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Abstract

The study aimed to fabricate and evaluate Meloxicam (MLX) loaded Hydroxypropyl Methyl-

cellulose (HPMC) microparticles for colon targeting because MLX is a potent analgesic

used in the treatment of pain and inflammation associated with colorectal cancer (CRC).

Nevertheless, its efficiency is limited by poor solubility and gastrointestinal tracts (GIT) asso-

ciated side effects. Seventeen formulations of MLX loaded HPMC microparticles were fabri-

cated by the oil-in-oil (O/O)/ emulsion solvent evaporation (ESE) technique. A 3-factor, 3-

level Box Behnken (BBD) statistical design was used to estimate the combined effects of

the independent variables on the dependent variables (responses), such as the percent

yield (R1), the entrapment efficiency (EE) (R2), mean particle size (R3) and in vitro percent-

age of cumulative drug release (R4). For physicochemical characterization FTIR, XRD,

DSC, and SEM analyses were performed. Biocompatibility and non-toxicity were confirmed

by in-vivo acute oral toxicity determination. The percentage yield and EE were 65.75–

90.71%, and 70.62–88.37%, respectively. However, the mean particle size was 62.89–

284.55 μm, and the in vitro cumulative drug release percentage was 74.25–92.64% for 24

hours. FTIR analysis showed that the composition of the particles was completely compati-

ble, while XRD analysis confirmed the crystalline nature of the pure drug and its transition

into an amorphous state after formulation. DSC analysis revealed the thermal stability of the

formulations. The SEM analysis showed dense spherical particles. The toxicity study in

albino rabbits showed no toxicity and was found biocompatible. The histopathological evalu-

ation showed no signs of altered patterns. Results of this study highlighted a standard

colonic drug delivery system with the ability to improve patient adherence and reduce GIT

drug-associated side effects in CRC treatment.
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1. Introduction

Colorectal cancer (CRC) is a chronic heterogeneous disease caused by genetic mutation

wherein various pathways could have participated in tumor commencement, evolution, and

growth [1, 2]. Inflammatory-motivated genetic change, and epigenetic modification, are sub-

stantial features of CRC tumor commencement [3]. Inflammation is a rapid biochemical

response added on through prostaglandin E2 (PGE2), the primary inputs of this response are

corrosive chemicals, antigen-antibody reactions, and mechanical trauma [4]. In the CRC

growth, various cytokines like TNF-α, IL-1, and IL-6 are involved. TNF-α is released by mac-

rophages or monocytes which upholds the development of tumor growth, angiogenesis, and

long-lasting inflammation, and likewise, IL-1 galvanizes pro-inflammatory and up-regulatory

responses [5]. Surgery, radiation, and chemotherapy are the most common traditional treat-

ment approaches for many types of cancers including CRC. More than 40% of cancers are

treated with surgery (full removal of the tumor); as a result, surgery is a common treatment

choice for a variety of cancer, whether complete or partial excision is used [6]. Radiation ther-

apy, whether used alone or in combination with surgery or chemotherapy, is one of the most

used approaches for treating cancer. However, this approach is frequently connected with the

interaction of radiations with DNA, followed by the creation of a free radical [7]. Chemothera-

peutic agents are another traditional treatment approach for treating a range of cancers.

Though the use of chemotherapeutic drugs for cancer treatment and/or improving the

patient’s quality of life is almost complementary, the major issues concerning chemotherapy

must be addressed, which include low bioavailability due to poor blood flow, inability to reach

the target site due to interaction with the reticuloendothelial system (RES), and lack of tumor

specific targeting [8]. The clinical importance of traditional approaches (i.e., surgery, radiation,

and chemotherapy) is restricted due to these limitations. In 2018, more than 1.8 million cases

were detected and CRC was rated the third most common cancer. In terms of mortality,

881,000 deaths were associated with CRC and categorized it as the second of all diseases [9].

Meloxicam (MLX), 4-Hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2- benzothiazine-

3-carboxamide 1,1-dioxide pertains to the enolic acid group of oxicam derivatives [10]. In the sol-

ubility and permeability profile, MLX is categorized as class-II of the BCS system of classification

[11]. It exhibits poor water solubility and a low dissolution rate (almost 4.4 μg/mL at water),

besides an elimination half-life of approximately 20 hrs [12]. It is commonly used for the manage-

ment of acute pain, inflammation, and stiffness induced by rheumatoid arthritis, ankylosing spon-

dylitis. osteoarthritis, injuries, and tendinitis [13]. Many population-based retrospective and

prospective studies have found that regular usage of selective cyclooxygenase-2 (COX-2) inhibi-

tors such as MLX are connected to a lower incidence and mortality rate of CRC [14]. MLX’s lim-

ited solubility causes poor dissolution and low absorption from the gastrointestinal tract (GIT) at

physiologic pH, limiting its therapeutic efficacy [15]. The gastrointestinal side effects of MLX such

as dyspepsia, ulceration, bellyache, and bleeding significantly limit its clinical application which

may also restrict its long-term usage for CRC prevention [16]. As a result, developing a suitable

drug carrier system for efficient and controlled delivery of MLX to the colonic region is vital.

Controlling the drug release is critical for optimal delivery of the medicine at the site of

action after oral administration. A controlled release delivery system has the capability to

maintain a consistent plasma drug concentration for an extended period, reducing the adverse

effects associated with traditional dose forms [17]. Unfortunately, poor drug solubility, degra-

dation, low bioavailability, and bio-distribution make it difficult to pinpoint the site of action

[18]. Encapsulating the drug in a polymeric matrix that allows for precise and controlled drug

release at a steady rate for a long period is one strategy to address low solubility and poor bio-

availability [19]. Polymeric particulate systems, such as microparticles, nanoparticles, and
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microsponges have gotten a lot of attention in recent years due to their various and customiz-

able features [20]. Meanwhile, microparticles and nanoparticles are commonly prepared with

biocompatible and biodegradable polymers, as drug carriers to overcome the low solubility,

limited bioavailability, drug degradation, and to manage controlled released delivery at the site

of action [21]. Microparticles with diameters ranging between 1–1000 μm are spherical parti-

cles with an active pharmacological ingredient in the core and a polymeric coating that nor-

mally controls drug release from the microparticles [18] and can be fabricated by numerous

methods such as solvent evaporation, fluidized bed method, conservation method, spray dry-

ing, and interfacial polymerization method [22, 23]. In the present research work, microparti-

cles were fabricated through the oil in oil (O/O) emulsion solvent evaporation (ESE) method,

because it is simple to make, does not require harsh processing conditions, and also, does not

impact drug activity [24, 25]. It is mostly used to microencapsulate drugs that dissolve in the

dispersion phase and have low aqueous solubility [26].

