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Abstract

Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a
comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis
thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution
and adaption of A. thaliana. We accomplished this using syntenic relationship among four closely related species, A.
thaliana, A. lyrata, Capsella rubella and Brassica rapa. We identified 100 NDGs, showing clear origination patterns, whose
parental genes are located in syntenic regions and/or have clear orthologs in at least one of three outgroup species. All 100
NDGs were transcribed and under functional constraints, while 24% of the NDGs have differential expression patterns
compared to their parental genes. We explored the underlying evolutionary forces of these paralogous pairs through
conducting neutrality tests with sequence divergence and polymorphism data. Evolution of about 15% of NDGs appeared
to be driven by natural selection. Moreover, we found that 3 NDGs not only altered their expression patterns when
compared with parental genes, but also evolved under positive selection. We investigated the underlying mechanisms
driving the differential expression of NDGs and their parents, and found a number of NDGs had different cis-elements and
methylation patterns from their parental genes. Overall, we demonstrated that NDGs acquired divergent cis-elements and
methylation patterns and may experience sub-functionalization or neo-functionalization influencing the evolution and
adaption of A. thaliana.

Citation: Wang J, Marowsky NC, Fan C (2013) Divergent Evolutionary and Expression Patterns between Lineage Specific New Duplicate Genes and Their Parental
Paralogs in Arabidopsis thaliana. PLoS ONE 8(8): e72362. doi:10.1371/journal.pone.0072362

Editor: Nadia Singh, North Carolina State University, United States of America

Received April 30, 2013; Accepted July 11, 2013; Published August 29, 2013

Copyright: � 2013 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by start-up fund from Wayne State University to CF. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cfan@wayne.edu

Introduction

Genes that have more recent origins, namely new genes, are

merited with enormous evolutionary significance such as the origin

of biological diversity and a source of novel functions. Lineage

specific new genes are a class of genes defined as the coding genes

that do not have orthologs in other species. It could be inferred

that lineage specific new genes are just the results of missing

annotation of genes between species. However, studies have shown

that lineage specific new genes indeed exist, have originated in

multiple organisms and play important roles in the evolution of

genomes and organisms [1–3]. Many recent studies have also

shown that new genes contribute to evolutionary changes and

phenotypic adaptation in recently diverged lineages [4–14]. Using

comparative genomics approaches between closely related species,

genome wide identification of lineage specific new genes has been

conducted in various animal and plant species [15–18].

Genome duplication, exon-shuffling, retroposition, horizontal

gene transfer, de novo formation, and gene origination mediated by

mobile elements have been ascribed as probable molecular

mechanisms generating new genes. Among them, whole-genome

duplication has played an important role in gene duplication and

origination in plants [19–23]. However, DNA-based and RNA-

based small-scale gene duplications such as tandem and dispersed

duplication have also been demonstrated as common mechanisms

for recent gene origination in plants [23–27]. Gene duplication

can give rise to the extra copies of a sequence which can then

evolve novel functions [28–37].

Both experimental (e.g. array-based comparative genomic

hybridization CGH) and computational (e.g. blast-based compar-

ative genomic sequence comparison) approaches have been

applied to investigate gene duplication in A. thaliana

[12,24,27,38–43]. For the experimental approach, due to the

limitation of available microarrays for non-model species and

sequence divergence between species, application of array-based

CGH is technically challenged to obtain reliable new gene

candidates and often encountered high false positive rates [24].

Previous computational analyses using genomic sequences from

multiple species compared all the annotated protein-coding genes

in the A. thaliana genome to ‘‘as many existing sequences as

possible’’ [38,39]. Furthermore, Donoghue et al (2011) used the

‘‘position-specific methods’’ to detect weak homology between

genes in different species [38]. There are two caveats for previous

computational analysis. First, although they performed the

comparison between A. thaliana and ‘‘as many existing genome

sequences as possible’’, due to the limitation of available genome

sequences from closely related species at that moment, some false
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positive genes will be mistakenly annotated. Second, to reveal the

weak homologous relationship between genomes, it is necessary to

construct whole genome syntenic regions, which has not been

employed in these previous analyses. Here, we aimed to investigate

the scope, content and evolution of the new genes generated by

gene duplication in A. thaliana lineage using comparative genomics

among multiple closely related species. In addition to genome

sequences from A. lyrata and B. rapa, we added the recently

released C. rubella genome sequences to the genome comparison

[44]. We further constructed whole genome syntenic regions

between A. thaliana and A. lyrata/C. rubella/B. rapa, respectively. We

tested the functionality, analyzed the expression pattern, and

explored the cis-regulatory motifs and methylation patterns of

these NDGs. Furthermore, by taking advantage of newly released

SNP data from 80 wild A. thaliana accessions, we investigated and

compared the underlying evolutionary forces of the NDGs and

their parental genes with population genetic analyses, which has

not be done before.

Arabidopsis thaliana is a self-compatible annual flower plant. It is

one of the most important model organisms due to its several

research advantages including small size, short generation time,

large number of seeds and relatively small genome. The 121 Mb

sequenced genome size of A. thaliana is one of the smallest among

angiosperm genomes. 27,416 protein-coding genes were annotated

in A. thaliana genome [45]. For the other three closely related

species used in our study, B. rapa has the largest sequenced genome

about 290 Mb and contains 10 chromosomes [46], A. lyrata has the

middle size sequenced genome about 210 Mb and contains 8

chromosomes [47] and C. rubella has relatively smaller sequenced

genome size about 136 Mb and contains 8 chromosomes. Previous

phylogenetic analysis estimated that B. rapa separated from A.

thaliana about 13–17 million years ago (MYA) [48,49]; C. rubella

diverged from A. thaliana about 10–14 MYA [50]; and A. lyrata split

from A. thaliana about 5–10 MYA [51–53] (Figure 1).

