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Abstract

Accurate segmentation of brain magnetic resonance imaging (MRI) is an essential step in

quantifying the changes in brain structure. Deep learning in recent years has been exten-

sively used for brain image segmentation with highly promising performance. In particular,

the U-net architecture has been widely used for segmentation in various biomedical related

fields. In this paper, we propose a patch-wise U-net architecture for the automatic segmen-

tation of brain structures in structural MRI. In the proposed brain segmentation method, the

non-overlapping patch-wise U-net is used to overcome the drawbacks of conventional U-net

with more retention of local information. In our proposed method, the slices from an MRI

scan are divided into non-overlapping patches that are fed into the U-net model along with

their corresponding patches of ground truth so as to train the network. The experimental

results show that the proposed patch-wise U-net model achieves a Dice similarity coefficient

(DSC) score of 0.93 in average and outperforms the conventional U-net and the SegNet-

based methods by 3% and 10%, respectively, for on Open Access Series of Imaging Stud-

ies (OASIS) and Internet Brain Segmentation Repository (IBSR) dataset.

1. Introduction

Segmentation of brain magnetic resonance images (MRI) is a prerequisite to quantifying

changes in brain structures [1]. For example, structure atrophy is a well-known biomarker of

Alzheimer’s disease and other neurological and degenerative diseases [1]. Among the various

modalities such as MRI, computed tomography (CT) and positron emission computed tomog-

raphy (PET), structural MRI (sMRI) is more preferably used for structural analysis of the brain

as it can provide higher contrast images with higher spatial resolution with relatively low

health risk associated with cancer, compared to other modalities. Owing to its nature, MRI has

been widely used for the segmentation of medical images. Manual segmentation by labeling of

pixels or voxels is a significant time-consuming and difficult task. Therefore, it is necessary to

develop an automatic segmentation method for brain MRI. For brain MRI segmentation,

methods based on pattern recognition algorithms such as the support vector machine [2], ran-

dom forest [3] and neural network [4], population-specific atlases [5] using demographic
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factors such as age, gender, ethnicity etc., and the combined methods of both are popularly

used. However, the most of currently developed methods require explicit spatial and intensity

information. Furthermore, it is required to extract feature vectors from the intensity informa-

tion for more accurate segmentation performance. In recent years, deep learning-based meth-

ods have received significant research attention. In particular, convolutional neural networks

(CNNs) [6] have shown high performance in various applications, including handwritten digit

recognition, object detection, semantic segmentation etc. Deep learning-based methods usu-

ally do not require the extraction of hand-crafted features, thus enabling self-learning of fea-

tures, while classical machine learning-based methods usually perform feature extraction, such

as the Gaussian or Haar-like kernels [7]. One drawback of deep learning-based methods is to

require a large amount of training data. In particular, in medical image analysis, it is difficult

to obtain such a large amount of labeled training data. Therefore, it is necessary to develop a

method that can achieve promising performance, even with a small amount of training data.

The patch-based CNNs [7], also called slide-window-based CNNs, are useful in such a scenario

because the model can efficiently be learned with a small amount of training data with multi-

scale patches, whose sizes are different depending on different modalities such as T1- and T-2

weighted images. However, the training and testing processes of the patch-based CNNs for

segmentation take significant computation time because the model needs to run separately for

each multi-sized patch. Another approach is to use a data augmentation scheme by applying

elastic deformations such as rotation, translation or flipping to the available training data, as in

[8–10]. However, the preprocessing for generating a large amount of training data might be

computationally complex. The U-net in [8] was initially proposed to segment the neuron

structures in an electron microscopic stack and shows good segmentation performance owing

to the nature of its U-shape architecture. However, the U-net suffers from a limited memory

problem for high resolution of input images because the number of stages of down- and up-

sampling increase the feature channels over the resolution of the input images, thus leading to

store a number of parameter values at each stage. Moreover, it is known that it is difficult to

maintain local details because an entire image is fed into the network. To overcome the prob-

lems of the conventional methods, we propose a patch-wise and multi-class U-net architecture

for the automatic segmentation of brain MR images. In the proposed method, we first divide

an MRI slice into non-overlapping patches to train a U-net model. As the partitioning with

individual patches for a slice can better reflect local details by predicting the information for

each individual patch, the model can be trained better with the local details in the non-overlap-

ping patches which are made with non-overlapping square partitions in a slice in the proposed

method, thus resulting in the higher segmentation performance at efficient computational

complexity like the conventional U-net.

The key contribution of the proposed method is the use of individual non-overlapping

patches extracted from input slices to train the U-net architecture. The patch-wise splitting of

a slice improves the localization accuracy in the MRI tissue segmentation because the trained

network is designed for focusing more on local details in a patch. In contrast, randomly

selected portions and/or regions from a slices or MRI volume are considered to be patches

used for training the model in existing methods [11–16]. This is different from our approach,

which divides a whole slice into a number of uniform-sized patches and feed the patches into

the model for training. In other words, the network labels each pixel of the uniform-patch. As

a consequence, the segmentation task is performed in three stages; a uniform-patch extraction

from the input image followed by a pass through the network to obtain the segmentation

maps, finally these maps are aggregated to output the final segmented image. High accuracy

can be obtained by using the uniform-partitioned patches and eventually entire information of

the slices can be used as training data, thus resulting in robust segmentation performances

PLOS ONE Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture

PLOS ONE | https://doi.org/10.1371/journal.pone.0236493 August 3, 2020 2 / 20

https://doi.org/10.1371/journal.pone.0236493


with local detail information. In addition, compared to the previous random patch selection

approach which focuses only the selected regions, the proposed method is designed to utilize

whole slice information for better segmentation, which can be achieved by using a uniform

selection of patches. Moreover, the proposed architecture, compared to the original U-net

which can only deal with binary segmentation problems, is able to deal with the multi-class

segmentation problem. Moreover, unlike the original U-net, a data augmentation scheme does

not need to be applied during the training stage, and the model is therefore trained using only

the available training patches in our proposed method. The proposed method shows signifi-

cant improvement in the Dice similarity coefficient (DSC) [17] and Jaccard index (JI) [18]

over the conventional U-net [8] and SegNet-based method [19] for brain structure segmenta-

tion. The rest of the paper is organized as follows. In Section 2, related works are described.