HPMC is a semi-synthetic ether derivative of cellulose that is frequently used in a variety of

fields, such as pharmaceutical, drug delivery, and food industry as a stabilizer, thickener, and

emulsifier [27]. Also, it is widely used in the development of controlled-release devices, because

of its non-toxic properties and ease of production [28]. HPMC is a member of the swellable

hydrophilic medium systems, when exposed to aqueous solutions, it produces a gel layer which

is a promising factor in controlled release patterns. Drug release from HPMC matrices has been

reported to be affected by: (a) the polymer physical properties, for example, drug/polymer ratio,

polymer viscosity, and particle size; (b) the drug physicochemical properties, for example, solu-

bility, and particle size, and, (c) fabricating factors, for example, stirring speed, excipients of for-

mulation, and processing techniques [29]. Mohammad El-Badry [30] prepared HPMC

microparticles by freeze-drying technique, using Albendazole as the model drug.

Response surface methodology (RSM) is a set of mathematical and statistical processes for

analyzing and optimizing the effects of independent variables on dependent variables using

the design of experiments. In comparison to other RSM designs, the Box-Behnken design

(BBD) was chosen for the optimization of dependent variables since it requires fewer trial

combinations, is efficient, cost-effective, and takes less time [31]. Regression equations, often

known as models, are used to represent the answers quantitatively. Furthermore, this tech-

nique has advantages over traditional optimization methods, which are costly, time-taking,

and require a significant number of reagents for trials [32].

The goal of the designed study was to formulate MLX loaded HPMC microparticles by

using a 3-factor, 3-level Box Behnken design through the oil in oil (O/O) ESE technique for

colon targeted delivery. Out of the 17 fabricated microparticle formulations, one was statisti-

cally optimized based on the percentage yield, EE, particle size, and in-vitro cumulative drug

release, and thereby further evaluated oral toxicity studies for biocompatibility and non-toxic-

ity confirmation in terms of clinical, biochemical, and histopathological markers, using rabbit

as an animal model. To the best of our knowledge, this is the first systematic investigation

using a statistical design to report the utilization of MLX as a model drug and HPMC polymer

as a matrix component for microparticle development through the oil in oil (O/O) ESE tech-

nique for colon targeted delivery. Furthermore, the influence of three independent variables

on four dependent variables was studied.

2. Materials and methods

2.1. Materials

Meloxicam and HPMC were donated for the research work by English Pharmaceutical Indus-

tries, Lahore (Pakistan), and Martin Dow Marker Limited (formerly MERCK Pvt Ltd), Quetta
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(Pakistan), respectively. Hydrochloric acid (37%) and n-Hexane were procured from AnalaR

BDH Laboratory (UK). Sodium hydroxide, and ethanol, were procured from Evonik Roehm

GmbH (Germany). Dichloromethane and Liquid paraffin were purchased from Merck KGaA

(Germany), while Span-80 was acquired from Avonchem Ltd (UK). All chemicals of analytical

grade were used for the study.

2.2. Method

2.2.1. Experimental design (Box–Behnken design). As a statistical tool and mathematical

approach, RSM was used to study the impact of various formulation variables on the microen-

capsulation process. With the help of a 3-factor,3-level BBD seventeen experimental runs were

designed [25]. To obtain optimized MLX loading HPMC microparticles, the three most influ-

ential independent process variables (factors) were selected based on their compact influence

on physicochemical properties of microparticles, i.e., the drug to polymer ratio (X1), the stir-

ring speed (X2), and the concentration of surfactant (X3), to each one with three levels: [X1

(1:1, 1:2.5, and 1:4 mg), X2 (800, 1000, and 1200 rpm), and X3 (0.5, 1, and 1.5%)] Table 1.

The impact of modification in independent variables on the dependent variables such as

percentage yield (R1), EE (R2), average particle size (R3), and in vitro percentage of cumulative

drug release (R4) was evaluated by employing a one-way analysis of variance (ANOVA) prac-

ticing Stat-Ease Design-Expert1 (Design Expert 11.1.2.0 x 64) software with expanded capabil-

ities for data analysis [33]. The significance for each independent variable was evaluated by

Table 1. Box Behnken Design (BBD) based experimental parameters.

Independent variables Levels

Low Medium High

X1 = Drug to polymer ratio (mg) 1:1 1:2.5 1:4

X2 = Stirring speed (rpm) 800 1000 1200

X3 = Surfactant concentration (%) 0.5 1 1.5

Dependent variables Code Drug X1 X2 X3

(MLX)(mg) (mg) (rpm) (%)

R1 = Percentage yield (%),

R2 = Entrapment efficiency (EE) (%),

R3 = Mean particle size (μm), and

R4 = In vitro percentage of cumulative drug release (%).

F1 200.00 500 1000 1.0

F2 200.00 500 1200 1.5

F3 200.00 200 1200 1.0

F4 200.00 500 1000 1.0

F5 200.00 800 1000 0.5

F6 200.00 800 800 1.0

F7 200.00 500 1000 1.0

F8 200.00 500 1200 0.5

F9 200.00 500 800 1.5

F10 200.00 800 1200 1.0

F11 200.00 200 1000 0.5

F12 200.00 800 1000 1.5

F13 200.00 200 1000 1.5

F14 200.00 500 1000 0.5

F15 200.00 500 1000 1.0

F16 200.00 500 1000 1.0

F17 200.00 200 800 1.0

F0 200.00 500 1000 1.0

https://doi.org/10.1371/journal.pone.0267306.t001
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using the following non-linear quadratic expression (1).

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ b11X
2

1 þ b22X
2

2

þ b33X
2

3: ð1Þ

Where:

Y is the dependent variable,

X1, X 2, X 3 are independent variables,

b0 as an intercept,

b1, b2, b3 are non-linear coefficients,

b11, b22, b33 are squared coefficients, and

b12, b13, b23 are interaction coefficients of this quadratic equation.