Materials and Methods

Plant Species Chosen and Genome Sequence Data Sets
Selected

We selected four closely related species, A. thaliana, A. lyrata, C.

rubella, and B. rapa, for comparative genomics analysis to identify A.

thaliana specific new genes that originated through gene duplica-

tion. Given the short divergence time between A. thaliana and A.

lyrata/C. rubella/B. rapa, we chose genome data of these three

species to polarize our analysis and detect the well-conserved

syntenies between species. We acquired the complete genome

framework datasets including assembly and annotation from

Phytozome v8.0 (http://www.phytozome.net/) with A. thaliana

167 (TAIR release 10 acquired from TAIR), A. lyrata 107 (JGI

release v1.0), C. rubella 183 (JGI annotation v1.0 on assembly v1),

B. rapa 197 (Annotation v1.2 on assembly v1.1 from brassicad-

b.org) genome data.

Identification of A. thaliana Lineage Specific New Genes
that Originated through Gene Duplication

To identify A. thaliana specific new genes, we selected new genes

based on two criteria: first, the gene was not located in any of the

syntenic regions between A. thaliana and the rest of three species A.

lyrata, C. rubella, B. rapa; second, the gene did not have any

reciprocal ortholog in A. lyrata, C. rubella and B. rapa.

Using the pipelines developed by UCSC genome browser [54],

we constructed the reciprocal syntenic relationship between A.

thaliana and A. lyrata/C. rubella/B. rapa. We followed five steps to

construct the synteny: (1) we used Repeatmasker to mask the

repeat regions of A. thaliana, A. lyrata, C. rubella and B. rapa genomes

[55]. (2) We aligned refSeq of the four genomes with each other

using blastz [56]. We then transformed the ‘lav’ output format of

blastz to ‘axt’ format using lavToAxt. (3) We chained the ‘axt’ files

using axtChain and generated chain format outputs. We further

sorted and merged our chain file with chainMergeSort. (4) We

netted our chain files generated from previous steps using

chainPreNet, chainNet and netSyntenic to pick up the best and

longest chain. We also used faSize to calculate the size of

chromosomes or scaffolds involved the alignment. (5) We used

faToTwoBit to switch the ‘fasta’ format of the chromosome or

scaffold sequences into ‘2bit’ format. We transformed the ‘net’

format back to ‘axt’ format using netToAxt. We constructed the

genome wide syntenic regions between two genomes by reading

the headline of ‘axt’ format output. Overall, we used both

genomes as query/hit, and hit/query, respectively, to construct

reciprocal syntenic relationships between the A. thaliana genome

and the other three species.

To identify orthologs, we used BLASTP to search for the

reciprocal best hits between A. thaliana and A. lyrata/C. rubella/B.

rapa [57]. We defined the genes with reciprocal best hits and the

alignment e-value lower than 0.001 [38] in these species as

orthologous genes. After the construction of synteny and

identification of orthologs between A. thaliana and the other three

species, we were able to identify the A. thaliana lineage specific

genes that were evolved recently after A. thaliana diverged.

We analyzed the gene structure and genome context, and

further performed the paralog search to identify the origination of

A. thaliana new genes that were generated through gene

duplication. To determine if a gene was generated through gene

duplication, we performed BLAT for the peptide sequences of A.

thaliana lineage specific new genes against all the peptide sequences

of A. thaliana genome [58]. We chose the gene pairs satisfying

$50% alignment identity and $70% alignment coverage at the

amino acid level as the candidate paralog pairs generated through

gene duplication. We then used the peptides of the two genes of

paralog pairs in A. thaliana to blat against all the peptides in A.

lyrata, C. rubella, and B. rapa. We also used the CDSs of the two

genes of paralog pairs in A. thaliana to blat against the whole

genomes of A. lyrata, C. rubella, and B. rapa. We determined the A.

thaliana NDGs from the paralogous pairs with one of the following

three situations: (1) no hits in other three species; (2) two

paralogous genes sharing one best hit in other three species

(namely, one ortholog in other species, and two duplicate copies in

A. thaliana), (3) the new gene having no hit but the other gene

having one hit.

Figure 1. The phylogeny and divergent time among four
species. Lineage specific new gene ‘B’ is identified using comparative
genomics and syntenic relationship among four genomes.
doi:10.1371/journal.pone.0072362.g001
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To identify if a gene was formed with a chimeric gene structure

by recruiting gene fragment(s) from other DNA sequence sources,

we compared the gene structure and DNA sequences of paralogs

to determine if NDGs were recruiting DNA sequences from target

sites. We also blat the peptide sequences of A. thaliana lineage

specific genes against all the peptide sequences of A. thaliana

genome, and chose the gene pairs satisfying that the different

regions of one lineage-specific gene aligned more than one gene.

