP; dilution, 1:100; proteintech),
anti-SMOX antibody (15047-1-AP; dilution, 1:100;
proteintech), anti-NME4 antibody (a8350; dilution, 1:100;
ABclonal), anti-CD19 (MAB-0705, MaiXin Biotechnologies,
Fuzhou, China) andCD68 (Kit-0026, MaiXin Biotechnologies,
Fuzhou, China) at 4°C overnight. The expression of the four
enzymes was shown in brown. In order to achieve the purpose
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of semi quantitative staining, the number of positive cells in
each section and their staining intensity were converted into
corresponding values. The Mantra™ quantitative pathology
workstation, with inForm® image analysis software, were used
to analyze the results of immunohistochemistry. The scores of
0, 1, 2 and 3 represent no staining, weak staining, moderate
staining and strong staining of target cells, respectively. The
sum of percentage of staining scores was calculated to get
histochemical score (H-SCORE). Each slice were randomly
observed three horizons to calculate the score and took the
average as the final score. The median value of H-score was
used to distinguish high expression and low expression
samples.

Statistical Analysis
All the analysis process was performed by the Strawberry Perl
(version 5.32.1.1) software and R (version 4.0.4) software. We
have log2 transformed all the data before all of the analysis.
The Wilcoxon test and chi-square test were performed for
comparisons between two groups and three or more groups
respectively. We used both the Kaplan-Meier analysis and
Univariate Cox analysis to screen the metabolic enzyme
genes negatively correlated with the overall survival (OS).
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis and Gene Ontology (GO) analysis were

performed to find differentiation of metabolic pathways in
low and high risk groups.

RESULTS

Identification of Differentially-Expressed
Metabolic Genes in Lung Adenocarcinoma
The overview of the process used in our study is shown
in Figure 1. First, we downloaded the expression profile
datasets from the TCGA database; 517 LUAD samples and
59 non-tumor samples were included. A total of 1399
metabolic enzyme genes, which were based on the list from
the KEGG PATHWAY database, were selected to analyze the
distinct expression between LUAD and the adjacent normal
samples. 282 metabolizing enzyme genes, with a threshold
P-value < 0.05 and |logFC| > 1, were distinguished by using 3 R
packages “DESeq2,” “edgeR,” and “limma,” among which 165
genes were determined to be upregulated and 117
downregulated. The R package “pheatmap” and “ggplot2”
were performed to draw the heatmap, volcano plots and
Venn Diagram, which were shown in Figures 2A,B
respectively.

Establishment and Validation of the
Prognostic Risk Score Model
Kaplan-Meier analysis and Univariate Cox analysis utilized by the
R package “survival” and “survminer” was performed to screen
165 upregulated metabolic genes. We used Log Rank test to
evaluate the results of survival analysis. There were significant
differences in the genes with p < 0.05 by Log Rank test. The
number of significant genes was 31 by Kaplan-Meier analysis and
24 by univariate Cox analysis. We finally selected the union of the
two analysis results, and a total of 34 valid genes were identified as
risk factors of overall survival rate in LUAD patients. After
checking the immunohistochemical results of the HPA
database (https://www.proteinatlas.org/), only 16 genes, which
showed significant overexpression in cancer tissues, were
extracted for further Multivariate Cox Proportional Hazards
Regression Analysis (Figure 2C). Four metabolic genes with
statistically significant differences, namely TYMS, NME4,
LDHA, and SMOX, were finally identified. We extracted these
four genes separately for another Multivariate Cox Proportional
Hazards Regression Analysis and get their regression coefficients
from the forest map (Supplementary Figure S1A). According to
the regression coefficients of these four genes, we established a
model in the TCGA training set to calculate the risk score of
LUAD patients. This risk score, referred to hereafter as the
metabolic gene risk score (MGRS), was calculated as follows:

MGRS � 0.28 × TYMS + 0.25 × NME4 + 0.41 × LDHA + 0.20

× SMOX

The median risk scores were considered as the cutoff value to
classify patients into low-risk and high-risk groups. To test the