2.2.2. Microparticles fabrication. The MLX loaded HPMC microparticles were fabri-

cated by the oil in oil (O/O) / ESE method [26, 34]. The design determined amount of HPMC

was dissolved bit by bit in the ethanol-dichloromethane solution, ratio (1:1) over the magne-

tized stirrer (Velp Scientifica, Usmate (MB), Italy) at 250 rpm. Consequently, the exact quan-

tity of MLX was dispersed within the polymeric solution. In the internal phase, magnesium

stearate (100mg) was added as a drop stabilizer with incessant stirring. The external phase was

prepared in a 250 ml beaker by the addition of 50 ml of liquid paraffine and designed deter-

mined concentration of span-80 was added as surfactant. Eventually, the external phase was

added to the internal phase dropwise with care and continuously stirred by a tri-blade propel-

ler (Eurostar IKA, WERKE), with a designed proposed stirring speed for 3–4 hr. or till perfect

evaporation of the organic solvent. The fabricated microparticles were decanted and filtered

with the aid of Whatman No.42 filter paper and then washed 4–5 times with n-hexane (40 ml)

for absolute removal of liquid paraffin and dried at ambient temperature for 24 hrs [25].

2.3. Characterization of microparticles

2.3.1. Determination of percentage yield. The percentage yield of completely dehydrated

microparticles was computed by the actual yield divided by the theoretical yield as well as mul-

tiplying the received ratio by 100 [35]. The percentage yield was calculated by Eq (2), as under:

Percentage Yield ¼
Practical Yield
Theoritical Yield

� 100 ð2Þ

2.3.2. Entrapment efficiency (EE). Accurately weighed 50mg of fabricated microparticles

were taken and blended in a mortar followed by dispersion in 50 ml of dichloromethane. The

dispersion was applied for 2 hrs stirring, and further sonicated for half-hour to completely

remove the drug from the blended powder in the extracting medium. After purification with

the aid of Whatman No.42 filter paper, the filtrate was further diluted in Phosphate buffer (pH

6.8) and taken three times absorbance at λmax 362nm to calculate the concentration employing

UV Spectrophotometer (IRMECO Gmbh, Gaeltacht, Germany) [36]. The percentage of EE

was determined by Eq (3), as under:

E:E %ð Þ ¼
Actual amount of MLX in microspheres

Theoretical amount of MLX in microspheres
� 100 ð3Þ

2.3.3. Fourier Transform Infrared Spectroscopic (FTIR) analysis. To determine the

compatibility between MLX, polymer (HPMC), physical mixture of drug and polymer, and

MLX loaded optimized formulation (F0), an FTIR spectrophotometer (Bruker, Tensor 27,
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Germany) was used in the scanning range of 4000-400cm−1. The analyzing sample was located

at the disc and the plunger was properly constrained by rotating the arm for enough touch

with the sample and scanning turned into completed in 16 sec [37].

2.3.4. Determination of particle size. All formulation’s volumetric type average particle

sizes were determined by the most frequently applied method of optical microscopy, an optical

microscope (Eclipse E-200 LED, Nikon, Tokyo, Japan) was used. Before starting the study, the

eyepiece micrometer was standardized by employing the stage micrometer. To put together a

slide for analysis, a small number of microparticles were located on the slide and watched

beneath the lens at 10X. With the assistance of an eyepiece micrometer, the particle size of var-

ious microparticles was measured [35]. The mean particle size of all formulations was calcu-

lated by Eq (4), as under:

Mean particle size ¼
Sum of diameter of obsereved particles

Number of observed particles
ð4Þ

2.3.5. Thermal stability via Differential Scanning Calorimetric (DSC) analysis. Differ-

ential scanning calorimetry (DSC) of MLX, polymer (HPMC), Physical mixture of drug and

polymer, and MLX loaded optimized formulation (F0) microparticles was performed using

DSC (LAB KITS-100, Hong Kong). Test sample 7 ± 0.1 mg was deposited on an aluminum

pan heated to 30–300˚C at a flow rate of 20 mL/min. Nitrogen was used as a purge gas, while

indium and zinc were used as standard [38, 39].

2.3.6. X-Ray Diffraction (XRD) analysis. Diffraction trends of MLX, polymer (HPMC),

physical mixture of drug and polymer, and MLX loaded optimized formulation (F0) micropar-

ticles were examined using X-ray diffractometry (JEOL, JDX-3532, Japan) under 30 mA and

35 kV working conditions. The samples were examined at a rate of 2θ/min in the 5–70 range.

The gained results were analyzed and compared for the existence of peaks, their location, and

shifting [35].

2.3.7. Scanning Electron Microscopic (SEM) analysis. The scanning electron microscope

(JSM5910, JEOL, Tokyo, Japan) was used to examine the surface morphology and shape of the

MLX loaded optimized formulation (F0). The sample was put on metal stubs using dual-sided

adhesive tape for SEM measurements. It was dried in a vacuum chamber before being sputter

coated with a gold coating and examined using a high-resolution scanning electron micro-

scope at various magnifications [38].

2.3.8. In vitro study of drug release. The MLX loaded HPMC microparticles in vitro drug

release behavior was determined by employing a USP dissolution equipment type-II (Pharma

test Hainburg, Germany) at 50 rpm, 37 ˚C ± 0.5 temperature. Dissolution mediums, pH 1.2,

6.8, and 7.4, were used successively for 2, 10, and 12 hours, respectively, in a sequential pH

change approach [40]. A precisely weighed quantity of samples equivalent to 7.5mg of MLX

was transferred to a dialysis membrane (12-14KDa) (Medicell Membrane Ltd, UK). It had ear-

lier been soaked in release media for almost 12 hrs. Two clamps were used to secure the dialy-

sis membrane’s open ends and immersed in 450 ml of simulated gastric medium pH 1.2 for 2

hrs. After that, the simulated gastric medium pH 1.2 was changed with Phosphate buffer 6.8

for 10 hrs., and finally, it was changed with Phosphate buffer 7.4 for a further 12 hrs. The 5ml

of dissolution medium was pulled out at prior set time intervals of 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12,

16, 20, and 24 hrs, followed by the addition of an equal volume of a fresh dissolution medium

to uphold the required sink conditions throughout the analysis [39]. Filter the pulled-out

medium and take the three-time absorbance of the filtrate by employing a UV-Spectrophot-

ometer (IRMECO Gmbh, Gaeltacht, Germany) at λmax 362 nm. With the aid of a regression
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mathematical equation, the concentration of MLX was computed employing a calibration

curve. The percentage of cumulative drug release was calculated by Eq (5), as under:

Percentage of drug release ¼
amount of the drug release at time ðtÞ

amount of the drug entraped in microparticales
� 100 ð5Þ

2.3.9. Kinetic models trends of in vitro drug release. Various kinetic models were

applied to in vitro drug release data to determine the order and mechanism of drug release

from the formulations. The in vitro drug release data were subjected to regression analysis,

using a coefficient of zero-order as the cumulative quantity of drug release vs. time [41]. First-

order as the log cumulative release of drug vs. time [42], Higuchi as the cumulative quantity of

drug released vs. square root of time [43], and Korsmeyer Peppas models [44]. The correlation

coefficient (R2) for the different kinetic models and the diffusion exponent (n) values for the

Korsmeyer-Peppas models were determined by the DDsolver.xla. If the value of “n” is 0.5, the

preparation is Fickian diffusion; if the value of “n” is greater than 0.5 but less than 1.0 (0.5< n

< 1.0), the release is non-Fickian diffusion (anomalous diffusion). If “n” is 1.0, the preparation

complies with case -II transport; if it is greater than 1.0, the release follows super case-II trans-

port [45].