We compared the location of duplicate genes. We defined paralogs

as generated by tandem duplication mechanism if both copies are

adjacent to each other. We defined segmental gene duplication if

two paralogous pairs were distanced within 10 genes and two

copies of each pair in the segments are syntenic, respectively. This

does not limit the length of one segment to contain only 10 genes

(see Figure S1). To polarize the parent/daughter relationship of

tandem duplicates, we used syntenic map and/or phylogeny

analysis of paralogs and their orthologs in outgroup species. The

gene copy with lower than 30% (in most case, it is 0) of the length

in the syntenic regions was defined as NDG while the copy with

higher than 30% (in most case, it is 100%) of the length in syntenic

regions was defined as parental gene (see Figure S2). When both

copies are located or not located in syntenic regions but have one

orthologous gene in each of the outgroup species, we drew the

gene tree (neighbor-joining tree with 1000 bootstraps) with two

paralogous genes and their orthologs in outgroup species to

determine the parental/daughter relationship. We defined the

copy clustering with orthologs as the parental gene (see Figure S3).

The Fixation of NDGs and Parental Genes in 18 Additional
A. thaliana Accessions

Genome data of 18 accessions of A. thaliana, Bur-0, Can-0, Ct-1,

Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, Po-0, Oy-0, Rsch-4, Sf-2,

Tsu-0, Wil-2, Ws-0, Wu-0 and Zu-0 were downloaded from

http://mus.well.ox.ac.uk/19genomes/. We blat the peptides of

100 genes to all the peptides of 18 genomes. 63 gene pairs had

both the parental and NDGs hits to the corresponding annotated

genes in the 18 genomes. We further used the CDS of the

remaining 37 pairs to blat the whole genome sequences of the 18

genomes. We found that the 37 pairs had either parental gene or

NDG hits to the unannotated genome sequences or did not have

hits in the 18 genomes. We further identified 23 of the 37 pairs

that had NDGs and parental genes hit to different genomic

locations, indicating both parental genes and offspring genes had

homolog sequences in the 18 genomes. We used syntenic

information or reciprocal best hits information to annotate the

14 of the 37 pairs whose parental genes or NDGs had the same

genomic hits or lack genomic hits.

Functionality Analysis Using Sequence Divergent Tests
To examine the functional constraints on these NDGs, we

computed Ka/Ks ratios (v) of the identified paralog pairs using

PAML [59] and estimated whether v was significantly smaller

than 0.5 and 1 [60]. A Ka/Ks ratio higher than unity (v= 1)

indicates positive selection, and lower than unity indicates the

functional constraint. Conservatively, we considered genes with

Ka/Ks ratio significantly smaller than 0.5 as functional constraints

on both paralogous genes [61]. Using MAFFT [62], we aligned

the CDSs of each paralog pair according to their protein

alignment. Then we performed Codeml of PAML with two

models: model 1 fixing v at 0.5 or 1, and model 2 estimating v
freely. We then conducted Likelihood Ratio Test (LRT), which

tested whether the likelihood of model 2 was significantly smaller

than that of model 1 with v= 0.5 or with v= 1 by comparing two

times the log likelihood difference as 2L = 2(L0.5– L0) or 2L = 2(L1–

L0). P values were calculated using a Chi-square distribution with

one degree of freedom [63].

To compute the branch specific v of these NDGs, we first

collected available CDSs of the outgroup species, and aligned the

duplicate genes and their outgroup orthologous sequences with

MACSE [64]. Then we used Codeml of PAML with parameter

‘‘model = 2’’ to estimate the branch specific v of NDG and

background v. To conduct the LRT of branch specific v model,

we compared the model with background and foreground v
varying freely to the model with background v varying freely and

foreground v fixed to 1. Significance levels of likelihoods, as p

values, from the two models, were calculated using Chi-square

distribution with one degree of freedom.

Population Genetics Analysis and MacDonald & Kreitman
Test

We obtained the SNP data generated from a complete re-

sequencing of 80 strains of A. thaliana using next-generation

sequencing technology [65]. We then collected SNPs in the gene

regions for both the NDGs and their parental genes. We used Perl

scripts to compute the population parameters (e.g. p and h) and

test the frequency spectra of the polymorphism in both NDG and

its parental gene with Tajima’s D [66] and Fu & Li’s D and F [67]