FIGURE 1 | Flow chart of this study. LUAD, lung adenocarcinoma;
MGRS, metabolic genes risk score; TME, tumor microenvironment.
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FIGURE 2 | The identification of differentially-expressed metabolic genes. Heatmap and Volcano Plot (A), Venn Diagram (B) compared the results of 3 R packages
‘DESeq2,’ ‘edgeR,’ and ‘limma’. respectively. (C) A forest map showed 16 metabolic enzyme genes identified by Multivariate Cox Proportional Hazards Regression
analysis. Significance codes: <0.001 � ppp, <0.01 � pp, and <0.05 � p.
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FIGURE 3 | The scatter plot of risk score and heat map of four prognostic genes. (A,B) The training set (A) and the first validation set (B) are shown. (C,D) Kaplan-
Meier curves of overall survival (OS) for patients with LUAD based on the risk score. The training set (C) and the first validation set (D) are shown (E,F) The 3-, and 5-years
ROC of the risk model. The training set (E) and the first validation set (F) are shown.
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FIGURE 4 |MGRS can identify the survival status of different patients. (A) KEGG pathway enrichment analyses for differentially-expressed metabolic genes (B,C)
GOpathway enrichment analyses for differentially-expressed genes. Pathways activated in low-risk groups (B) Pathways activated in high-risk groups (C) are shown. All
enriched pathways were significant. (D) A heatmap showed that clinical stage, survival status, smoking status, Tumor Mutational Burden (TMB), and gene mutations in
TP53 and RET were significantly associated with risk.
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model predictions, we used scatter plots and heat maps to
determine a rough estimate of whether the score of this
formula can distinguish the prognosis of patients (Figures
3A,B) in both the training and test cohorts. The results
suggested that all of the prognostic genes are risky genes and
people with high scores from our model might be associated with
poor outcomes. We then performed a Kaplan-Meier analysis to
validate this cut-off point and show the survival difference
between the high-risk and low-risk groups (Figures 3C,D).
We also performed time-dependent receiver operating
characteristic (ROC) curve analysis using the R package
“survivalROC” both in the training and first validation set.
The areas under the ROC curve at 3 and 5 years were 0.801
and 0.782in the training set and 0.750 and 0.721 in the first
validation set, respectively (Figures 3E,F). These results showed
that the MGRS had a powerful prognostic performance of
survival value for LUAD.

Metabolic Gene Risk Score Reflects
Different Metabolic Status in Lung
Adenocarcinoma Patients
As the prognostic value of the MGRS indicated that this 4-genes-
based signature might reflect the distinct metabolic status of
LUAD progression, we next performed Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis via the R package
“clusterProfiler” to identify differences in metabolic pathway
enrichment in low- and high-risk groups. We found that
carbon metabolism and nucleotide metabolism were
significantly activated in high-risk groups, while some
pathways such as inositol phosphate metabolism and
propanoate metabolism were inhibited (Figure 4A). In order
to further study the effects of metabolic differences on the
molecular pathways of tumor cells, we used Gene Ontology
(GO) to analyze the differentially expressed genes between the
two groups. The results showed that GTPase pathway was
activated in low-risk group (Figure 4B), while
ribonucleoprotein complex biogenesis pathways were activated
in high-risk groups (Figure 4C). To assess the clinical application
value of the constructed model, a Wilcoxon test and chi-square
test of clinicopathological characteristics were performed and
visualized by a heat map, labeled as p < 0.001 � ppp, p < 0.01 � pp

p, and p < 0.05 � p. The results showed that clinical stage, survival
status, smoking status, Tumor Mutational Burden (TMB), and
gene mutation of TP53 and RET were significantly correlated
with the level of LUAD risk (Figure 4D). Patient’s original
clinical information and individual p-value for each clinical
character are shown in Supplementary Tables S2, S3.

Metabolic Gene Risk Score Correlates With
Immune Cells Infiltration in Tumor
Microenvironment
Due to the crucial role of tumor metabolism in remodeling the
TME, we analyzed the abundance of infiltration by 22 types of
immune cells by CIBERSORT to evaluate the correlation of
MRGS and immune cell infiltration in TME. Differential

distribution of immune cells in all patients is shown in
Figures 5A,B. We found that the high-risk group exhibited
significantly decreased B cell and increased M2 macrophage
infiltration (Figure 5C). To analyze the relationship between
the model and immunotherapy, we calculated the IC50 of the
immune checkpoint inhibitor PD1 obtained from the microarray
dataset GSE135222. A Wilcoxon test was performed to analyze
differentiation of the IC50 of anti-PD-1/L1 antibody in the low-
and high-risk groups (Figure 5D). We found that patients with
high-risk scores exhibited low therapeutic efficacy compared to
low-risk patients, although these results were not statistically
significant due to the limited sample size.

