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Abstract: (1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown
protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal
levels of RvD1 in aged (24 months) and younger (3 months) Balb/c mice, along with the activation of
macro- and microglia, apoptosis, and neuroinflammation. (2) Methods: Retinas from male and female
mice were used for immunohistochemistry, immunofluorescence, transmission electron microscopy,
Western blotting, and enzyme-linked immunosorbent assays. (3) Results: Endogenous retinal levels
of RvD1 were reduced in aged mice. While RvD1 levels were similar in younger males and females,
they were markedly decreased in aged males but less reduced in aged females. Both aged males
and females showed a significant increase in retinal microglia activation compared to younger mice,
with a more marked reactivity in aged males than in aged females. The same trend was shown by
astrocyte activation, neuroinflammation, apoptosis, and nitrosative stress, in line with the microglia
and Müller cell hypertrophy evidenced in aged retinas by electron microscopy. (4) Conclusions:
Aged mice had sex-related differences in neuroinflammation and apoptosis and low retinal levels of
endogenous RvD1.

Keywords: retina; aging; neuroprotection; apoptosis

1. Introduction

The decrease in the physiological functions of the aged organs can be influenced
by genetic and environmental factors [1]. Age-related immune dysfunctions leading to
chronic inflammation is a major risk factor for the incidence and prevalence of age-related
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diseases, including neurodegenerative diseases [2]. Retinal neurodegenerative diseases are
associated with neuroinflammation, chronic activation and proliferation of the microglia,
alongside with neuronal and glial cell death [3], that leads to morphological alterations
and visual impairment [4].

Clinical studies have indicated that eye disorders, such as cataract, glaucoma, and
age-related macular degeneration (AMD), are associated with sex and have an increased
incidence with age [5–7].

In this context, our previous work showed that the aged retina is more sensitive to
the damage in male mice than in female mice [8]. This is because, in the retina of male
mice, there is a greater dysregulation of some age-related microRNAs (miRNAs) that
link to oxidative stress response and neurodegeneration. In fact, the thickening of the
retina and the integrity of the Bruch’s membrane were correlated with the dysregulation of
miR-27a-3p, miR-20a-5p, miR-20b-5p, and miR-27b-3p in physiologically aged male mice
compared to physiologically aged female mice [8].

Since the ocular expression of some of these miRNAs is under control of the pro-
resolving lipid mediator Resolvin D1 (RvD1) in male murine models of retina degener-
ation [9–12] and RvD1 itself governs neurodegenerative disorders with protective roles,
we thought about its possible involvement in the sex and age differences in aged retinas
compared to younger retinas. Therefore, apoptosis, neuroinflammation, and activated
macro and microglia together with the retinal levels of RvD1 are studied here in the aged
and younger retina of male and female Balb/c mice.

2. Results
2.1. RvD1 Levels in Aged Retina

Control male (CM) and female (CF) mice exhibited similar levels of retinal RvD1 (CM:
80 ± 9 IU/mL; CF: 70 ± 11 IU/mL). On the contrary, RvD1 was markedly decreased in the
retina of aged male (AM) mice (20 ± 5 IU/mL; p < 0.01 vs. CM). This trend was similar in
aged females (AF) (40 ± 8 IU/mL; p < 0.05 vs. CF), although these showed significantly
higher retinal RvD1 levels compared to aged males (p < 0.05) (Figure 1).
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Figure 1. RvD1 retinal levels. ELISA determination of RvD1 in aged and younger (control) retina.
Data are expressed as mean ± S.E.M. of N = 10 retinas per group. M: males; F: females; IU: Interna-
tional Units; ** p < 0.01; * p < 0.05 vs. control.
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2.2. Microglial Activation

Ionized calcium-binding adapter molecule 1 (Iba-1), as a marker of microglial activa-
tion, was inversely correlated with the levels of RvD1 measured in the retina homogenates
(r = −0.88; p < 0.01) (Table 1). Increased Iba-1 immunoreactivity (as a marker of microglial
activation) was detected in aged retina compared to control retina. This was distributed in
outer retina (starting with photoreceptor outer segment) and inner retina evenly throughout
the nerve fiber layer and the ganglion cell layer (Figure 2A). The retinas of both aged male
and female mice showed a significant increase in Iba-1 (AM: 79 ± 8%, p < 0.01 vs. CM; AF:
45 ± 10%, p < 0.05 vs. CF) compared to the retinas of young same-sex mice (CM: 20 ± 2%;
CF: 25 ± 3%) (Figure 2A). However, it was more markedly significant for the retinas of
aged male mice than for the retinas of aged female mice (p < 0.05 vs. AM) (Figure 2A).
These results were confirmed by Iba-1 protein levels’ detection by Western Blotting analysis
(Figure 2B). Microglial hypertrophy was evidenced in the extended damaged inner nuclear
layer (INL) areas in aged retina of both sexes (Figure 2C).