2.3.10. Acute oral toxicity study. The acute oral toxicity study of MLX-loaded HPMC

microparticles was performed to investigate the safety and biocompatibility of microparticles

on albino rabbits, following the principles of the Organization for Economic Cooperation and

Development (OECD) [46]. Albino rabbits were chosen as an animal model for the study

because of their well-established pathophysiology and accessible data from which to judge the

effects on human wellbeing [47]. The Institutional Animal Ethical Committee (IAEC), The

Faculty of Pharmacy and Health Science, University of Balochistan (UOB), Quetta, Pakistan,

reviewed and approved the study protocols (Ref letter NO. FoP & HS/ICE/212/20, dated 20-

11-2020). Twelve male rabbits weighing between 1.70–2.5 kg were marked to allow the indi-

vidual recognition and split into two groups (n = 6), each labeled as group-I (control) and

group-II (test). The rabbits were housed alone in cages that were cleaned and ventilated, with

access to food and water. The animal transitory room conditions were maintained following

OECD norms, i.e., ambient temperature (25˚C ± 2), relative humidity (40%), and the artificial

lighting was kept on for 12 hours of brightness, and 12 hours of darkness. The rabbits were

fasted all night apart from the water before drug therapy. The group-I (control) was given no

drug treatment but water and food, while the group-II (test) was given optimized MLX loaded

microparticles equivalent to the drug 1.5 mg/kg body weight by oral gavage a flexible feeding

tube of 20 gauge. This study was carried out for 14 days and the rabbits were observed for food

and water intake, body weight, the sign of illness, any kind of seeable skin irritation/toxicity,

and mortality. A possible source of suffering in animal research is pain induced by experimen-

tal procedures, injuries, and diseases [48]. To alleviate the stress/suffering of rabbits, a paren-

teral anesthetic combination like ketamine and xylazine have become the agents of choice for

rabbit anesthesia due to their efficacy, low cost, and ease of administration [49]. The rabbits

were anesthetized with a combination of ketamine (35 mg/kg) and xylazine (5 mg/kg) on the

15th day of the experiment. The drugs were mixed in a single syringe, swabbed the area with

70% of ethanol and injected intramuscularly into the quadriceps femoris muscles while the

rabbits were sternally recumbent in the table [50]. The blood samples were obtained instantly

in ethylenediaminetetraacetic acid (EDTA) tubes to avoid blood coagulation from both groups

for blood biochemistry. The rabbits were subsequently sacrificed under anesthesia by decapita-

tion using a pair of shear/scissor blades, cut between the base of the head and the top of the
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neck in one swift, smooth motion. The key organs were removed, weighed, and kept separately

in 10% formalin solution for histopathological studies [33, 51, 52].

3. Results and discussion

3.1. MLX loaded HPMC microparticles

Light yellow colored and spherical shaped MLX loaded HPMC microparticles were success-

fully fabricated for colon targeted drug delivery by the oil in oil (O/O) ESE technique, using

3-factor-3-level statistical design. With the help of design, one formulation was taken as an

optimized formulation based on percentage yield, EE, particle size analysis, and cumulative

percentage drug release study. Physicochemical characterizations and oral toxicity studies

were carried out to determine the microparticles components compatibility and biocompati-

bility, respectively.

3.2. Box Behnken design

3.2.1. Percentage yield. ]The percentage yield (R1) ranged from 65.75–91.71%, with F6

(91.71 ±2.65) having the highest percentage yield and F11 (65.75 ±1.31) having the lowest, as

shown in Table 2.

The quadratic equation for % yield with the independent variable is as under in Eq (6)

Percentage yield ðR1Þ

¼ þ80:50þ 8:32A � 3:81B � 1:68C � 2:31AB � 2:73ACþ 0:9925BCþ 2:07A2

� 1:17B2 � 2:78C2: ð6Þ

Due to the increased viscosity, thickness, and reduced syringeability of the polymeric solu-

tion, the percentage yield increases significantly (p< 0.05) with increasing polymer content,

as depicted in Fig 1(A) and 1(B) [35]. The percent yield improved when the content of the

Table 2. Observed values of independent variables in BBD.

Code Percentage yield (%) Entrapment efficiency (%) Particle size Drug release

(μm) (%)

(R1) (R2) (R3) (R4)

F1 76.87 ± 1.00 82.5 ± 0.97 151.79 ± 20.88 86.44 ± 1.94

F2 70.98 ± 3.18 86.5 ± 2.14 81.20 ± 8.97 92.64 ± 0.81

F3 68.44 ± 0.79 79.16 ± 0.97 62.89 ± 12.35 83.58 ± 1.49

F4 81.59 ± 1.18 85.32 ± 1.12 182.29 ± 25.58 82.03 ± 1.75

F5 88.33 ± 1.24 83.41 ± 0.94 228.79 ± 18.83 83.83 ± 1.84

F6 90.71 ± 2.65 85.95 ± 0.57 276.23 ± 13.99 74.25 ± 1.28

F7 80.39 ± 0.95 81.9 ± 2.27 152.65 ± 34.53 84.76 ± 1.70

F8 72.97 ± 1.43 74.45 ± 2.82 106.96 ± 11.28 87.72 ± 0.66

F9 78.15 ± 1.30 87.55 ± 1.29 102.21 ± 16.91 86.48 ± 1.23

F10 79.99 ± 1.11 83.51 ± 2.52 203.53 ± 14.10 84.51 ± 1.46

F11 65.75 ± 1.31 70.62 ± 1.38 70.34 ± 10.57 87.49 ± 1.87

F12 80.11 ± 1.78 88.37 ± 1.64 128.12 ± 17.77 86.7 ± 1.22

F13 68.44 ± 1.71 88.33 ± 1.63 107.18 ± 17.71 89.32 ± 2.06

F14 84.11 ± 0.46 74.75 ± 1.74 284.55 ± 9.35 84.21 ± 1.01

F15 82.25 ± 2.76 79.58 ± 1.55 150.54 ± 18.17 85.12 ± 1.46

F16 81.4 ± 1.51 83.78 ± 1.10 165.36 ± 11.19 85.41 ±1.93

F17 77.91 ± 0.96 77.48 ± 1.61 98.46 ± 14.62 84.24 ± 1.91

https://doi.org/10.1371/journal.pone.0267306.t002
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surfactant was increased from 0.5 to 1.5% due to particles alignment. The percentage yield was