Optimized Prognosis Prediction Model
Based on Immunohistochemistry
To further validate the prognostic power of these four metabolic
enzymes in LUAD and to create a technically simple tool applied
in clinical diagnosis, we performed immunohistochemical
analysis to verify the expression levels of the proteins encoded
by these four genes, as well as that of the markers of B cells
(CD19) and macrophages (CD68) in a second validation set. The
representative IHC positive and negative images are shown in
Figure 6A. The resulting H-score is shown in Supplementary
Table S4. According to the MGRS model formula and H-score of
four metabolic genes, the samples were also divided into low-risk
(n � 25) and high-risk groups (n � 25) that exhibited a
significantly different survival rate. Furthermore, we found
that the level of CD19 and CD68 were significantly correlated
with the risk score (Figures 6B,C). Therefore, we included CD19
and CD68 in Multivariate Cox Proportional Hazards Regression
Analysis as well (Supplementary Figure S1B). We constructed
an optimized model (the metabolic-immune protein risk score
(MPIRS)) by combining the expression data of the four metabolic
genes and immune cells as follows:

MPIRS � 0.12 × TYMS + 0.09 × NME4 + 0.23 × LDHA + 0.12

× SMOX + 0.12 × CD68 − 0.04 × CD19

Kaplan Meier and ROC curve analyses were performed using
the original model and optimized model, respectively (Figures
6D–F). The results show that the optimized model can evaluate
the survival prognosis of patients more accurately, which
indicated that these models are useful for clinical diagnosis.

DISCUSSION

In this study, a metabolic enzyme signature model referred to as
MGRS was constructed to predict the overall survival of LUAD
patients and distinguish patients into low-risk and high-risk
groups. Using multivariate Cox proportional hazards
regression analysis, four metabolic enzymes (TYMS, NME4,
LDHA, and SMOX) were identified as ideal prognostic
markers. Kaplan Meier analysis and ROC curve analysis were
performed both in the training set and the first validation set. We
revealed the ribonucleoprotein complex biogenesis pathway was
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FIGURE 5 | MGRS was associated with TME immune cell infiltration. (A) Differential distribution of immune cells in each patient. (B) Differential distribution of
immune cells in all patients. (C)Differential distribution of immune cells in low- and high-risk groups. (D) Box/violin plots showing the differentiation of the IC50 of anti-PD-
1/L1 antibodyin low- and high-risk groups.
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FIGURE 6 | Prediction model optimization based on immunohistochemistry. (A) The representative IHC positive and negative images of four prognostic proteins,
as well as markers of B cells (CD19) andmacrophages (CD68). Box/violin plot showing that the expression of CD19 (B) and CD68 (C)was significantly correlated with the
risk score. (D,E) Kaplan-Meier curves of the prediction model. The original model (D) and the optimized model (E) are shown. (F) ROC curves of the original model and
the optimized model.
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activated in high-risk patients while GTPases were up-regulated
in low-risk groups, which may mediate immune escape and
confer different outcomes in patients. To evaluate the model
in the immune-cell infiltration, we performed the Wilcoxon test
to analyze the infiltration of 22 immune cells via CIBERSORT.
These results show that high-risk patients suffered a lower
survival rate with significantly decreased B cells and increased
macrophages M2 infiltration of the TME. In the subsequent
analysis, we calculated the risk scores in a cohort with anti-
PD-L1immunotherapy. The predictive accuracy of the signature
was also confirmed by immunohistochemical assays. We finally
constructed an optimized MIPRS model based on the expression
of metabolic and immune proteins, which is useful for accurately
predicting patient prognosis and should serve as a useful tool in
clinical diagnosis.

In recent years, the role of abnormal metabolism in tumor
progression has attracted more and more attention. Studies have
demonstrated that compared to traditional biomarkers, metabolic
enzymes are superior as predictive biomarkers for various cancers
(Dong et al., 2015; Xu et al., 2021). Metabolic alteration has wide-
ranging effects, such as angiogenesis, metastasis, and immune
escape, which has provided opportunities to solve
immunotherapy resistance and poor clinical outcomes
(Broadfield et al., 2021; Jones et al., 2021; Zanotelli et al.,
2021). To date, the expression patterns of metabolic enzymes
have been widely studied in different cancer types, such as liver,
gastric, colorectal, breast, and prostate cancer (Lavorgna et al.,
2018; Zinger et al., 2019; Rivello et al., 2020; Sun et al., 2020; Xu
et al., 2020; Jiang et al., 2021). With the development of next-
generation sequencing, we can use multiple appropriate statistical
methods to analyze TME cell infiltration mediated by metabolic
enzymes. However, most of these metabolism-related gene
signatures included one or two key molecules and TME
infiltration cells, ignoring the fact that metabolic regulation is
a complex and interdependent network. In addition, these
signatures are based on mRNA levels, which made application
to clinical diagnoses difficult. To identify the comprehensive role
of metabolic enzymes in heterogeneous and complex processes
such as TME cell infiltration, the construction of an integrated
metabolic enzyme signature based on immunohistochemical
analysis might address the aforementioned limitations.