The proposed method is described in Section 3, and a discussion of experimental results is pre-

sented in Section 4. The paper is concluded in Section 5.

2. Related studies

Recently, CNNs have been widely used for the segmentation of normal brain structures, e.g.,

white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). In [11], two-dimen-

sional patches with a single size from multimodal images, i.e., T1-weighted, T2-weighted and

fractional anisotropy images, are used as input for the CNN to segment the three types of

structures, namely WM, GM, and CSF, in MR brain images of infants. A method in [11] out-

performs the classical machine learning methods, including the support vector machine

(SVM) and random forest (RF), in terms of overall DSC scores. From the results, the CNNs

for segmentation shows a better performance than the traditional machine learning based

methods. This is because the CNNs are capable of providing different weights to each pixel

based on the spatial distance to the center pixel, thus resulting in better performance by retain-

ing the spatial information [11]. In [20], fully convolutional networks (FCNs) architecture for

segmentation of the brain MRI of infants is proposed and shows improved performance by

achieving higher DSC scores, compared to [11]. The model proposed in [20] uses fewer

parameters for learning than those of [11], which is beneficial for making the network con-

verge quickly and achieving better performance. In [12], a human brain segmentation method

using the patch-wise CNN is proposed with two and three-dimensional patches. The three-

dimensional intensity patches take multiple scales of information from the input of the net-

work. Besides, local spatial context is captured by downscaled orthogonal two-dimensional

intensity patches and distances to the regional centroid enforce global spatial consistency. In

[7], Moeskops et al. recently proposed another patch-wise CNN approach, where different net-

works are trained with various sized patches and the networks are combined by connecting

them to a single soft-max layer. By utilizing the multi-scale patch sizes, the network can also

incorporate global spatial consistency with local details. In [19], a pixel-label-based simplified

SegNet [21] architecture is proposed. By training the network with a SegNet-based CNN, a

DSC score of 0.8 on OASIS dataset is achieved. Table 1 shows the summary of the related

works for brain structure segmentation using deep learning. As shown in Table 1, most of the

major research work [7, 11, 12] uses the CNN architecture to segment the brain MR images. A

number of research work show that the CNN achieves good performance for classification

tasks. The CNN can produce the distinct feature maps from a brain MR image, which can

work as vectors for classification. A patch-wise 3D U-net for the purpose of performing seg-

mentation of brain tissues was proposed in [13], where the network consists of encoding and

decoding layers similar to the conventional U-net, and randomly sampled and overlapped 3D

patches (8×24×24) are used for training. Unlike the conventional U-net, a transition layers
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with convolution operation is used between the encoding and decoding layers to emphasize

the impact of feature maps in the decoding layers. Pawel et al. [14] proposed a brain tumor seg-

mentation method using a 3D-CNN, where 3D random patches are obtained and used for

training and features extracted by 2D-CNNs (capturing a rich information from a long-range

2D context in three orthogonal directions) are used as an additional input to a 3D-CNN. A

brain tumor segmentation method was proposed by using an ensemble of 3D U-Nets with dif-

ferent hyper-parameters trained on non-uniformly extracted patches in [15]. In [16], trained

multiple deep neural networks with a 3D U-Net architecture in a tree structure to create seg-

mentations for edema, non-enhancing tumor, and enhancing tumor regions. Furthermore,

this 3D segmentation model usually learns from annotations of some slices in the 3D volume

and produces a dense 3D segmentation. However, it is widely accepted that it is not well-

responsive to user interactions [22, 23], which means the analysis of brain segmentation on 3D

space is more difficult than one of the 2D space. In addition, it can be reported in [24–26] that

interactive 2D segmentation is more suitable than direct 3D segmentation due to the large

inter-slice spacing and motion. Due to the nature of our proposed method, manipulating the

individual patches in 3D is significantly computational complex than the case of 2D patches.

In addition, compared to random selection of patches which focuses only the selected regions,

the proposed method using uniform selection of patches can utilize whole slice information

for better segmentation.

A semantic-wise CNN architecture, such as SegNet and fully convolutional networks

(FCN), is another approach for brain MRI segmentation as described in [19],[20]. It is

reported that the SegNet-based segmentation in [19] does not achieve promising segmentation

performance, compared to other existing methods. This is because the SegNet tends to lose the

neighboring information when up-pooling from low resolution feature maps. In addition, it is

more focused on the central slices for training and testing without any results for non-central

slices. Despite of advantages, CNN has some drawbacks in segmentation applications because

the reconstruction should be done from the vectors in the segmentation process, where we

need to not only convert the feature map into a vector but also reconstruct a brain image from

this vector. Thus, the U-net has received attention for segmentation owing to its advantages in

reconstruction capability over the CNN. It is reported that the U-net can lead to promising

results in the segmentation of bio-medical fields [8] due to the capability of preserving the

structural integrity of the image which reduces distortion. Nevertheless, the U-net also has

some limitations when we want to preserve the local details for segmentation in brain MR

images. To overcome the aforementioned drawbacks, our proposed method adopts the non-

overlapping patch-wise U-net architecture for brain MRI segmentation. By utilizing non-over-

lapping patches in a slice, more accurate segmentation performance can be achieved at a

Table 1. Summary of related studies on brain structure segmentation using deep learning.