reduced with increased stirrer speed because of foaming formation, turmoil, and sticking of

microparticles with the container walls. Additionally, during the washing process, microparti-

cles waste also reduced the percentage yield [25].

3.2.2. Entrapment efficiency (EE). At a constant drug concentration, the influence of

polymer concentration (X1), stirring speed (X2), and surfactant content (X3) on the entrap-

ment efficiency (EE) (R2) of microparticles was investigated, and shown in Fig 2(C) and 2(D).

F12 (polymer concentration: 800 mg, stirring speed: 1000 rpm, surfactant concentration:

1.5%) depicted the highest percentage of EE 88.37% ±1.64, while F11 (polymer concentration:

200 mg, stirring speed: 1000 rpm, surfactant concentration: 0.5%) the lowest percentage of EE

70.62% ±1.38, as revealed in Table 2. According to ANOVA in Table 3, the change in polymer

concentration and surfactant content had a significant (p< 0.05) effect on the EE, whereas the

stirring speed had an insignificant (p> 0.05) effect on it.

The quadratic expression for entrapment efficiency (EE) with the independent variable is as

under in Eq (7).

EE% ðR2Þ ¼ þ82:62þ 4:24A � 0:2637Bþ 4:90C � 1:03AB � 1:26AC � 0:187BC
� 0:5730A2 � 0:5180B2 � 1:29C2: ð7Þ

The influence of polymer concentration on EE showed a significant (p< 0.05) increase.

High polymer concentration generates a condensed structure due to the increased amount of

accessible polymer in the internal phase and non-slenderness of the polymer network, which

minimized drug loss to the external phase [39]. An increase in stirring speed from 800–1200

rpm resulted in a non-significant (p> 0.05) reduction in EE. This is attributed to a reduction

in particle size, which increases surface area and thus decreases drug diffusion into the external

phase [53, 54]. It was also observed that when the surfactant content was enhanced from 0.5–

1.5%, the EE was significantly (p< 0.05) increased owing to the small size of the droplet

Fig 1. The influence of polymer concentration and stirring speed on percentage yield (a), the influence of surfactant conc and polymer conc on

percentage yield (b).

https://doi.org/10.1371/journal.pone.0267306.g001
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during the microparticles fabrication process [55]. Aside from that, the emulsifying agent

forms a protective layer across the droplets, preventing them from coalescing [56].

3.2.3. Particle’s size. The polymer concentration (X1), stirring speed (X2), and surfactant

content (X3), all influence the mean particle size (R3) of MLX loaded HPMC microparticles.

The F14 (polymer concentration: 500 mg, stirring speed: 1000 rpm, surfactant concentration:

0.5%) have the biggest particle size of 284.55 ± 9.35μm, while F3 (polymer concentration: 200

mg, stirring speed: 1200 rpm, surfactant concentration: 1.0%) have the smallest particle size of

62.89 ±12.35μm, as revealed in Table 2. The independent variable influences, such as polymer

content, stirring speed, and surfactant concentration interaction was established by ANOVA

as shown in Table 3.

Fig 2. The influence of stirring speed and polymer concentration on EE (c), the influence of stirring speed and surfactant concentration on EE (d).

https://doi.org/10.1371/journal.pone.0267306.g002

Table 3. ANOVA analysis values of independent variables.

Independent variables (Responses) Statistical terms P-value
Percentage yield (%) (R1) Polymer content (X1) < 0.0001

Stirring speed (X2) 0.0007

Conc of surfactant (X3) 0.0371

Entrapment efficiency (%) (R2) Polymer content (X1) 0.0016

Stirring speed (X2) 0.7664

Conc of surfactant (X3) 0.0007

Particle size (μm) (R3) Polymer content (X1) 0.0007

Stirring speed (X2) 0.0089

Conc of surfactant (X3) 0.0191

Drug release (%) (R4) Polymer content (X1) 0.0012

Stirring speed (X2) 0.0009

Conc of surfactant (X3) 0.0039

https://doi.org/10.1371/journal.pone.0267306.t003
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For mean particles size, quadratic equation along with independent variable is asunder in

Eq (8).

Mean particles size ðR3Þ

¼ þ160:53þ 62:22A � 39:24B � 33:12C � 9:29AB � 34:38AC � 37:40BC � 6:60A2

þ 5:81B2 � 20:86C2: ð8Þ

When the concentration of polymer was increased from 200–800 mg, it depicted a signifi-

cant (p< 0.05) impact on average particle size (R3), as shown in Fig 3(E) and 3(F). The genera-

tion of viscosity and thickness in the emulsion is the primary cause of mean particle size

enlargement, which impedes dispersion and leads to the formation of bigger globules [57, 58].

The particle size decreased significantly (p< 0.05) when the stirrer speed was increased from

800–1200 rpm, which is attributed to an increase in circulating force due to high stirring

speed, which reduces droplet size in the emulsion, therefore reducing the mean particle size as

well [59]. A significant (p< 0.05) reduction in particle size was observed when surfactant con-

tent was increased from 0.5–1.5%, owing to a sufficient increase in the interfacial force of

emulsion droplets, resulting in improved coalescency, which leads to the fabrication of smaller

sized microparticles [39, 60].