Table 1. Pearson’s r values evaluating the strength of association between RvD1 and retinal markers
evaluated.

Iba-1
(DU)

GFAP
(DU)

NF-kB
(µg/mL)

TNF-α
(pg/mL)

Caspase 3
(ng/mL)

3-Nitrotyrosine
(ng/mL)

RvD1
(IU/mL) −0.88 ** −0.86 ** −0.93 ** −0.94 ** −0.82 ** −0.87 **

** p < 0.01.
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Figure 2. Microglial activation in aged and younger (control) retina. (A) Immunofluorescence staining
in control and aged retina. Immunofluorescence images and data (% ± S.E.M.) are representative of
10 observations for each individual/group; Iba-1 immunolabeling of the retina indicates less reactive
microglia in the controls (a. male; c. female); aged samples (b. male; d. female) contain activated
macroglia cells which were positive for Iba-1; ** p < 0.01; * p < 0.05 vs. control; magnification 63×;
(B) Western blotting results are expressed as the mean ± S.E.M. of n = 10 retinas per group. M:
males; F: females; DU: densitometric units; ** p < 0.01; * p < 0.05 vs. control; (C) electron microscopy
evidenced microglial hypertrophy (arrowhead) in the retinal inner nuclear layer (INL) of aged male
(a) and aged female (b); bar 5 µm.
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2.3. Müller Cell Activation

The regression with the RvD1 levels showed a significant negative correlation between
RvD1 and glial fibrillary acidic protein (GFAP), a marker of astrocytes activation (r = −0.86;
p < 0.01) (Table 1). Particularly, GFAP-positive cells were marked in aged retina (AM:
58 ± 5%, p < 0.01 vs. CM; AF: 37 ± 4%, p < 0.05 vs. CF) (Figure 3A). These were localized
in the inner and outer retinal layers and were much more intense in the retinas of male
mice if compared to the retinas of female mice (p < 0.01 vs. AM) (Figure 3A). Accordingly,
GFAP protein levels detected by Western Blotting showed the same trend between the
control and aged retina, particularly between aged male and female mice (p < 0.01 vs.
AM) (Figure 3B). Moreover, electron microscopy evidenced Müller cell hypertrophy and
hyperplasia on aged retina of both sex (Figure 3C). Particularly, a normal aspect of the
Müller cells processes between bipolar cells was present in the inner nuclear layer (INL) of
the controls, while an extended network of cytoplasmic process of Müller cells was shown
by both aged retinas (Figure 3C).
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Figure 3. Müller cell activation in aged retina. (A) Immunofluorescence staining in control and aged
retina. Immunofluorescence images and data (% ± S.E.M.) are representative of 10 observations for
each individual/group; significantly increased GFAP immunoreactivity was noted in aged retinas
(b. male; d. female), compared with the normal controls (a. male; c. female); ** p < 0.01; * p < 0.05
vs. control; magnification 63×; (B) Western blotting results are expressed as the mean ± S.E.M. of
n = 10 retinas per group. M: males; F: females; DU: densitometric units; ** p < 0.01; * p < 0.05 vs.
control; (C) electron microscopy evidenced a normal aspect of the Müller cells processes between
bipolar cells in the inner nuclear layer (INL) of the controls (a. control male, c. control female) and
extended network of cytoplasmic process of Müller cells (M); in both aged retinas (b. aged male;
d. aged female); hypertrophied Müller cells (arrows); bar 5 µm.
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2.4. Neuroinflammation