methods. We assessed the significance (p value) of all the three tests

by comparing the neutrality test values (e.g. Tajima’s D, Fu & Li’s

D and F) of each NDG or its paralog to the empirical distribution

of neutrality test values from large data set [68,69]. The empirical

distribution of these neutrality test statistic was generated from

1000 randomly picked loci distributed across the genome. Since

linkage disequilibrium in A. thaliana decays on average within 25–

50 Kb [70], we removed loci with ,25 Kb distance between them

to exclude loci bearing dependent evolutionary history [68]. After

this selection process, a total of ,800 loci were sampled to

estimate empirical distribution. We then compared Tajima’s D, Fu

and Li’s D and F for each NDG or its parental gene to the

empirical distribution from this large data set. If the Tajimas’s D,

Fu and Li’s D and F were negative, we computed the ‘p’ value as

Proportionempirical(Xemp# Xobs); if those values were positive, we

computed the ‘p’ value as Proportionempirical(Xemp$ Xobs), where

Xemp and Xobs are the empirical and observed values, respectively

(Figure S4). Statistical significance was obtained from the statistic

for each NDGs/parental gene using a 5% type I error for one tail

(Figure S4). We used multiple testing correction procedure to

adjust statistical confidence based on all NDGs and their parental

genes tested. The basis of multiple-testing correction uses false

discovery rate (FDR) estimation. Therefore, for each neutrality

test, we pooled the ‘p’ values of all NDGs and parental genes

together, and computed the corresponding FDR ‘q’ values for

each gene. We took FDR ‘q’ value ,0.05 and the neutrality test

value (e.g. values of Tajima’s D or Fu and Li’s D) ,0 as criteria to

define if a gene is under natural selection. Lastly, using

intraspecific sequence polymorphism and paralogous sequence

divergence data, we then integrated DNA sequence polymorphism

and divergence data to rigorous McDonald-Kreitman (MK) tests

to infer if NDGs were driven by positive selection [71]. The tests

were performed for both NDGs and their parental genes to detect

if a differential evolution pattern existed between NDGs and

parental genes. Comparison of fixed DNA sequence divergence of

a NDG and its paralog and polymorphisms of a NDG was used to

conduct MK tests on NDGs. Similarly, comparison of fixed DNA

sequence divergence of the parental gene and its paralog along

with polymorphism of the parental gene was used to conduct MK

test on the parental genes. Fisher’s exact test was applied to test the

significance level of the null hypothesis of neutrality in MK test.

Evolution of New Duplicate Genes in Arabidopsis
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Expression Analysis of NDGs and their Parental Genes
We collected the expression data from several sources. First, we

searched the NCBI Unigene database (http://www.ncbi.nlm.nih.

gov/unigene) to detect if a NDG generated through duplication

had been annotated as a Unigene with functions. We downloaded

the UniGene EST expression profile with the four column

information available: tissue pool name, transcript/EST number

per million (TPM), expression enrichment based on TPM and

EST number for this gene/EST number for the total pool (see

Figure S5). We constructed the following contingency table: EST

number in certain tissue for one gene of interest, total EST

number for this gene minus EST number in certain tissue for one

gene of interest, EST number in certain tissue for all genes, and

total EST number for all genes minus EST number in certain

tissue for all genes, to test the significance of EST enrichment in

certain tissue for one gene. Additionally, we performed an EST-

based expression search analysis. We downloaded the NCBI EST

library collection of A. thaliana from http://www.ncbi.nlm.nih.

gov/UniGene/lbrowse2.cgi?TAXID = 3702&CUTOFF = 0. The

collection contains 406,024 ESTs from 111 EST libraries in 12

tissues including aerial organs, buds, cell culture, flower,

inflorescence, leaf, root, seed, silique, stem, vegetative tissues,

and whole plant. We used BLAT to identify the corresponding

genes of the ESTs. The criteria to define the corresponding gene of

an EST were as follows: 1) the CDS of this gene was the first best

hit of the EST; 2) the alignment of the EST and this best hit gene

satisfied $95% identity, #1e-20 E value, $100 blast score; and 3)

the blat score of this first best gene hit was at least 5 points [72]

higher than that of the second gene hit of the EST. Thus, the

corresponding relation between ESTs and 18,550 (67.66% of

27,416 total A. thaliana annotated genes) current annotated genes

were constructed.

Second, we downloaded the mRNA MPSS data for 17 libraries

and Small RNA data for 40 libraries from http://mpss.udel.edu/

at/mpss_index.php. Massively Parallel Signature Sequencing

(MPSS) expression data were reported in the sum for the

abundance of unique signatures in TPM (transcripts per million).

Small RNA expression data were reported in the sum for the

abundance of all the signatures in TPQ (transcripts per quarter

million). Sequence match for small RNA is not required to be a

unique signature, because small RNAs can be biologically active in

more than one sequence that they match.

Third, we downloaded the processed expression data generated

by the Affymetrix GeneChip Tiling 1.0R array from http://

genomebiology.com/2008/9/7/R112/additional/. The tiling ar-

ray contains one 25-base probe in each non-repetitive 35 bp

window of the reference genome. RNA samples were collected

from 11 different tissues at different stages of A. thaliana

development. The probes that had duplicate copies and probes

that had multiple hits in the genome were removed, and only the

probe mapped to constitutive exons of the genes were kept. Robust

multi-array average (RMA) method was applied to hybridization

data for background correction, quantile normalization and

expression estimation. We further defined the tissue specific genes

based on the Z score of the gene expression in each of the 11

tissues. When the Z-score of one gene in a certain tissue was larger

than 2.5, we defined this gene as a tissue specific gene [73].

Fourth, we added RNA-seq data from 3 tissues of A. thaliana

from http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE30795. Because the processed data by Gan et al.

(2011) [74] used earlier version refseq, we re-mapped RNA-seq

reads to the current version A. thaliana refseq (TAIR 10 genome

release). We used (1) Bowtie v0.12.8 [75] to map the reads to the

genome; (2) picard-tools-1.79 (MarkDuplicates) to remove the

duplicates that were generated by PCR, (3) Cufflinks v2.0.2 [76] to

estimate gene-level relative abundance in Fragments Per Kilobase

of exon model per Million mapped fragments (FPKM) format.