Methods Architecture Dataset

Moeskops et al. [7] Multi-scale patch-wise CNN MICCAI 2012

Khagi et al. [19] SegNet OASIS

Zhang et al. [11] Patch-wise CNN Private data

Nie et al. [20] FCN Private data

de Brebission et al. [12] 2D/3D patch-wise CNN MICCAI 2012

Luna et al. [13] 3D patch-based CNN MRBrainS18

Pawel et al. [14] 2D/3D Patch-wise CNN BRATS2017

Xue et al. [15] 3D Non-uniform Patch-wise CNN BRATS2018

Andrew et al. [16] 3D Patch-wise CNN BRATS2017

https://doi.org/10.1371/journal.pone.0236493.t001
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similar degree of complexity with the original U-net architecture. In addition, our proposed

model can learn from both central and non-central slices, and therefore is able to more accu-

rately segment the brain MR images.

3. Proposed method

The SegNet [19] and U-net [8] have popularly been used for segmentation applications. The

SegNet [19] architecture largely consists of encoder and decoder parts, whereby the encoding

part is used to down-sample the input by using multiple convolution and max-pooling opera-

tions, whereas the decoding part is used to up-sample the down-sampled feature maps by

using the memorized max-pooling indices from the corresponding encoder feature map and

convolution operations. The output of the final decoder is fed to a soft-max classifier to classify

each pixel independently. The U-net [8] architecture is very similar to the SegNet architecture,

and the main difference between SegNet and U-net lies in the up-sampling part. For the U-

net, the feature maps in the decoding path are concatenated with corresponding feature maps

in the encoding path during the up-sampling. This property is useful for better localization

and for this reason, the U-net was initially proposed particularly for biomedical image segmen-

tation where better localization is crucial for achieving improved performance. Moreover, the

up-sampling part also has a large number of feature channels. This allows the network to prop-

agate the context information to higher resolution layers. Table 2 shows the comparative

parameter values used for SegNet [19], U-net [8], and the proposed patch-wise U-net architec-

ture, respectively.

3.1 Architecture of U-net

The U-net architecture was initially proposed for the segmentation of neuronal structures in

electron microscopic stacks [8]. The U-net model was an extension of another popular archi-

tecture used for segmentation that uses the fully convolutional network (FCN) [27]. The FCN

architecture only consists of the encoder path, where the input is down-sampled using succes-

sive convolution and max pooling operations, and the final down-sampled feature map is then

fed into an activation map to make predictions for individual pixels. On the other hand, the U-

net consists of a decoder path, which is almost similar to the encoder path, thus yielding the

U-shaped architecture. During decoding or path expansion, the pooling operations are

replaced by up-sampling operations. The U-net architecture has shown better performance for

segmentation and is much faster than the sliding window-based architecture [28]. However, if

the input image size is relatively large, more GPU memory would be required to train the

model. In addition, when the architecture takes the entire image as an input, the model is

prone to missing the details in certain regions of the image. To overcome the aforementioned

Table 2. Overall parameter comparison for SegNet, U-net, and proposed path-wise U-net.

Parameters SegNet [19] U-net [8] Proposed patch-wise U-net

Input size Input image size 208×176 Input image size 256×256 Input image slice 256×256 and divided into

four patch size of 128×128

Convolution

operation

3×3 convolutions with stride of 1 and padding 3×3 convolutions with stride of 1 and

padding

3×3 convolutions with stride of 1 and

padding

Activation ReLU transfer function ReLU transfer function ReLU transfer function

Max Operation 2×2 max pooling with stride of 2 and padding 2×2 max pooling with stride of 2 and padding 2×2 max pooling with stride of 2 and padding

Output Softmax output function Softmax output function Softmax output function

Total operations Total of 8 convolution operations, 2 max-pooling

and 2 max-unpooling operations

Total of 15 convolution operations, 3 max-

pool and 3 up-conv operations

Total of 15 convolution operations, 3 max-

pool and 3 up-conv operations

https://doi.org/10.1371/journal.pone.0236493.t002
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limitations, we proposed the non-overlapping patch-wise U-net architecture. The main advan-

tage of our proposed non-overlapping U-net architecture is the patch-wise splitting of a slice

obtained from the MRI image, which helps in better localization because the trained network

can focus more on local details in a patch.

3.2 Proposed segmentation method of the patch-wise U-net

To address the above-mentioned problems, we propose the method of dividing the input

image into non-overlapping patches and training the U-net model on these patches. The

patches are beneficial for retaining the local information of the image. Moreover, patches with

smaller sizes are easier to train than the case of using entire images, as less memory is required

for the training and testing. The problem of brain structure segmentation is to segment the

brain into multi-class category. Thus, it is difficult to perform the multi-class segmentation

using the conventional U-net, where only binary segmentation is performed. To solve the

problem, the modification of U-net is proposed to deal with the multi-class segmentation in

our proposed method. For this, we have modified the final layer of the U-net, where rather

than predicting the binary map for the background and foreground only, the proposed archi-

tecture produces the binary map for each of the four classes (background, cerebrospinal fluid,

grey matter and white matter).