Aged retinas showed increased markers of inflammation such as nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) (Figure 4) and Tumor Necrosis Factor
alpha (TNF-α) (Figure 5) detected by immunohistochemistry compared to controls. Par-
ticularly, NF-kB positive staining in aged males showed a % of 87 ± 11 (p < 0.01 vs. CM)
and of 64 ± 4 in aged females (p < 0.05 vs. CF). These latter were significantly different
from aged males (p < 0.05 vs. AM) (Figure 4A,B). Similarly, TNF-α positive cells were
increased in aged retinas (AM: 80 ± 8%, p < 0.01 vs CM; AF: 59 ± 5%, p < 0.01 vs. CF)
(Figure 5A,B), significantly differing by sex (AF p < 0.05 vs. AM) (Figure 5A). ELISA of both
NF-kB (Figure 4C) and TNF-α (Figure 5C) protein levels were in line with this trend. Both
NF-kB and TNF-α were inversely correlated with RvD1 levels (r = −0.93 and r = −0.94,
respectively, both p < 0.01) (Table 1).
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Figure 4. NF-kB expression in aged and younger (control) retina. (A) Representative immunohisto-
chemistry (a. control male; b. aged male; c. control female; d. aged female) and (B) quantification of
immunopositive areas in control and aged retina (M: males and F: females); the results calculated as
the % ± S.E.M. are considered statistically significant when * p < 0.05; ** p < 0.01 vs. control; n = 10
observations for each individual/group; ONL: outer nuclear layer; OPL: outer plexiform layer; INL:
inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer; Panel A: bar = 20 µm. The
frames in the panel A are given on the right in a lower magnification bar = 200 µm; (C) enzyme-linked
immunosorbent assay (ELISA) of NF-kB protein levels in the control and aged retina; results are
expressed as the mean ± S.E.M. of n = 10 retinas per group. DU: densitometric units; ** p < 0.01;
* p < 0.05 vs. control.
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caspase-3 (AM: 88 ± 12%, p <0.01 vs. CM; AF: 57 ± 10%, p < 0.05 vs. CF) (Figure 6A,B). This 
marker intensely presents in aged retinas of male mice (Figure 6Aa,b) while weaklier in 
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Figure 5. TNF-α levels in aged and younger (control) retina. (A) Representative immunohistochem-
istry of TNF-α (a. control male; b. aged male; c. control female; d. aged female) and (B) quantification
of immunopositive areas in control and aged retina (M: males and F: females); the results calculated
as the % ± S.E.M. are considered statistically significant when * p < 0.05; ** p < 0.01 vs. control; n = 10
observations for each individual/group; ONL: outer nuclear layer; OPL: outer plexiform layer; INL:
inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer; Panel A: bar = 20 µm. The
frames in the panel A are given on the right in a lower magnification bar = 200 µm; (C) ELISA of
TNF-α protein levels in the control and aged retina; results are expressed as the mean ± S.E.M. of
n = 10 retinas per group. DU: densitometric units; ** p < 0.01; * p < 0.05 vs. control.

2.5. Apoptosis

Retinal cell apoptosis is illustrated in Figure 6, showing caspase-3 positive cells in reti-
nal layers. Only cells from aged retinas showed a high presence of apoptosis as caspase-3
(AM: 88 ± 12%, p <0.01 vs. CM; AF: 57 ± 10%, p < 0.05 vs. CF) (Figure 6A,B). This marker
intensely presents in aged retinas of male mice (Figure 6Aa,b) while weaklier in retinas of
female mice (p < 0.05 vs. AN) (Figure 6Ac,d). These results were confirmed by caspase-3
protein levels detection by ELISA (Figure 6C). Moreover, correlation analysis showed a
negative association between RvD1 and caspase-3 levels (r = −0.82, p < 0.01) (Table 1).

2.6. Nitrotyrosine Measurement

The measure of the 3-nitrotyrosine levels as a marker of peroxynitrite formation in the
retina homogenates was high in the aged retina of both sexes (AM: 95 ± 8 ng/mL, p < 0.01
vs. CM; AF: 74 ±7 ng/mL, p < 0.05 vs. CF) (Figure 7). This had the maximal values in
retinas extracted from eyes of male mice being significantly different from retinas of female
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mice aged equally (p < 0.05 vs. AM) (Figure 7). Additionally, 3-nitrotyrosine levels were
negatively correlated with RvD1 levels (r = −0.87, p < 0.01) (Figure 7).
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3. Discussion