3.2.4. In vitro drug release. The ability of drug molecules carried by polymer to reach the

active site in sufficient quantities is a critical aspect of effective drug delivery. For this aim,

while designing microparticulate drug delivery systems, we must investigate factors of drug

release performance and polymer degradation. The following factors influence the rate of drug

release from microparticles:

i. Solubility

ii. Drug diffusion from polymer

iii. Diffusion of surface-bound and adsorbed drug

Fig 3. The influence of stirring speed and polymer concentration on particles size (e), the influence of surfactant conc and polymer concentration on

particles size (f).

https://doi.org/10.1371/journal.pone.0267306.g003

PLOS ONE Meloxicam microparticles characterization, optimization, and toxicity study

PLOS ONE | https://doi.org/10.1371/journal.pone.0267306 April 25, 2022 11 / 25

https://doi.org/10.1371/journal.pone.0267306.g003
https://doi.org/10.1371/journal.pone.0267306


iv. Erosion followed by degradation of the matrix of microparticles [47]

The in vitro drug release of MLX loaded HPMC microparticles were used to simulate in
vivo release behavior [61]. The percentage of cumulative drug release of all 17 formulations

(F1-F17) is given in Table 2. The F2, F13, and F8 depicted a higher percentage of cumulative

drug release, while F6 had the lowest percentage.

The following is the percentage of cumulative drug release from all 17 formulations, in

descending order:

F2 > F13 > F8 > F11 > F12 > F9 > F1 > F16 > F15 > F7 > F10 > F17 > F14 > F3

> F4 > F5 > F6:

For in vitro drug release the quadratic equation is as under in Eq (9)

In vitro drug release ðR4Þ

¼ 84:75 � 2:29Aþ 2:41Bþ 1:86Cþ 2:73ABþ 1:01ACþ 0:6600BC � 2:39A2

� 0:7160B2 � 3:721C2: ð9Þ

Fig 4(A)–4(C) demonstrates the in-vitro drug release profile of all formulations (F1-F17)

employing various buffers (pH 1.2, 6.8, and 7.4). In the acidic medium of 0.1 N HCl at pH 1.2,

the MLX loaded HPMC microparticles released nearly 1–8% of the drug, which is within the

United States Pharmacopoeia 24 (USP 24) limit. According to this, in the acidic environment

of the stomach, an enteric-coated formulation should not release more than 10% of the drug in

2 hrs, and this could be linked to the presence of solid drug crystals on microparticle surfaces

[25]. The drug release increased after two hours when the acidic medium was changed to a

basic medium of phosphate buffer pH 6.8 for 10 hrs., followed by phosphate buffer pH 7.4 for

a further 12 hrs. So, for all formulations, the drug release trend was persisted in ascending

order, the reason behind this behavior is the HPMC release mechanism, which includes wet-

ting, hydration, swelling, and gel layer formation. This demeanor functions as a drug release

barrier reliant upon the rate of gel layer interruption, drug diffusion rate, and corrosion of the

system [62, 63].

As the polymer matrix broadness increased with the increase in polymer concentration

from 200 to 800 mg, drug release (R4) from microparticles was significantly (p< 0.05) pro-

longed, because the drug had to pass through an elongated dispersion pathway. Furthermore,

increasing polymer concentration may result in larger particle size and reduced surface area

[64, 65]. As indicated in Fig 5(G) and 5(H), the drug release was more rapid and significant

(p< 0.05) from microparticles generated at higher stirring speeds, spanning from 800–1200

rpm, due to smaller particle size, large surface area, and fast wettability of microparticles with

GIT fluent [66]. Higher surfactant content also caused a significant (p< 0.05) increase in drug

release, which may be attributed to the particle size and surface area relationship, as well as

excess availability of the free drug at the microparticles’ surface [67, 68].

3.2.5. Kinetics modeling data of drug release. To anticipate the order and mechanism of

drug release from MLX loaded HPMC microparticles, different kinetic models were used for

the drug release data. These kinetic models’ overall results are decisive in determining the

most appropriate formulation. R2 values are used to determine the best release strategy. When

in vitro release data from all formulations was fitted to release kinetic modeling, the correlation

coefficients (R2) were computed and demonstrated in Table 4. The drug release followed zero-

order, as determined by the comparison of computed values of the regression coefficient (R2)

for zero-order and first-order, implying anomalous transport as the most important mecha-

nism of drug release. When the data was subjected to the Higuchi model it exhibited a molecu-

lar pattern of drug release, whereas in the Korsmeyer-Peppas model the diffusional exponent
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"n" values revealed a non-Fickian diffusion process from MLX loaded HPMC microparticles

[37, 69].

3.2.6 Optimization of formulation. Design-Expert recommended the optimized formu-

lation (F0) based on the percentage yield, percentage of EE, average particle size, and in vitro
percent of cumulative drug release parameters. The predicted values in terms of percentage

yield, percentage of EE, average particle size, and in vitro percent of cumulative drug release

were 80.5%, 82.616%,160.526 μm, and 84.525%, respectively. The optimized formulation (F0)

was successfully developed in triplicate using the design generated variables (polymer concen-

tration: 500 mg, stirring speed: 1000 rpm, surfactant concentration: 1.0%). The developed opti-

mized formulations (F0) were characterized for percentage yield, percentage of EE, average

particle size, and in vitro percentage of cumulative drug release, its values were found to be

82.24 ±1.09%, 81.37 ±1.15%, 154.52 ±7.06 μm, and 83.43 ± 0.93%, respectively, as revealed in

Table 5 and Fig 4(D). When the developed optimized formulations (F0) release data were sub-

jected to the release kinetic modeling, it followed the non-Fickian mechanism (n = 0.843), and

zero-order kinetic (R2 = 0.9945), which is better than 1st order value (R2 = 0.9863). The inde-

pendent variable values incurred from the developed optimized formulations (F0) were

Fig 4. Drug release profile of microparticles fabricated with HPMC = 200 mg (a), 800 mg (b), and 500 mg (c), and design proposed optimized

formulation (F1) and developed optimized formulation (F0), (d).

https://doi.org/10.1371/journal.pone.0267306.g004
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remarkably close to the design predicted values, which represents factual consistency, reliabil-

ity, and validity of BBD in the colon targeted delivery of MLX loaded HPMC microparticles

fabricated by the oil in oil (O/O)/ ESE method.

Fig 5. The influence of stirring speed and surfactant concentration on in vitro drug release (g), the influence of stirring speed and polymer concentration

on in vitro drug release (h).

https://doi.org/10.1371/journal.pone.0267306.g005

Table 4. Kinetic modeling figures of in vitro drug release.