The input ground truth segmentation map is also converted into a multi-channel binary

segmentation map for each class. Fig 1 shows the multi-channel binary segmentation maps,

Fig 1. Four different classes of ground truth for segmentation.

https://doi.org/10.1371/journal.pone.0236493.g001
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where the ground truth segmentation map is converted into the background, cerebrospinal

fluid (CSF), grey matter (GM), and white matter (WM) binary maps. These four binary maps

are treated as a 4-channel target map, which is then fed into the model along with the input for

training.

Fig 2 shows the splitting of an input slice into a number of patches. The input slices with

256×256 pixel size is divided into four patches with 128×128 pixels. The process is repeated for

the ground truth segmentation maps as well. Fig 3 shows a block diagram of the proposed

method. During the training stage, slices of each MRI scan and their corresponding ground

truth segmentation maps are divided into different patches. As shown in Fig 2, the dimension

of the input slice is 256×256, and each slice is split into four different patches. Therefore, the

dimension of each resulting patch is half of the input slices in the proposed method. These

patches are applied as input to the U-net model for training. The directions of the arrows dur-

ing the training stage shown in Fig 3 indicate the patches that are fed to the network as input.

Fig 4 shows the proposed patch-wise U-net architecture. The 128×128 input patches are input

through two consecutive 3×3 convolutions, each followed by a rectified linear unit (ReLU).

This is followed by a 2×2 max-pooling operation with stride 2 for down-sampling. After every

down-sampling step, the number of feature maps is doubled as suggested in [8]. The process is

repeated until the feature map reaches a resolution of 16×16 pixels. This constitutes the con-

tracting path of the network. From here, the expansive path starts with up-sampling of the fea-

ture maps followed by a 2×2 convolution (“up-convolution”) that reduces the number of

feature channels to half.

This is followed by a concatenation of the corresponding feature map from the contracting

path, and two 3×3 convolutions, each followed by a ReLU. In the final layer, each 64-compo-

nent feature vector is mapped to the desired number of classes (four in our case), by using the

1×1 convolution. The details of the network architecture are shown in Table 3, and the flow

chart of the proposed scheme is shown in Fig 5.

4. Experimental results

For experiments, the model was trained using “Stochastic Gradient Descent (SGD)” with a

high momentum rate of 0.99 and a learning rate of 0.001. During the training stage, categorical

cross-entropy loss is used to update the learned weights. For initializing the weights, the nor-

malization technique [29] was used. The input slices and their corresponding segmentation

maps are divided into four patches and then the resulting patches are used to train the model

for the evaluation of the proposed method. The experiments were performed using the Keras

Fig 2. Illustration of a 256×256 pixel-sized input slice divided into four patches each with dimensions of 128×128 pixels.

https://doi.org/10.1371/journal.pone.0236493.g002
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[30] framework on Nvidia 1080Ti GPU. The proposed method was evaluated on an Open

Access Series of Imaging Studies (OASIS) [31] dataset and International Brain Segmentation

Repository (IBSR) [32] datasets. Table 4 shows the details of the OASIS and IBSR dataset. The

cross-sectional category for the OASIS dataset consists of T1-weighted MRI scans of 416 sub-

jects. The OASIS dataset is generally used to classify the MRIs into the Alzheimer’s Dementia

(AD) or Normal Control (NC) categories, and also includes brain maps for the WM, GM, and

CSF. We chose only the first 50 subjects (ID OAS1_0001_MR1 to OAS1_0054_MR1) for the

experiment. Out of the selected data, the first 20 MRIs were used for the training and the

model was tested on the remaining 30 MRIs. The axial, sagittal and coronal planes of MRI

slices are tested for the segmentation of brain MRI. The dimension of the axial scan in the

OASIS dataset is 208×176×176 (height×width×slices) and each axial scan consists of 176 slices

in total. For the experiment, the original axial scan is resized to a dimension of 256×256×176

by padding 24 pixels of zero to top and bottom of the image and 40 pixels of zeros to left and

right of the image. Similarly, the original dimensions of the sagittal (176×208×176) and coro-

nal (176×176×208) scans are resized to dimensions of 256×256×176 and 256×256×208, respec-

tively. We also performed the experiments on the IBSR dataset, which comprises of 18

T1-weighted MRI images of 4 healthy females and 14 healthy males with age ranging from 7 to

71 years. The MRIs in the IBSR are provided after preprocessing such as skull-stripping, nor-

malization and bias field correction. The ground truth is made with manual segmentation by

experts with tissue labels as 0, 1, 2 and 3 for background, CSF, GM, and WM, respectively. In

our experimentation, the first 12 subjects were used for training, while the model was tested

Fig 3. Block diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0236493.g003
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on the remaining 6 subjects. The original axial scans (256×128×256) in the dataset are resized

to a dimension of 256×256×256 by zero-padding with 64 pixels to top and bottom of the

image to efficiently use the patches in our proposed method. In a similar way, the original

dimensions of the sagittal (128×256×256) and coronal (256×256 ×128) are also resized to

dimensions of 256×256×256 for the experiments. Thus, every input slice for all planes for the

IBSR dataset has the dimension of 256×256 (height×width) during both training and testing.

Every input slice across all planes for OASIS and IBSR datasets are adjusted to the dimension

of 256×256 (height×width), which allows for using same sized partitioning patches in the pro-

posed method, where the dimensions of each partitioned patches is 128×128 and the patches

are input to the proposed model for training and predicted segmentation results can be

obtained for the test data. Since any improvement in segmentation results made by data aug-

mentation cannot be observed in our experimental analysis, all of the segmentation results pre-

sented in our paper are obtained without using any data augmentation scheme.