Methylation Data Analysis
We downloaded the single-base resolution methylation data in

Arabidopsis published by Lister et al. 2008 [77] through the NCBI

short Read Archive accession numbers SRA000284. We re-

analyzed the sequencing data using current A. thaliana reference

genome (TAIR 10 genome release) with Bismark v0.7.7 [78]. The

intermediate steps included (1) running quality control, (2)

mapping the reads, (3) removing the duplication generated by

PCR, (4) generating cytosine methylation reports. Because the

chloroplast genome has no methylation activity, any methylation

reads detected in chloroplast genome should be accounted for the

error. Thus, the error rate (2.21%) that estimated from the

chloroplast genome was used as the control. We conducted

binomial test for each cytosine base based on methylation reads,

non-methylation reads and error rate to test whether a cytosine is

methylated. We analyzed the methylation conservation levels

between NDGs and parental genes in genic regions and in gene

regulatory regions. For genic region, we checked the methylation

conservation pattern between NDGs and parental genes in the

gene body for cytosine in all the three contexts, namely ‘‘CG’’,

‘‘CHH’’, ‘‘CHG’’ (H = A, C, or T). We used the methylation

conservation degree of all duplicated genes as the frequency of

binomial test. Based on the number of covered cytosines and the

number of cytosines with conserved methylation pattern (including

conserved methylation and conserved un-methylation), we con-

ducted a binominal test to determine whether the degree of

conservation between NDG and parental genes was higher than

the degree of conservation for all the duplicated genes in gene

body. For gene regulatory regions, we examined and compared

the methylation level for NDGs and parental genes in promoter

regions (200 bp upstream of the transcriptional start sites) and

transcriptional termination regions (200 bp downstream of the

transcriptional termination site) [79]. We used the methylation

level of the promoter regions of all the genes as the frequency of a

binomial test. Based on the number of covered cytosines and the

number of methylated cytosines, we conducted a binominal test to

estimate whether the methylation levels for NDGs and parental

genes in promoter regions were higher than those for all the genes.

The same binominal test for transcriptional termination regions

was also conducted to determine whether the methylation level in

transcriptional termination regions for NDGs and parental genes

were higher than those for all the genes. All the intermediate steps

were conducted by Perl scripts.

Results

Identification of A. thaliana Lineage Specific New Genes
Through Gene Duplication

We identified 137 lineage specific duplicate genes generated

from gene duplication, which satisfy two criteria (1) non-reciprocal

orthologs based on Blastp search and (2) in the disruption of

syntenic regions based on pipelines developed by UCSC genome

browser between A. thaliana and the other three species, e.g. A.

lyrata, C. rubella and B. rapa. Among the 137 paralogs, 23, 48, and

66 genes derived from tandem duplication, segmental duplication,

and dispersed duplication, respectively. To examine the parental/

NDG relationship between duplicate genes, we screened the 137

duplicate genes for those whose parental genes happened to be A.

thaliana lineage-specific genes or had a shared ortholog among the

other three species. We found that 37 of 137 paralogs were

Evolution of New Duplicate Genes in Arabidopsis
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duplicated from A. thaliana lineage specific genes, and the

remaining 100 paralogs were recently originated from duplication

of non-lineage specific parental genes (Table S1). Therefore, we

can define the parental/NDG relationship of the 100 paralogs.

Among the 137 paralogs, 17 genes were generated through

chimera fusion from one duplicate gene and the flanking region of

the target site. Additionally, seven genes were originated through

chimeric fusion from at least two duplicate genes, and 4 genes

were generated through chimeric fusion of a duplicate gene and a

transposable element (TE) (Table S2). By comparing the gene

structures between NDGs and their parental genes, all NDGs were

generated by DNA-based gene duplication.

We further checked whether the 100 NDGs are fixed in A.

thaliana species by examining the presence of these NDGs in 18

additional A. thaliana accessions whose genomes were recently

released [74]. We found a majority of NDGs and their parental

genes were fixed except for ten NDGs and five parental genes that

lack genomic hits in some of the 18 genomes, indicating they are

still fluctuating in the A. thaliana species.

Functionality Analysis of A. thaliana Lineage Specific
NDGs Using Ka/Ks Test

The ratio of nonsynonymous substitutions per nonsynonymous

site (Ka) to the synonymous substitutions per synonymous sites

(Ks), v= Ka/Ks, can be used as a test of natural selection. Positive

selection is inferred if v.1, purifying selection if v,1, and neutral

evolution if v= 1. We computed the Ka/Ks ratio between the

NDGs and their parental genes to determine whether they were

under functional constraints. Because all the NDGs were

duplicated and originated less than 10 MYA, we observed very

low synonymous and non-synonymous substitution rates. The

average Ks and Ka values were 0.0860 and 0.0290, respectively.

44 out of 137 paralogs did not have synonymous and non-

synonymous substitutions. For the remaining 93 paralogs, 18 had

Ka/Ks values greater than 1, and 75 had Ka/Ks values less than

one (Table S1 and Table 1). LRT of Ka/Ks ratio further

confirmed that 31 of 93 paralog pairs were significantly less than

0.5, and 50 of 93 paralog pairs are significantly less than 1

(Table 1), suggesting a majority of paralog pairs ((44+50)/

137 = ,70%) are under strong functional constraints.