Metabolic enzymes in our study have been investigated in
various cancers. A previous study demonstrated that Lactate
dehydrogenase A (LDHA) functions as a sensor for
overloaded ROS to enhance antioxidant capacity and sustain
cell proliferation by producing α-HB in the nucleus (Liu et al.,
2018). Another study showed that the loss of DNAmethylation of
LDHA was associated with certain malignant clinicopathological
features such as a high glycolytic phenotype in gliomas (Ruiz-
Rodado et al., 2020). LDHA was also associated with a poor
prognosis in pancreatic cancer by regulating the expression of L-2
hydroxyglutarate, an epigenetic modifier, which can inhibit T cell
proliferation and migration and thereby contribute to immune
escape (Gupta et al., 2021). Thymidylate synthase (TYMS) is a key
dNTP synthesizing enzyme and regulates nucleotide metabolism
through a YBX1-RRM2-TYMS-TK1 axis in the liver, breast, and
lung cancer (Gandhi et al., 2020). The expression of TYMS can be

suppressed by inhibiting the synthesis of hydrogen sulfide (H2S)
and might be used as a potential therapeutic target to reverse the
acquired resistance to 5-FU in colon cancer cells (Ahn et al.,
2015). Nucleoside Diphosphate Kinase 4 (NME4) is an enzyme
regulating nucleotide metabolism and ATP/ITP metabolism as
well (Lu et al., 2014). NME4 is involved in apoptosis and
inflammatory reactions through an NME4/NDPK-D-based
CL-transfer pathway (Schlattner et al., 2018). Since there are
no reports of NME4 associated with the development of any
cancer, it might be a novel prognostic signature in LUAD.
Spermine oxidase (SMOX) is potentially associated with
oxidative DNA damage in gastric cancer by catabolizing
polyamine spermine and producing H2O2 (Chaturvedi et al.,
2014; Chaturvedi et al., 2015; Murray-Stewart et al., 2016;
Sierra et al., 2020). Although no studies have reported the role
of SMOX in LUAD, it has a significant correlation with chronic
inflammation, such as in ulcerative colitis, prostatic
intraepithelial neoplasia (PIN), and Helicobacter pylori-
associated gastritis (Goodwin et al., 2008; Hong et al., 2010;
Chaturvedi et al., 2014). Accordingly, all of these enzymes are
involved in tumor-related biological processes.

The results of KEGG and GO pathway enrichment analyses
in our study show that the formula determined by these four
metabolic genes can effectively distinguish different types of
patients, high-risk and low risk patients have significant
differences in metabolic pathway. GO enrichment results
showed that GTPase pathway was activated in low risk
group, while ribonucleoprotein complex biosynthesis pathway
was activated in high risk group. GTPase-activating protein
(GAP), also known as RGS protein or RGS protein, plays an
important role in controlling the activity of G protein, involving
in cell proliferation, differentiation, survival and movement
(Moon and Zheng, 2003; Gray et al., 2020). GTPase
activating protein can bind to the activated G protein and
stimulate its GTPase activity, thus terminating the signal.
Mutations in GTPase are closely related to carcinogenesis
(Thaker et al., 2019; Zhou et al., 2020). Similar to the results
of KEGG analysis, the increase of ribonucleoprotein complex
biogenesis was the main factor in the high risk group. In the
KEGG analysis, we also found that carbon metabolism,
ribonucleoprotein complex biogenesis pathways and sugar
metabolism are activated in the LUAD high-risk group.
Carbon metabolism is crucial for oxidative phosphorylation
in cells (Ciccarone et al., 2017). Current studies have shown
that cancer cells are more active in anaerobic glycolysis while the
tricarboxylic acid (TCA) cycle plays an important role in
regulating energy production in normal cells (Montal et al.,
2015; Anderson et al., 2018; Cai et al., 2020). One of our
candidate enzymes, LDHA, is key for anaerobic respiration
and catalyzes the inter-conversion of pyruvate and L-lactate
using NADH (Ooi and Gomperts, 2015). Our study also found
that the frequency of TP53 gene mutation in high-risk score
patients is significantly higher than that in low-risk score
patients. TP53 can inhibit tumor growth and development by
not only downregulating glucose transporters (GLUT1 and
GLUT4) but suppressing the activity of glycolytic enzymes,
which was verified in the constructed model (Duffy et al.,
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2020; Huang, 2021; Liu et al., 2021). Except for carbohydrate
metabolism, nucleotide metabolism is involved in the
progression of various tumors as well. The carbon
metabolism mentioned above also plays an important role in
nucleotide synthesis and biomethylation(Newman et al., 2021).
Folate mediated carbon metabolism transfers a part of carbon
(methyl) to many biological reactions and plays a variety of
important roles in normal and abnormal cell division. For
example, the synthesis of purine bases, adenine and guanine
requires the participation of 10-formyltetrahydrofolate(Hong
et al., 2020). Another enzyme of our model, TYMS, served as a
key enzyme in pyrimidine metabolism, provides the sole de novo
pathway for the production of deoxythymidine monophosphate
(dTMP), which is a component of DNA (Rosmarin et al., 2015).
Mutant TP53 also controls the abundance of
deoxyribonucleotides by regulating the abundance of
ribonucleotide reductase (RNR) (Xue et al., 2003; Zhou et al.,
2003; Link et al., 2008). Although SMOX is a key enzyme of
polyamine metabolism, it may still indirectly regulate
pyrimidine metabolism by consuming purine during
polyamine synthesis (Fan J. et al., 2019). Meanwhile,
photoaffinity polyamines can change the helical twist of
DNA in nucleosomes by regulating their affinity for DNA,
which may, in turn, trigger tumor development (Amarantos
and Kalpaxis, 2000). At present, there are few studies on the
abnormal metabolism of B cells in tumor, but B cells may also
affect the metabolism of tumor immune microenvironment by
cooperating with T cells and NK cells.