RvD1 is a lipid derived from docosahexaenoic acid metabolism together with pro-
tectins and maresins [13]. It binds its own specific receptor called formyl peptide receptor 2
(FPR2) and is involved in the genesis/resolution of several inflammatory pathologies [11].
The deficiency of this lipid has been linked to the onset of degenerative diseases typical
of the CNS, especially if an oxidative-inflammatory insult causes the degeneration of the
cells involved [14–16]. Accordingly, in previous papers done by this group, RvD1 showed
a protective effect when applied exogenously to murine uveitic eyes and degenerating
photoreceptors in vitro [9–12]. Here, we further contribute to these data by defining for the
first time a key involvement of RvD1 in apoptosis and neuroinflammation occurring in the
physiologically aged retina. Two novelties are evidenced: (i) the mediator RvD1 decreased
in the 24-months-old retina, and (ii) it had different levels in the retina of the male mice
compared to the retina of the female mice. Phenomena associated with greater damage to
specific segments of the retina in males than in females (e.g., retinal pigment epithelium
and Bruch’s membrane, outer and inner layers) [8]. From the mechanistic point of view,
the decrement of RvD1 was paralleled by microglia activation together with gliosis and
increased apoptotic and nitrosative response into the retina.

Retinal damage is due to local immune-inflammatory processes affecting the RPE,
photoreceptors layer, ganglion, and nerve fiber layers and inner nuclear layer (INL) [17],
along with glial cells activation [18,19]. There are two glial retinal types with specific
morphology, physiology, and antigenicity: macroglia (Müller cells and astrocytes) and
microglia [20]. Activated Müller cells can induce gliosis and contribute to neuron death
by secretion of proinflammatory factors, i.e., TNFα, monocytic chemotactic type 1 protein
(MCP1), interleukins, interferon, and nitric oxide (NO), leading to free radicals’ release
and protein nitrosylation, with neuronal toxicity effects [21–23]. In line with this, retinal
reactive gliosis (astrocytosis) increased since GFAP labelling was pronounced in aged retina
compared to young retina, particularly in male retina compared to female retina. This
was associated with microglia activation in aged mice compared to adult mice, specifi-
cally much more intensely in the retina of aged male mice than aged female mice. This
latter example underlines a lesser extent of neuroinflammatory damage. The microglia
activation process is a complex phenomenon, characterized by the acquisition of different
functional phenotypes, schematically represented by the M1 and M2 phenotypes, associ-
ated respectively with neuro-toxic and neuroprotective functions. Accordingly, increased
Iba-1 indicated that the M1 phenotype was present in aged retina.

Activated macro- and microglia cause neuroinflammation and increase retinal apoptosis [24],
the final stage of cellular damage aimed at the removal of undesired cells [25]. However,
dysregulation of the apoptotic mechanisms (e.g., persistent immune-inflammation, mito-
chondrial damage, ROS generation, and epigenetic alterations) may be disadvantageous
since it may lead to increased cell loss, tissue dysfunction, and exacerbated postmitotic
cell (neurons)-associated pathological conditions [25]. Retina is one tissue that is highly
exposed to cellular damage because of the prolonged exposition to damaging factors such
as light, microbes, and chemicals [26,27] that may cause apoptosis and cell death in the
long run, as of the example of RPE cells [28]. Here, apoptosis increased, with aged male
retina showing more apoptosis than female retina. Interestingly, RvD1 was much lower in
the male retina than in the female retina.

Another aspect of aged retina is the presence of nitrosative stress, which exerts damag-
ing effects [29]. In the mammalian retina, NO has been detected in amacrine cells, bipolar,
and ganglion cells in the inner retina, whereas interplexiform cells, bipolar cells, and hor-
izontal cells are sources of NO for the outer retina [30]. However, an overproduction of
NO generates NOx production, such as peroxynitrite, which deranges retinal structure by
reacting with several biomolecules and potentially leads to cell death [29,31]. Accordingly,
here, we recorded higher levels of nitrotyrosine (index of peroxynitrites) in aged retina
with respect to younger retina. In particular, the levels of nitrotyrosine were lower in the
retina of aged female mice than in the retina of aged male mice.
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In conclusion, the retinal RvD1 levels were decreased in aged mice when compared
to younger mice, and the decrease was markedly larger in males. Several aspects of the
aged retina (the astrocyte activation, neuroinflammation, apoptosis and nitrosative stress,
being in line with Müller cell hypertrophy) were paralleled by changes of RvD1 levels.
Considering that retinal aging is a progressive process, more in-depth studies should
progressively monitor these alterations, even in different mouse strains.