Fig 6 and Fig 7 show the segmentation results for axial, coronal and sagittal planes of the

OASIS and IBSR datasets, respectively. The first and second columns in Fig 6 and Fig 7 show

original images and the ground truth segmentation maps corresponding to each of the given

slices, respectively. The third column in Fig 6 and Fig 7 shows the predicted segmentation map

using the proposed method. In the fourth, fifth and sixth columns, binary prediction maps for

GM, CSF and WM are shown respectively. It can be observed in Fig 6 and Fig 7 that the pro-

posed method achieves well-segmented results on both datasets.

Fig 4. Proposed deep U-net architecture for 128×128 input patch size. Each gray box denotes a multi-channel feature map. The number of channels is denoted on the

top of the box. The white boxes represent copied feature maps. The arrows denote the different operations.

https://doi.org/10.1371/journal.pone.0236493.g004

PLOS ONE Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture

PLOS ONE | https://doi.org/10.1371/journal.pone.0236493 August 3, 2020 9 / 20

https://doi.org/10.1371/journal.pone.0236493.g004
https://doi.org/10.1371/journal.pone.0236493


We also performed experiments by implementing the U-net [8], SegNet [19], and proposed

non-overlapping patch-wise U-net for comparison. Table 5 shows the performance compari-

sons between the proposed method, conventional U-net [8] and SegNet [19]. To objectively

evaluate the performances of the methods, the Dice similarity coefficient (DSC) [17] and Jac-

card index (JI) [18] were used, which are commonly used to evaluate the performance of seg-

mentation algorithms. The metrics are used to compute the similarity of two sample sets for

segmentation and indicate how closely the predicted segmentation map matches the ground

truth segmentation map. The JI and DSC scores between the ground truth segmentation map I

and the predicted segmentation map I’ are defined as (1) and (2) [17–18].

JI I; I0ð Þ ¼
jI \ I0j
jI [ I0j

ð1Þ

DSC I; I0ð Þ ¼
2jI \ I0j
jIj þ jI0j

ð2Þ

Table 3. Parameters of the proposed patch-wise U-net model.

No Layer name Type Output Shape No. of Parameters Connected to

1 input_1 Image 128×128×1 0 -

2 conv2d_1 2D Convolution 128×128×64 640 input_1

3 conv2d_2 2D Convolution 128×128×64 36928 conv2d_1

4 max_pooling2d_1 Max Pooling 2D 64×64×64 0 conv2d_2

5 conv2d_3 2D Convolution 64×64×128 73856 max_pooling2d_1

6 conv2d_4 2D Convolution 64×64×128 147584 conv2d_3

7 max_pooling2d_2 Max Pooling 2D 32×32×128 0 conv2d_4

8 conv2d_5 2D Convolution 32×32×256 295168 max_pooling2d_2

9 conv2d_6 2D Convolution 32×32×256 590080 conv2d_5

10 max_pooling2d_3 Max Pooling 2D 16×16×256 0 conv2d_6

11 conv2d_7 2D Convolution 16×16×512 1180160 max_pooling2d_3

12 conv2d_8 2D Convolution 16×16×512 2359808 conv2d_7

13 up_sampling2d_1 Up Sampling 2D 32×32×512 0 conv2d_8

14 conv2d_9 2D Convolution 32×32×256 524544 up_sampling2d_1

15 concatenated_1 Concatenate 32×32×512 0 conv2d_6

conv2d_9

16 conv2d_10 2D Convolution 32×32×256 1179904 concatenated_1

17 conv2d_11 2D Convolution 32×32×256 590080 conv2d_10

18 up_sampling2d_2 Up Sampling 2D 64×64×256 0 conv2d_11

19 conv2d_12 2D Convolution 64×64×128 131200 up_sampling2d_2

20 concatenated_2 Concatenate 64×64×256 0 conv2d_4

conv2d_12

21 conv2d_13 2D Convolution 64×64×128 295040 concatenated_2

22 conv2d_14 2D Convolution 64×64×128 147584 conv2d_13

23 up_sampling2d_3 Up Sampling 2D 128×128×128 0 conv2d_14

24 conv2d_15 2D Convolution 128×128×64 32832 up_sampling2d_3

25 concatenated_3 Concatenate 128×128×128 0 conv2d_2

conv2d_15

26 conv2d_16 2D Convolution 128×128×64 73792 concatenated_3

27 conv2d_17 2D Convolution 128×128×64 36928 conv2d_16

28 conv2d_18 2D Convolution 128×128×4 260 conv2d_17

https://doi.org/10.1371/journal.pone.0236493.t003
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where |.| represents the cardinality of the set. Furthermore, the Hausdorff distance (HD) [33]

between ground truth segmentation map I and the predicted one I’ is measured for GM, WM

and CSF. The HD is the maximum distance of set to the nearest point in the other set and

defined as (3).

dðI; I0Þ ¼ maxfmax
a2I

min
b2I0
jb � aj;max

b2I0
min
a2I
ja � bjg ð3Þ

where a and b are points of sets I and I0, respectively. In other words, the HD between I and I0

is the smallest value d such that every point of I has a point of I0 within distance d and every

point of I0 has a point of I within distance d [33].

We also further analyzed segmentation performance in terms of the mean square error

(MSE) [34], which is an average square difference between the original and predicted values

and computed as (4).

MSE ¼
1

MN
PM� 1

i¼0

PN� 1

j¼0
ðIi;j � I0i;jÞ

2
ð4Þ

where M and N are the width and height of the image, Ii,j and I0i;j are the original and predicted

segmentation maps, and i and j are the pixel indices, respectively.