To evaluate our model of immune-cell infiltration, we
performed the Wilcoxon test to analyze the infiltration of 22
types of immune cells using CIBERSORT. These results showed
that the high-risk group suffered a poor survival rate and had
significantly decreased B cell and increased M2 macrophage
infiltration. M2 macrophages are associated with malignant
transformation and metastasis in many cancers (Fan CS. et al.,
2019), indicating the poor prognosis of the high-risk group.
Compared with other inflammatory macrophages, tumor M2
macrophages prefer unique arginine metabolism. Arginine
metabolism is the key pathway of innate and adaptive
immune response (Luo et al., 2018; Das et al., 2019). After the
death of immune cells, they are released from phagocytic
lysosomes and consume arginine in the microenvironment,
thus inhibiting the proliferation of T cells and natural killer
(NK) cells and the secretion of cytokines(Munder, 2009).
Arginase 1 (ARG1) is a key enzyme in the urea cycle, which
converts L-arginine into urea and L-ornithine. Tumor M2
macrophages produce more polyamines and consume arginine
by increasing ARG1 expression(De Santo et al., 2018; Baier et al.,
2020). The spermine oxidase (SMOX) in our model is also one of
the key enzymes in arginine metabolism, which can decompose
polyamine and spermine, and may also participate in the
metabolism of M2 macrophages. In most cases, B cells serve
as anticancer cells by inducing antigen-specific CD4+ and CD8+

T-cell responses as antigen-presenting cells, with the exception of
B-cell lymphoma (Menon et al., 2021; Michaud et al., 2021). In
the subsequent analysis, we calculated the risk scores in a cohort

treated with anti-PDL1 immunotherapy. PD-L1 (Programmed
cell death 1 ligand 1), a ligand of PD-1 (Programmed cell death-
1) expressed mainly on tumor cells in the TME, can suppress the
function of cytotoxic T cells (Doroshow et al., 2021). In our study,
patients with high-risk scores exhibited low therapeutic efficacy
compared to low-risk patients, although these results were not
statistically significant due to the limited sample size. Although
previous reports have shown that anti-PDL1 immunotherapy
mostly regulates T cells, tumor-infiltrating B cells (TIL-B) are
also involved in the regulation of this process. Compared to
spleen B cells, the expression of PD-L1 in TIL-B cells was
significantly increased, which might be due to the reduction of
calcium signaling (Ou et al., 2014) (Schwartz et al., 2016). TIL-B
cells may inhibit the proliferation and immune response of T cells
by increasing the expression of PDL1 (Zhang et al., 2016; Nus
et al., 2020). Studies have shown that PDL1 antibodies have a
promising therapeutic effect on EMT-6 mammary carcinoma
with significantly infiltrated B cells (Schwartz et al., 2016).
Therefore, the sensitivity of low-risk patients to PDL1 therapy
may be attributed to the increased numbers of TIL-B cells.

Finally, we optimized our predictive model (MIPRS) based
on the protein level of metabolic enzymes and immune cell
markers, by which we can stratify patients into two types
according to their calculated risk score. Compared to
previous biomarkers, MIPRS is technically simple and might
be more accurate in predicting LUAD prognoses. Accordingly,
the predictive power of this signature should be assessed in more
cases in the future.
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