Code Zero-Order First-Order Higuchi Model Korsmeyer Pappas

Model

R2 K0 R2 K1 R2 KH R2 n

F1 0.9945 3.866 0.9822 0.062 0.9791 14.891 0.9851 0.757

F2 0.9978 3.948 0.9550 0.062 0.8737 15.027 0.9921 0.822

F3 0.9920 3.848 0.9668 0.060 0.8779 14.680 0.9737 0.736

F4 0.9914 3.518 0.9310 0.051 0.8256 13.212 0.9763 0.768

F5 0.9884 3.282 0.9840 0.048 0.9064 12.684 0.9840 0.779

F6 0.9946 3.328 0.9464 0.046 0.8353 12.551 0.9974 0.847

F7 0.9954 3.672 0.9682 0.056 0.8772 13.998 0.9863 0.804

F8 0.9918 3.775 0.9806 0.059 0.9047 14.517 0.9784 0.820

F9 0.9957 3.783 0.9512 0.057 0.8580 14.317 0.9857 0.753

F10 0.9955 3.912 0.9795 0.063 0.9036 15.045 0.9906 0.794

F11 0.9974 3.667 0.9663 0.055 0.8757 13.966 0.9880 0.695

F12 0.9934 3.722 0.9463 0.056 0.8427 14.036 0.9941 0.783

F13 0.9959 3.551 0.9454 0.052 0.8373 13.360 0.9780 0.831

F14 0.9917 3.331 0.9409 0.047 0.8238 12.491 0.9661 0.637

F15 0.9839 3.697 0.9166 0.054 0.8027 13.780 0.9719 0.720

F16 0.9853 3.285 0.9265 0.046 0.9389 12.225 0.9861 0.763

F17 0.9821 3.319 0.9159 0.046 0.8671 12.315 0.9775 0.835

https://doi.org/10.1371/journal.pone.0267306.t004
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3.3. Fourier Transform Infrared Spectroscopic (FTIR) analysis

Fig 6(A) shows the FTIR spectrum of pure MLX, which shows a prominent peak at 3283.3130

cm-1, which is thought to be due to secondary aliphatic amine (–R-N–H) stretching vibrations.

The supposition is supported by a sharp peak at 1260.3027cm-1, which is the result of aliphatic

amine (–C–N) stretching vibration. The MLX spectra revealed a second strong peak at

1609.9024 cm-1, indicating the presence of a secondary amide group (–CONH). In general, the

bending vibration of amine (–N–H) follows the peak, secondary amide group, although these

peaks are not visible in the MLX spectrum, this is due to the fact that MLX’s–N–H group is a

secondary aliphatic amine, which is normally weak and unnoticed. The peak at 1456.0386 cm-

Table 5. The optimized formulation (F0) levels, predicted, and observed values.

Independent variables Optimized levels

Polymer concentration (mg) (X1) 500

Stirring speed (rpm) (X2) 1000

Surfactant concentration (%) (X3) 1.00

Dependent variables Predicated responses Observed responses

Percent yield (%) (R1) 80.5 82.24

Entrapment efficiency (%) (R2) 82.616 81.37

Particle size (μm) (R3) 160.526 154.52

Drug release (%) (R4) 84.752 83.43

https://doi.org/10.1371/journal.pone.0267306.t005

Fig 6. FTIR spectra of MLX (a), HPMC (b), physical mixture of MLX and HPMC (c), as well as optimized

formulation (F0) (d).

https://doi.org/10.1371/journal.pone.0267306.g006
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1, is related to a conjugated alkene group (–C = C–). The peaks found at 1344.3332 cm-1 and

1187.8826 cm-1, are linked with the S = O group, indicating asymmetric and symmetric

stretching vibrations, respectively [15, 35, 70]. The presence of a peak at 3629.9923cm-1 in the

HPMC spectrum is due to the stretching of the O-H functional group [71]. A peak at

2939.7422 cm-1 was observed owing to -C-H bond stretching [72]. The peak observed at

1731.3868 cm-1 is related to C = C stretching and another peak found at 1152.2164 cm-1 is

attributed to stretching of the secondary alcoholic group, as revealed in Fig 6(B) [73]. The

FTIR spectra of pure MLX and HPMC were compared to the FTIR spectra of the physical mix-

ture, and it was found that MLX’s characteristic peak had not changed significantly, as shown

in Fig 6(C). The FTIR spectra of MLX loaded HPMC microparticles optimised formulation

(F0) are shown in Fig 6(D), and revealed almost identical results to pure MLX with a miner

shift in wave number. It was confirmed that all functional groups were in their respective

ranges, indicating no drug-polymer interaction. These findings were in line with earlier

research findings [35].

3.4. X-ray diffraction (XRD) analysis

The XRD patterns of the pure MLX, HPMC, physical mixture of MLX and HPMC, as well as

optimized formulation (F0), are illustrated in Fig 7. The XRD pattern of pure MLX demon-

strates individual intense peaks between the range of 6–30˚ at 2θ of diffraction angle

Fig 7. XRD pattern of MLX (a), HPMC (b), physical mixture of MLX & HPMC (c), and optimized formulation (F0), (d).

https://doi.org/10.1371/journal.pone.0267306.g007
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corresponding to 13.17˚, 15.06˚, 18.49˚, and 26.07˚, which demonstrates the crystalline nature

of MLX, as shown in Fig 7(A) [38, 70]. The HPMC illustrated a wide hump in between the

range of 5˚-25˚, which reflects its amorphous state, as displayed in Fig 7(B) [74]. The XRD pat-

tern of the physical mixture of the MLX as well as HPMC, and optimized formulation (F0)

maintained their peaks, which revealed that there was no interaction between the ingredients

of the physical mixture and optimized formulation, as depicted in Fig 7(C) and 7(D) [75].

However, in the optimized formulation (F0) the lesser and wider peaks of MLX showed that

the drug (MLX) was successfully encapsulated in the amorphous system of microparticles.

This was due to the amorphous nature of created microparticles containing hydrophilic poly-

mers, i.e., HPMC, which bestowed its characteristics to MLX. The development of microparti-

cles that reduce the crystallinity of the MLX may help to improve the drug’s solubility and

dissolution [15].