Further, we wanted to test whether a paralog pair under strong

functional constraints with low v is due to the parental copy

remaining under purifying selection and the new copy evolving

neutrally as a pseudogene. To test this we estimated v for the

foreground branch leading to the A. thaliana lineage specific new

gene and for background branches leading to the parental genes

and their orthologous genes in outgroup species (A. lyrata, C. rubella

and B. rapa). We first collected the available outgroup orthologous

CDS sequences for 92 parental genes from A. lyrata, C. rubella and

B. rapa; since NDGs are lineage specific and do not have ortholog,

and some parental genes only have orthologous sequences but no

orthologous CDSs. We then calculated A. thaliana branch specific

v for these 92 NDGs (Table S3). 52 of the 92 NDGs have branch

specific v ,0.5; 16 of 92 NDGs have branch 0.5,v ,1; and the

remaining 24 NDGs have v .1. Further, LRT tests showed that

one NDG has branch specific v significantly greater than 1. Also,

35 NDGs have branch specific v significantly smaller than 1.

Therefore, branch model v tests further demonstrated that a large

proportion of NDGs are under functional constraints.

We also conducted a comparative analysis between NDGs and

randomly selected duplicated genes. We randomly generated 10

data sets of non-redundant (each duplicate gene pair was only

picked up once) duplicate gene pairs with each set containing 101

gene pairs, which satisfied the peptide sequence identity of the two

genes $30%, and alignment coverage of the two proteins $70%.

We computed the Ka/Ks for the 10 data sets and removed the

outliers with Ks .5 whose substitutions are saturated (as shown in

Table S4). The comparisons between NDGs and randomly

selected duplicated genes suggested that NDGs originated more

recently than most of random selected duplicate genes, as shown

by lower average Ks, Ka values of the NDGs, and a higher

number of cases with Ka and Ks = 0 of the NDGs. Larger number

of NDGs were under positive selection as shown by higher number

of the gene pairs with Ka/Ks .1. And NDGs may be under

relaxed functional constraints, as shown by lower number of the

NDG pairs with Ka/Ks significantly less than 0.5 and 1.

Population Genetic Analysis of A. thaliana NDGs
To perform population genetics analysis, we collected SNPs for

NDGs and their parental genes across 80 A. thaliana accessions. Of

the 100 duplicate paralogs with clear origination relationship, in

which the parental genes share orthologs and/or syntenic regions

with other species and the NDGs are A. thaliana lineage specific, 67

NDGs and 68 parental genes have SNP data available,

respectively. We computed the average nucleotide polymorphism

(h) and average nucleotide diversity (p) for all sites, synonymous

sites, and non-synonymous sites, respectively. The averaged h and

p for NDGs were larger than those for parental genes in all sites,

synonymous sites, and non-synonymous sites (except p values at

synonymous sites for NDGs were smaller than those for parental

genes. Table 2), suggesting the NDGs were evolving more rapidly

than their parental genes. To further test whether elevated

evolution rate of NDGs resulted from natural selection rather than

a random process due to demographic effects, we compared

polymorphism patterns between NDGs and randomly selected

genes. We generated 10 gene datasets. In each gene dataset, we

randomly picked up 100 non-redundant (each gene was picked up

once) functional (no pseudogene) annotated A. thaliana genes and

computed their population genetic statistics as shown in Table S5.

We found the pn (p value at the non-synonymous sites) and hn (h
value at non-synonymous sites) of the NDGs were larger than the

randomly selected genes, suggesting the NDGs have a faster

evolution rate. We conducted t-tests for h and p between

synonymous sites and non-synonymous sites of NDGs. We

demonstrated that h and p values for non-synonymous sites (hn

and pn) were significantly smaller than those for synonymous sites

(hs and ps), further indicating that these NDGs were under

functional constraints (p value for hs vs. hn is 4.16E-09, and p value

for ps vs. pn is 4.57E-07).

To test whether the evolution of these NDGs was driven by

natural selection, we conducted Tajima’s D test, Fu & Li’s F and D

test, and MK test for all sites. We compared the three neutrality

test results, namely Tajima’s D, Fu & Li’s F and D, of each NDG

and its parental gene with the empirical distribution of ,800

independent and randomly sampled genes across the genome to

compute the ‘p’ values. If the skewed pattern (e.g. Tajima’s D)

Table 1. The proportions of NDGs and parental genes with
different Ka/Ks.

Ka and Ks = 0 Ka/Ks .1 Ka/Ks ,1

number of paralogs 44 18 75(50a)

percentage 32.12% 13.14% 54.74%(36.50%a)

aKa/Ks significantly less than 1 by LRT test.
doi:10.1371/journal.pone.0072362.t001
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detected in a single NDG or its parental gene significantly deviated

from the corresponding empirical distribution, it implied that this

gene is most likely under positive selection rather than a genome-

wide effect and we could eliminate the effect of population

structure and demographic history on these tests. We computed

the corresponding FDR ‘q’ value for each ‘p’ value and applied

FDR ‘q’ value ,0.05 to correct for the multiple-testing problem.