Fig 5. Flowchart of the proposed scheme.

https://doi.org/10.1371/journal.pone.0236493.g005

Table 4. Information for OASIS and IBSR datasets.

No. of subject

OASIS IBSR

Males 160 14

Females 256 4

Total 416 18

https://doi.org/10.1371/journal.pone.0236493.t004
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As shown in Fig 8, the proposed method produces the best segmentation results. Compared

to the results of the other segmentation methods, the quality of the segmentation map gener-

ated by the proposed method (Fig 8(E)) is clearly superior. One can observe that the segmenta-

tion results of the U-net and SegNet architectures lack fine details compared to those of the

proposed method, as indicated by the red squares in Fig 8(C) and Fig 8(D). The performances

of the segmentation are shown in terms of the DSC, JI and HD score in Table 5 for OASIS and

IBSR datasets. As shown in Table 5, the proposed non-overlapping patch-wise segmentation

method outperforms the conventional U-net [8] and SegNet-based method [19] in terms of

DSC, JI and HD. It is noted that the conventional U-net [8] is the case of using a whole image

as the input whereas the proposed method utilizes the non-overlapping patches based on the

U-net architecture. As discussed in section 3, experimental results show that the conventional

U-net does not lead to promising segmentation performance due to lack of local details

whereas our proposed method shows significantly higher performances than those of the U-

net owing to the effect of the non-overlapping patches. Our proposed method also outper-

forms the SegNet-based method. In particular, the SegNet-based method shows significantly

lower performance than the other two methods. This is due to the fact that the SegNet tends to

lose the neighboring information when up-pooling from low resolution feature maps. This is

Fig 6. Illustration of segmentation results obtained for our proposed method for axial, coronal and sagittal (top to bottom) using OASIS dataset: (a) Original input

images, (b) ground truth segmentation map, (c) predicted segmentation map, (d) predicted GM(binary map), (e) predicted CSF (binary map), and (f) predicted WM

(binary map).

https://doi.org/10.1371/journal.pone.0236493.g006
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attributed to the fact that the conventional U-net and the proposed method use a more optimal

up-sampling “up-convolution” (also known as “transpose convolution”) method. As the slices

are divided into patches and the predictions for each patch are made separately in the pro-

posed method, local information can be preserved in a better way, thus resulting in better seg-

mentation performance, compared to the conventional U-net model which uses whole slices

as input.

The proposed method achieves the best results in terms of DSC, JI, HD and MSE for all

planes and shows the consistent results for OASIS and IBSR datasets. It is noted that unlike the

results on the OASIS dataset, mean DSC values of CSF do not show significant improvement

over the existing methods on the IBSR dataset because original ground-truth annotations in

the IBSR do not contain sulcal parts of CSF tissue unlike GM [35]. There are several studies

[36,37] using the IBSR datasets with labeled sulcal CSF (SCSF) voxels to reduce the differences

between segmentation masks and ground-truth labels. However, for fair and stable compari-

son, we performed the experiments using the original IBSR dataset without additional annota-

tion and compared our method with other methods under the same experimental conditions.

In addition, the maximum standard deviations for DSC, JI and HD are 0.078, 0.087 and 0.31,

respectively, which are close to the mean values and indicates that the pixel predicted values

are fitted well to the ground truth values without much data variation.

We also investigated the effect of the patch sizes in terms of running time and segmentation

performance. The experiments were performed on OASIS dataset for three different patch

sizes (128 × 128, 64 × 64 and 32 × 32). The graph for segmentation performance in DSC with

respect to different patch sizes are as shown in Fig 9. It can be observed that the smaller patch

sizes result in better performance in terms of the DSC score. This is because a smaller patch

size can produce more training data for the network to train. Moreover, the local regions will

be reconstructed more precisely.

Fig 7. Illustration of segmentation results obtained for our proposed method for axial, coronal and sagittal (top to bottom) using IBSR dataset: (a) Original input image,

(b) ground truth segmentation map, (c) predicted segmentation map, (d) predicted GM (binary map), (e) predicted CSF (binary map), and (f) predicted WM (binary

map).

https://doi.org/10.1371/journal.pone.0236493.g007
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Table 6 shows the execution time according to the patch size in the proposed method.

When the patch size is 128×128, it takes only 30s per subject, whereas it takes 65s for 32 ×32

patches. Therefore, it is concluded that the 128×128 patch size presents a decent tradeoff

Table 5. Segmentation result comparisons between the proposed, the conventional U-net, and SegNet based methods for OASIS and IBSR datasets (DSC: Dice Sim-

ilarity Coefficient, JI: Jaccard Index, MSE: Mean Square error, GM: Grey Matter, WM: White Mater, CSF: Cerebrospinal Fluid, HD: Hausdorff distance).