3.5. Thermal stability via Differential Scanning Calorimetric (DSC)

analysis

As shown in Fig 8, the thermodynamics of MLX, HPMC, physical mixture of MLX and

HPMC, and optimization formulation (F0) were investigated using DSC to determine the

thermal behavior of drug, excipients, and formulation. The MLX thermograph showed a

Fig 8. DSC of MLX (a), HPMC (b), physical mixture of MLX as well as HPMC (c), and optimized formulation (F0), (d).

https://doi.org/10.1371/journal.pone.0267306.g008
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typical sharp endothermic peak at 259.9 ˚C, which corresponds to its melting point, as shown

in Fig 8(A) [76–78]. The MLX peak was suggested its crystalline nature [79]. In Fig 8(B), the

HPMC thermograph showed endothermic and exothermic peaks at 53 ˚C and 218 ˚C, associ-

ated with the melting and decomposition temperature, respectively [80]. In the physical mix-

ture of MLX and HPMC, the drug and polymer had retained their endothermic peaks, as

shown in Fig 8(C) [81]. Moreover, in the DSC thermograph of optimized formulation (F0),

as depicted in Fig 8(D), the shifting of MLX widened endothermic peak to the lower tempera-

ture 238 ˚C, suggesting that MLX was transformed from its crystalline state to the amorphous

state [82].

3.6. Scanning Electron Microscopic (SEM) analysis

The surface morphology of the fabricated microparticles was examined at high resolution

using scanning electron microscopy. The compact structure, smooth surface, and regularly

spherical shape of the MLX loaded HPMC optimal formulation (F0) were validated by SEM

images, which are attributed to the system’s polymer concentration and stirring speed [37]. Fig

9(A)–9(C) shows SEM micrographs of MLX-loaded HPMC optimized formulation (F0), with

smooth surface and spherical shape.

3.7. Acute oral toxicity study

An acute oral toxicity study was conducted to ascertain the toxicity and biocompatibility of the

formulation in the rabbit’s model and the OECD guidelines were followed. A simple and sensi-

tive measure of adverse effects or signs of toxicity evolved with the consumption of hazardous

chemicals/test formulations, resulting in body weight loss, essential organ atrophy, or both. All

of group-I (control) measured parameters were compared to those of group-II (test) and any

differences were studied in this study [47]. During the trial, there were no dead animals, no

signs of disease, and no evidence of any seeable skin irritation/toxicity. On the 15th day, the

rabbits were euthanized, and weighed the key organs, kept separately in 10% formalin solution

for histopathological studies. The various parameters of hematological, biochemical, and

weight variation analysis are reported in Table 6 and demonstrated insignificant changes in

group-II (test) when compared with group-I (control) [83]. Histopathological studies of six

vital organs, such as the heart, liver, spleen, stomach, lungs, and kidney, depicted no signs of

abnormalities such as a lesion, disruption, hyperemia, and toxicity at the cellular level, as

revealed in Fig 10. The absence of abnormalities shows the non-toxicity and biocompatibility

of MLX loaded HPMC microparticles with the biological system of rabbits [84].

Fig 9. SEM micrograph of F0 (a, b, & c).

https://doi.org/10.1371/journal.pone.0267306.g009
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3.8. Conclusion

The oil in oil (O/O)/ ESE technique was used to successfully fabricate colon targeted MLX

loaded HPMC microparticles in this study. Based on percentage yield, percent EE, average par-

ticle size, and in vitro percentage of cumulative drug release, all formulations were created and

optimized using design expert software. Physicochemical characterization of formulations by

FTIR, XRD, and DSC analysis showed that all components of the formulation were compati-

ble. SEM images depicted a compact structure with smooth surface and spherical shape micro-

particles. MLX was decently encapsulated in an amorphous state with maximum EE. The in
vitro cumulative drug analysis revealed that the MLX loaded HPMC microparticles release the

drug in a decelerated manner in gastric milieu for the first 2–3 hrs, followed by a controlled

release for 24 hrs, with zero-order release kinetics and non-Fickian mechanism, which is the

goal of the colon targeted drug delivery system. The MLX loaded HPMC optimized formula-

tion (F0) was successfully developed and evaluated for independent variables values. The

obtained values were very close to the design predicted values, indicating the consistency and

reliability of BBD. An acute oral toxicity study confirmed the non-toxicity and biocompatibil-

ity of MLX-loaded HPMC microparticles with the biological system. Consequently, it is

expected that MLX-loaded HPMC microparticles, particularly the optimized formulation (F0),

Table 6. Hematological, biochemical, and weight variation analysis of group-I (control) and group-II (test).

Test/Parameters Group-I (Control) Group-II (test))

I) Hematological Parameters

Hemoglobin (g/dl) 12.94 ± 0.40 13.02 ±0.43

RBCs (Red blood cells) ×106/mm3 6.14 ± 0.23 6.49 ± 0.58

WBCs (White blood cells) ×109/l 6.98 ± 0.48 07.08 ± 0.32

Platelets ×109/l 4.45 ± 0.46 4.27 ± 0.33

Lymphocytes (%) 61.63 ± 2.50 61.19 ± 2.89

Monocytes (%) 03.45 ± 0.37 03.16 ± 0.21

Neutrophils (%) 52.98 ± 3.52 54.64 ± 2.87

Mean corpuscular volume (%) 64.41 ± 2.06 66.61 ± 1.93

Mean corpuscular hemoglobin (pg./cell) 22.47 ± 0.69 23.38 ± 1.03

Mean corpuscular hemoglobin conc (%) 34.24 ±1.74 33.28 ± 1.11

II) Biochemical Parameters

ALT/SGPT (IU/l) 148.73 ± 3.32 157.95 ± 2.85

AST/SGOT (IU/l) 71.13 ± 3.21 67.32 ± 3.82

Creatinine (mg/dl) 1.19 ± 0.54 1.39 ± 0.32

Serum uric acid (mg/dl) 3.25 ± 0.63 3.51 ± 0.37

Triglycerides (mg/dl) 64.20 ± 4.08 66.73 ± 3.84

Total cholesterol (mg/ dl) 65.24 ± 3.43 63.59 ± 4.12

Serum urea (mg/dl) 17.02 ± 1.24 15.86 ± 1.72

III) Weight (g)of Rabbit Organs

Heart 4.33 ± 0.34 4.18 ± 0.23

Liver 7.80 ± 2.35 8.12 ± 2.17

Spleen 1.73 ± 0.54 1.61 ± 1.03

Kidney 11.16 ± 1.79 10.49 ± 1.41

Stomach 12.42 ± 1.32 12.92 ± 0.96

Lung 9.94 ± 0.57 9.94 ± 0.57

All values are described in mean ±SD (n = 3).

https://doi.org/10.1371/journal.pone.0267306.t006
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can be used as a viable alternative for the treatment of CRC by safe and controlled manage-

ment with the best patient compliance.
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