To define whether a gene is driven by positive selection, we

required the Tajima’s D test or Fu & Li’s F and D test values be

negative and the ‘q’ values of these tests less than 0.05. Ten of the

67 (14.9%) NDGs, which have SNP data available, had at least

one test which significantly deviated from neutrality (Table 3 and

Table S6). Six of the 68 (8.8%) parental genes, which have SNP

data available, had at least one test that significantly differed from

neutrality. We looked at the corresponding parental genes of these

10 NDGs and found that none of these parental genes showed

even one selective signature using these tests. Also, six NDGs had

the ‘q’ value of MK test smaller than 0.05, and only one parental

genes has the ‘q’ value less than 0.05. None of the parental genes

corresponding to these six NDGs produced an MK test ‘q’ value

smaller than 0.05. The significant ‘q’ value of the MK test can be

due to the strong positive selection driving the divergence between

the NDGs and the parental genes, or strong purifying selection

deleting more polymorphisms from the NDGs than those of the

parental genes [80]. If the observed patterns were due to stronger

purifying selection deleting more polymorphisms of the NDGs, it

would be expected that hn and pn of the NDGs should be less than

those of the parental genes. However, we found that the majority

of the six NDGs had higher hn and pn than most of the parental

genes. Thus, our observed pattern should not be due to the

polymorphism deletion by stronger purifying selection on the

NDGs but due to the fixed divergence by stronger positive

selection on the NDGs. Further, the significant MK test can

exclude the effect of demographic changes and suggested that the

evolution of the six NDGs were driven by positive selection.

Overall, by comparing the selection pattern of the NDGs to that of

the parental genes, we concluded that the NDGs experienced

divergent evolution patterns from the parental genes.

Expression Analysis of A. thaliana Lineage Specific NDGs
To test whether sub-functionalization and neo-functionalization

play roles in the evolution of A. thaliana lineage specific NDGs, we

examined the expression pattern of 100 NDGs and their parental

genes. Overall, 31 NDGs and 41 parental genes have EST data in

GenBank (Table 1). 69 NDGs and 65 parental genes have

UniGene annotation (Table 1). The presence of ESTs in UniGene

allowed us to detect tissue specific profiles of mRNA accumulation.

As shown in UniGene Profile Viewer [81], 24 of 69 NDGs had a

tissue specific expression pattern. Furthermore, statistical analysis

indicated 14 NDGs were significantly associated with ESTs

derived from one tissue (Figure S5). By comparing the expression

profiles of 17 paralogs that contained expression data in both

NDGs and parental genes, we observed 10 NDGs showing

expression patterns differing from their parental genes. For

example, the inflorescence enriched NDG At1g74290 came from

the seed and root enriched parental gene At1g74280. The cell

culture and flower enriched NDG At2g04390 was changed from

the root enriched parental gene At5g04800. The flower enriched

NDG At3g49420, vegetative tissue enriched NDG At4g21460 and

the root enriched NDG At3g05160 and AT3G23510 came from

parental genes which had non-specific expression. The root

enriched parental gene At4g23430, the flower enriched parental

gene At2g05310, the silique enriched parental gene At5g25757, and

the bud enriched parental gene At2g16530 gave rise to the non-

specific NDGs At4g23420, At4g13500, At5g25754, and At1g72590,

respectively.

We observed similar changes in expression patterns between

NDGs and their parental genes using tilling array expression data.

Overall, we extracted expression data for 62 NDGs and 62

parental genes from the tiling array expression data at http://

genomebiology.com/2008/9/7/R112/additional/ (Tables S7 and

S8) [73]. According to Z-score of the expression data based on

tiling array, 11 NDGs and 7 parental genes were tissue-specifically

expressed. We further detected 7 NDGs that were expressed

differently to their parental genes. For example, four NDGs

changed from non-tissue specific parental genes to root-specific;

expression of NDG At4g10860 was senescing-leaf specific com-

pared to non-tissue specific expression of parental gene. Two

parental genes with seedling specific and expanding-leaf specific

changed to non-tissue specific in NDGs At2g43440 and At1g31670

(Tables S7 and S8).

We detected MPSS mRNA for 28 NDGs and 36 parental genes

in 17 libraries. 25 of 28 NDGs and 34 of 36 parental genes

expressed mRNA enrichment in at least one tissue (Tables S9 and

S10). We examined the mRNA enrichment pattern for 17 paralog

pairs that have MPSS mRNA data for both NDGs and parental

genes. We identified that 11 of these 17 NDGs had different

mRNA enrichment pattern compared to their parental genes

Table 2. The average values of p and h for all the sites,
synonymous and non-synonymous sites of NDGs and parental
genes.

Average value pa ps pn ha hs hn

NDG 0.0054 0.0069 0.0039 0.0082 0.0101 0.0063

Parental gene 0.0049 0.0071 0.0029 0.0071 0.0094 0.0047

pa and ha for all sites; ps and hs for synonymous sites; pn and hn for non-
synonymous sites.
doi:10.1371/journal.pone.0072362.t002

Table 3. The number of NDGs showing selective signatures
under population genetic tests.

Tajima’s D Fu and Li’s F Fu and Li’s D MK test # of gene

+ + + + 0

+ + + 2 1

+ + 2 + 1

+ 2 + + 0

2 + + + 1

+ + 2 2 1

+ 2 + 2 0

+ 2 2 + 0

2 + + 2 1

2 + 2 + 0

2 2 + + 0

+ 2 2 2 0

2 + 2 2 1

2 2 + 2 0

2 2 2 + 4

‘‘+’’ yes; ‘‘2’’ no.
doi:10.1371/journal.pone.0072362.t003
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(Table S9 and S10). 70 NDGs and 73 parental had small RNA

data from 40 libraries (Tables S11 and S12).

We also analyzed the RNA-seq data from three tissues including

seedling, root and flower bud for the 100 NDG and their parental

genes. We found 74 of 100 gene pairs had both parental genes and

NDGs expressed in at least one of the three tissues. Twenty NDGs

and 14 parental genes were expressed in none of the three tissues.