4. Materials and Methods
4.1. Animals

Experimental procedures were conducted according to the guidelines of the Decla-
ration of Helsinki, in compliance with European and national guidelines for research on
laboratory animals and had the ethical approval from the Vasile Goldis Western University
of Arad (Approval no.135/2019).

Male and female Balb/c mice aged 3 months (control groups) and 24 months (aged
groups; approximately 75–85 years for humans) [8,32], respectively (n = 10/each group/sex),
were used. Young females were under physiological and regular estrus cycle, while aged
females were under naturally occurring physiological decline of estrus without any ma-
nipulation [8,33]. All were housed in IVC cages, in standard temperature and humidity
conditions, with ad libitum access to food and water. Lighting was regulated on a 12-h
light/dark cycle. Particularly, to minimize the negative effects of standard vivarium light-
ing on the aged retina, an illuminance level of 39 ± 7 lux was used [8,33]. This was even
lower than the room light recommended for animals susceptible to phototoxic retinopathy
(between 130 and 325 lux) by the National Research Council (US) Committee for the Update
of the Guide for the Care and Use of Laboratory Animals [34].

Once the experimental setting has been prepared, each mouse under anaesthesia had
systemic perfusion via the left ventricle with 100 mL of 0.1 M ice-cold phosphate-buffered
saline (PBS) + heparin (5000 IU/mL, final concentration of 0.1% v/v) [35]. At the end of
perfusion, one eye for biochemical assays was excised. In a next step, animals’ perfusion
was continued with 100 mL more of freshly prepared 4% paraformaldehyde (PFA) in PBS
for the collection of the remaining eyes and investigations detailed below.

4.2. Immunohistochemistry

Immunohistochemistry was done on 5 µm paraffin-embedded eye sections, previously
deparafinized and rehydrated using a standard technique. Primary antibodies diluted 1:200:
mouse monoclonal caspase-3 (sc-271759; Santa Cruz Biotechnology; Dallas, TX, USA),
rabbit polyclonal NF-kB (sc-109; Santa Cruz Biotechnology; Dallas, TX, USA), mouse
monoclonal TNF-α (ab 1793; Abcam PLC., Cambridge, UK) were incubated overnight
la 4 ◦C.

Novocastra Peroxidase/DAB kit (Leica Biosystems, Nussloch, Germany) was used to
detect immunoreactions, according to the manufacturer’s instructions. The substitution of
primary antibodies with irrelevant immunoglobulins of matched isotype was used to stain
negative control sections and all were analysed under bright-field microscopy.

4.3. Immunofluorescence

GFAP levels were assessed by using a rabbit polyclonal anti-GFAP antibody (ab7260;
Abcam PLC., Cambridge, UK) and AlexaFluor 594 labeled goat anti-rabbit IgG secondary
antibody (A 11037; Thermo Fisher Scientific Inc., Rockford, IL, USA). Goat polyclonal Iba-1
(ab-5076; Abcam PLC., Cambridge, UK) and donkey anti-goat AlexaFluor 594 (a-11058;
Invitrogen, Waltham, MA, USA) were used as primary antibody and secondary antibody,
respectively. Bond Dewax Solution (Leica Biosystems Inc., Buffalo Grove, IL, United States)
was used to deparaffinate the eye sections. They were rehydrated in alcoholic solutions.
Epitope Retrieval Solution (Leica Biosystems Inc., Buffalo Grove, IL, United States) was
used for antigen retrieval at 95 ◦C for 10 min, followed by blocking with 2% BSA in PBS. The
primary antibody was applied in a dilution of 1:1000 in primary antibody diluting buffer
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(Bio-Optica, Milano, Italy) for 2 h at 4 ◦C. The slides were washed in PBS and incubated
with the secondary antibody, diluted to 1:500 in PBS, for 2 h at room temperature in the
dark. After a further 3 washing steps with PBS, nucleus counterstaining was performed
with 1 µg/mL DAPI (Sigma-Aldrich, St Louis, MO, USA). CC/Mount aqueous mounting
medium (Sigma-Aldrich, St Louis, MO, USA) was used to mount the stained slides. They
were examined with a Leica SP5 confocal laser scanning microscope.