OASIS Dataset

Axial plane

Methods WM GM CSF MSE

DSC (%) JI (%) HD DSC (%) JI (%) HD DSC (%) JI (%) HD

SegNet[19] 0.87±0.017 0.77±0.021 5.09±0.18 0.84±0.014 0.72±0.011 5.7±0.53 0.80±0.045 0.67±0.063 4.9±0.47 0.023

U-net[8] 0.93±0.012 0.87±0.018 4.40±0.15 0.90±0.023 0.82±0.034 4.3±0.24 0.88±0.045 0.80±0.056 4.6±0.26 0.017

Proposed method 0.94±0.008 0.89±0.014 3.28±0.31 0.93±0.011 0.87±0.021 3.9±0.11 0.93±0.013 0.88±0.035 3.6±0.05 0.008

Coronal plane

SegNet[19] 0.82±0.054 0.69±0.046 5.4±0.35 0.78±0.038 0.64±0.049 4.6±0.58 0.74±0.067 0.61±0.091 4.6±0.43 0.035

U-net[8] 0.93±0.015 0.87±0.020 4.14±0.21 0.92±0.018 0.85±0.028 4.2±0.34 0.89±0.032 0.82±0.036 4.1±0.37 0.015

Proposed method 0.95±0.006 0.91±0.012 3.16±0.22 0.94±0.013 0.88±0.023 3.3±0.18 0.92±0.020 0.85±0.035 3.2±0.19 0.009

Sagittal Plane

SegNet[19] 0.82±0.029 0.69±0.034 7.2±0.43 0.80±0.046 0.67±0.057 5.9±0.29 0.77±0.069 0.63±0.084 6.3±0.52 0.028

U-net[8] 0.92±0.019 0.86±0.024 4.34±0.38 0.91±0.020 0.83±0.027 5.2±0.23 0.88±0.024 0.81±0.029 4.4±0.34 0.019

Proposed method 0.94±0.014 0.90±0.025 4.20±0.15 0.93±0.009 0.87±0.016 4.6±0.10 0.93±0.017 0.88±0.043 3.3±0.11 0.009

IBSR Dataset

Axial plane

SegNet[19] 0.72±0.036 0.65±0.042 6.51±0.65 0.75±0.049 0.67±0.058 6.53±0.91 0.68±0.099 0.59±0.095 6.96±0.46 0.039

U-net[8] 0.89±0.022 0.81±0.034 5.14±0.51 0.91±0.017 0.85±0.023 4.87±0.51 0.84±0.065 0.75±0.079 5.24±0.31 0.023

Proposed method 0.91±0.031 0.82±0.047 4.54±0.23 0.93±0.029 0.86±0.038 4.33±0.13 0.85±0.057 0.77±0.081 4.14±0.18 0.016

Coronal plane

SegNet[19] 0.70±0.061 0.62±0.051 6.32±0.82 0.73±0.037 0.65±0.062 6.21±0.84 0.66±0.054 0.57±0.086 6.84±0.75 0.032

U-net[8] 0.88±0.035 0.79±0.034 5.45±0.67 0.90±0.014 0.83±0.056 5.17±0.38 0.83±0.012 0.76±0.043 5.54±0.47 0.021

Proposed method 0.90±0.018 0.81±0.079 4.61±0.21 0.92±0.024 0.86±0.047 4.56±0.19 0.83±0.078 0.78±0.066 4.73±0.25 0.019

Sagittal Plane

SegNet[19] 0.71±0.043 0.63±0.039 6.49±0.61 0.74±0.073 0.66±0.059 6.36±0.76 0.65±0.083 0.54±0.092 6.99±0.41 0.041

U-net[8] 0.86±0.029 0.78±0.062 5.75±0.37 0.89±0.036 0.81±0.041 5.77±0.21 0.80±0.071 0.73±0.019 5.83±0.15 0.026

Proposed method 0.89±0.012 0.80±0.032 4.89±0.014 0.91±0.002 0.84±0.023 5.42±0.06 0.81±0.040 0.75±0.041 4.98±0.09 0.021

https://doi.org/10.1371/journal.pone.0236493.t005

Fig 8. Segmentation results for existing methods and the proposed method: (a) original input image, (b) ground-truth segmentation map, and segmentation

maps generated by (c) SegNet, (d) U-net, and (e) Proposed method.

https://doi.org/10.1371/journal.pone.0236493.g008
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between the DSC score and computational time taken to predict a single subject, based on the

results of Table 6 and Fig 9.

To evaluate the effectiveness of the non-overlapping patches, we compared the performance

of the proposed method with the conventional U-net and overlapping patch-wise U-net. As

discussed earlier, the whole slices are used for training and testing as input in the conventional

U-net while partitioned patches are used for the overlapping and the proposed non-overlap-

ping cases. Table 7 shows the experimental setups and results for three cases under consider-

ation. For comparison with the conventional U-net [8], the proposed method achieves higher

DSC and JI values by 0.3 and 0.7, respectively. For the comparison with the overlapping U-net,

overlapping patches with the same size used in the proposed method (but a slide of 8 pixels)

are taken. The underlying reason for using a stride of 8 pixels is that a pixel stride of less than 8

pixels shows almost identical segmentation results as overlapping patches with a small stride

difference might share similar information. Furthermore, as the pixel stride is smaller, the

number of patches increases, which causes increased computational complexity. For instance,

starting with a stride of 1 pixel, each slice will create 258 patches. Each subject with 176 slices

(axial plane) will have 45,408 (176×258) patches and multiplied by 20 subjects (for training),

yielding a total number of 908,160 patches; training process using such a huge number of

patches at a time leads to increased computational time. In contrast, if we take 8 pixels stride,

it will create overall 112,640 (20×176×32) patches during the training stage. Note that this sig-

nificantly reduced number of patches shows identical results as the case of choosing a stride of

1 pixel. For this reason, an optimal stride size of 8 pixels is chosen for our experimental study.

Although the classification accuracies show almost identical results of 0.94 for DSC and

0.89 for JI, respectively, the output of the predicted image cannot be reconstructed accurately.

This is because of multiple convolution operation over the same pixel elements. Moreover, the

overlapping patch-based U-net requires significantly more computation time because the net-

work should be trained separately for each overlapping patch. The overall computation com-

plexity of overlapping patch-wise U-net requires 35 hours to train and test the images under

our experimental setup. On the other hand, the proposed method only takes 4 hours.