4.4. Transmission Electron Microscopy

The eye samples were prefixed in 2.7% glutaraldehyde solution (Sigma-Aldrich,
St Louis, MO, USA) in 0.1 M phosphate buffer; then, washed in 0.15 M phosphate buffer
(pH 7.2) and post-fixed in 2% osmic acid solution (Sigma-Aldrich, St Louis, MO, USA)
in 0.15 M phosphate buffer. Acetone was used for dehydration, followed by inclusion
in the epoxy embedding resin Epon 812. Ultrathin sections of 70 nm sections were cut
on Leica EM UC7 ultramicrotome (Leica Microsystems GmbH, Wetzlar, Germany) and
doubly contrasted with solutions of uranyl acetate and lead citrate and analyzed with TEM
(Morgagni 268, FEI, Eindhoven, Netherlands) at 80 kV. Data acquisition was performed
with a MegaView III CCD using iTEM SIS software (Olympus Soft Imaging Software,
Munster, Germany).

4.5. Western Blotting

Retinas were first dissected as previously described [36], then homogenized in RIPA
lysis buffer (R0278; Sigma-Aldrich, Milan, Italy) containing a protease inhibitor cocktail
(11873580001; Roche, Monza, Italy). After a centrifugation at 13,000× g for 10 min at
4 ◦C and the subsequent separation of nucleic acids from protein supernatants, total
protein concentration was assessed by using Bio-Rad protein assay protocol (500-0006,
Bio-Rad Laboratories; Segrate, Italy). Western blotting assay was performed as previously
described [37]. Briefly, protein samples were separated by SDS-electrophoresis in an 8%
polyacrylamide gel and then electrotransferred onto PVDF membranes (Thermo Fisher
Scientific Inc., Rockford, IL, USA). These were blocked for 1 h at room temperature with
5% non-fat dry milk (EMR180500; Euroclone SpA, Milan, Italy) with PBS-T (PBS-0.05%
Tween 20) (P1379-500ML; Sigma-Aldrich, Milan, Italy) before the incubation overnight
at 4 ◦C with anti-GFAP (0.1 µg/ mL; ab53554; Abcam PLC., Cambridge, UK), anti-Iba-1
(2 µg/mL; 5076; Abcam; PLC., Cambridge, UK), and anti-actin (C-2) (1:200 in blocking
solution; sc-8432, Santa Cruz Biotech, CA, USA) primary antibodies dissolved in PBS-0.05%
Tween 20. Anti-goat (sc-2020; Santa Cruz Biotech, CA, USA) and anti-mouse (sc-2005;
Santa Cruz Biotech, CA, USA) horseradish peroxidase-conjugated secondary antibodies
(1:2000 in PBS-T; Santa Cruz Biotech, CA, USA) were incubated at 1 h at room temperature
to detect immunoreactive signals. These were visualized with an ECL system (Amersham
Pharmacia, Uppsala, Sweden), quantized by ChemiDoc-It 5000 by using VisionWorks Life
Science Image Acquisition and Analysis software (UVP, Upland, CA, USA), normalized
with actin levels, and expressed as densitometric units (DU).

4.6. ELISAs

Levels of RvD1 (MBS2600566; MyBiosource; San Diego, CA, USA), nitrotyrosine (as marker
of peroxynitrite formation) (ab116691; Abcam PLC., Cambridge, UK), NF-kB p65 (ab176648;
Abcam PLC., Cambridge, UK), TNF-α (MBS825075; MyBiosource; San Diego, CA, USA) and
caspase-3 (E4591-100; BioVision; Milpitas, CA, USA) were determined in retinal tissues by
commercial ELISA tests, following the manufacturer’s protocols.

4.7. Statistical Analysis

Results are expressed as the mean ± standard error of the mean (S.E.M.). One-way
ANOVA followed by Tukey’s multiple comparisons test was used to assess statistical
significance. The strength of the association between pairs of variables was evaluated
by Pearson correlation analysis. GraphPad Prism (6.0 GraphPad Software, La Jolla, CA,



Int. J. Mol. Sci. 2021, 22, 6280 11 of 12

United States) was used to carry out statistical analysis, by considering differences for
p values < 0.05 statistically significant.
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