In order to investigate the effect of non-central slices for the result, the segmentation experi-

ments were performed using non-central slices. Fig 10 shows the results of both central and

non-central slices. Here, we can observe that the non-central slices such as 8, 11, 14, 17,143,

146, 149 and 152 contain less information compared to the other central slices. Although non-

central slices contain less information, the proposed method is capable of accurately segment-

ing the predicted images with respect to the original images. The segmentation results of the

proposed method are shown in Fig 10.

For training, some slices at the side lobes do not contain much useful information [38] for

segmentation and a slice shares almost the same information with neighboring slices. Hence,

by excluding these non-informative slices and reducing the repetitive training of the consecu-

tive slices, we extracted 48 slices with an interval of 3 slices, which contains both central slices

(i.e., slices with more information) and non-central slices (i.e., slice with less information) for

training. Table 8 shows the experimental results for the comparison between the cases of using

48 slices and all slices. As shown in Table 8, performance differences between the two cases are

almost negligible even if using only 48 slices takes half complexity compared to the case of

using all slices. From the results, it would be much beneficial to use selected slices for training

without the degradation of segmentation performance while reducing computational

complexity.

To investigate the impact on the random selection of the subset dataset, the additional

experiments were performed using randomly selected datasets by Table 9.
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Fig 9. DSC scores with respect to different patch sizes for OASIS dataset.

https://doi.org/10.1371/journal.pone.0236493.g009
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Table 6. Runtime time performance with respect to a different patch size for U-net model to predict the complete

test subject.

Patch size (pixels) Time (s)
128 × 128 30

64 × 64 47

32 × 32 65

https://doi.org/10.1371/journal.pone.0236493.t006

Table 7. Overall parameter comparison table used for automatic segmentation brain MR images based on the U-net model.

No. Parameters U-Net[8] Overlapping patch-wise U-Net Proposed method

1 Input size 256×256 128×128 128×128

2 Training set 20 subjects 20 subjects 20 subjects

3 Testing set 30 subjects 30 subjects 30 subjects

4 Slice extraction (for axial) 176 slices from each subject 176 slices from each subject 176 slices from each subject

5 # of patches (for 1 slice) 1 32 (Stride of 8 pixels) 4

6 Computational time 3 hours 35 hours 4 hours
7 DSC (OASIS dataset) 0.90 0.94 0.93

8 JI (OASIS dataset) 0.81 0.89 0.87

https://doi.org/10.1371/journal.pone.0236493.t007

Fig 10. Results of predicted images along with original images based on central and non-central slices.

https://doi.org/10.1371/journal.pone.0236493.g010
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Table 10 shows the segmentation results for randomly selected sub-datasets of the OASIS

datasets. As shown in the table, the proposed method shows almost identical performances

with Table 5 of the revised manuscript. It indicates that our proposed method shows robust

segmentation performances regardless of the construction approach of datasets.

5. Conclusions

In this paper, we have shown that, by dividing the input slices and the corresponding segmen-

tation maps of brain MRI and training the U-net model on these, one can achieve segmenta-

tion performance that is better than that of previously proposed methods. The proposed

patch-wise U-net architecture makes predictions for the input patches individually, and hence,

the local spatial information is better retained. Moreover, the proposed model also has the abil-

ity to make predictions for multi-class segmentation, as opposed to the conventional U-net

model, which was proposed to deal with binary segmentation problem. Even though our

method has a limitation of increasing the computational complexity in training, it is negligible,

compared to the conventional U-Net model, considering significantly improved segmentation

performances over other state-of-the-art methods. Our method also shows significant

improvement in terms of metrics such as the Dice similarity coefficient and Jaccard index, for

segmentation of the brain MRI to CSF, GM, and WM regions with an overall DSC score of

0.93, which shows an improvement of approximately 3% over the conventional U-net and sig-

nificant improvement over the SegNet-based approach by more than 10%.

Table 8. Comparison of segmentation results between the cases of using 48 slices and all slices in the training.

Plane Parameter CSF GM WM Execution time

Selected 48 slices All slices Selected 48 slices All slices Selected 48 slices All slices Selected 48 slices All slices

Axial DSC 0.92 0.93 0.93 0.93 0.94 0.94 59 minutes 4 hours

JI 0.85 0.88 0.87 0.87 0.89 0.89

Coronal DSC 0.91 0.92 0.93 0.94 0.94 0.95 1.5 hours 4.5 hours

JI 0.84 0.85 0.88 0.88 0.89 0.91

Sagittal DSC 0.92 0.93 0.92 0.93 0.93 0.94 59 minutes 4 hours

JI 0.85 0.88 0.86 0.87 0.88 0.90

https://doi.org/10.1371/journal.pone.0236493.t008

Table 9. Training and test dataset for investigating the impact of a random selection of the subset dataset.

No. of test set Training (Subject #) Test (Subject #)

Testset0 0–20 21–50

Testset1 100–120 200–230

Testset2 300–320 21–50

https://doi.org/10.1371/journal.pone.0236493.t009

Table 10. Segmentation results for randomly selected datasets of the OASIS datasets.

Sets Parameter GM WM CSF

Testset0 DSC 0.93 0.94 0.93

JI 0.87 0.89 0.88

Testset1 DSC 0.91 0.92 0.94

JI 0.84 0.85 0.88

Testset2 DSC 0.94 0.95 0.93

JI 0.89 0.91 0.88

https://doi.org/10.1371/journal.pone.0236493.t010
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