We identified that 2 of 75 gene pairs had NDGs with different

expression pattern from the parental genes (Table S13). The NDG

At1g31670 changed from seedling specific parental gene At1g31690

to non-tissue specific. The NDG At3g02240 changed from non-

tissue specific parental gene At3g02242 to seedling specific.

In summary, all 100 NDGs were demonstrated as being

transcribed from at least one expression data set (Table S14).

The expression for 91 of 100 NDGs was supported by two or

more expression data sources (Table S14). 45 NDGs had enriched

expression in certain tissues. Among them, 24 NDGs were

statistically significant in tissue-specific expression. 24 of 100

paralogs with expression data available for both NDGs and

parental genes showed divergent expression patterns between

NDGs and parental genes, indicating sub-functionalization or neo-

functionalization (Table 4). We further examined the divergent

functionalities of four NDGs based on the asymmetric expression

and their physiological effects. (1) At4g12620 and At4g14700 have

unrelated promoters. The parental gene, At4g12620, is restrictively

expressed in proliferating cells while the NDG, At4g14700, is

preferentially found in endoreplicating cells [82]. (2) Although the

histochemical staining and GUS activity measurement suggested

At1g07780 (the parental gene) and At1g29410 (the NDG)

transgenic plants have similar expression levels and patterns, no

functional At1g29410 cDNA clones were found by using a

functional complementation test [83]. (3) At1g19080 (the NDG)

was found to change in gene expression during pollen germination

and tube growth [84] and played a role in embryo development

[85], however Ag3g55490 (the parental genes) did not share this

pattern. (4) At3g05160 (the NDG) has been demonstrated to play a

part in an auxin regulatory circuit involved in the control of a

hypo-sulphur stress [86], while At3g05165 (the parental gene) has

been found to change in gene expression during pollen germina-

tion and tube growth [84].

The Methylation Pattern of NDGs
We examined the degree of methylation conservation between

NDGs and their parental genes in gene body. We also examined

and compared the methylation level for NDGs and their parental

genes in promoter regions (200 bp upstream of the transcriptional

start sites) and transcriptional termination regions (200 bp

downstream of the transcriptional termination site) [79]. We

found 17 paralogs that had significantly low methylation

conservation in gene body between the NDGs and parental genes

compared with the methylation conservation of all the duplicated

genes (binomial test with correcting multiple testing with FDR

,0.05, Table S15). We found 5 paralogs which had different

methylation levels in promoter regions between NDG and their

parental genes. Three NDGs (At1g30974, At1g45190, At2g13450)

showed higher methylation levels in the promoters and two

parental genes (At4g04030, At4g34080) showed higher methylation

levels in the promoters compared to the common methylation

level in the promoters of all the genes (binomial test with

correcting multiple testing with FDR ,0.05).

The Cis-regulatory Motif Pattern of NDGs
In addition to methylation pattern, we analyzed the cis-

regulatory elements annotated on the 100 gene pairs. The data

was downloaded from AGRIS http://arabidopsis.med.ohio-state.

edu/downloads.html. 32 of our NDGs and parental genes had

annotated cis-regulatory elements. Only 2 NDG possessed the

same cis regulatory element as the parental gene, the majority of

NDGs and their parental genes had divergent cis-elements: (1)

Seven parental genes had additional unique cis regulatory elements

besides the ones shared with the NDGs. (2) Two NDGs had

additional unique cis regulatory elements besides the ones shared

with the parental genes, (3) 21 pairs of NDGs and parental genes

had different cis regulatory elements (Table S16). Among 24

paralogous gene pairs whose NDG and parental gene showed

divergent expression patterns, 21 paralogous gene pairs had both

parental gene and NDG annotated with cis regulatory elements.

All these 21 paralogous gene pairs showed cis-elements divergence:

(1) One parental gene had additional unique cis regulatory

elements besides the ones shared with the NDG. (2) Three NDGs

had additional unique cis regulatory elements besides the ones

shared with the parental genes. (3) 17 pairs of NDG and parental

gene had different cis regulatory elements.

Discussion

The Rapid Origination Rate of NDGs in A. thaliana
Gene duplication is a profound phenomenon in plant genome

evolution. Using rigorous comparative genomics analysis, among

closely related species, we identified 137 A. thaliana lineage specific

duplicate genes accounted for 0.50% of A. thaliana’s total 27,416

protein-coding genes. The rate of duplicate genes in Arabidopsis

(14,27 duplication events/million years) is three fold higher than

that in any animal species measured to date [26,74,87,88]. This

suggests that Arabidopsis genomes could have been shaped by a

rapid evolution of duplicate genes as an adaptation to highly

diverse environments.

However, compared with a previous study by Donoghue [38],

which identified 417 A. thaliana lineage specific genes originating

from duplication, 225 of them with significant BLASTP hits to a

non-lineage specific genes and 180 with expression data support,

these numbers from our analysis are reduced to 137, 100, and 100,

respectively. This could be due to that we used both syntenic map

and BLASTP search to identify orthologs. This combined

approach increased the number of orthologs and thus decreased

the number of lineage specific genes. Donoghue et al also used

position-specific method, namely Position-Specific Iterated

BLAST (PSIBLAST), to detect homologs. However, compared

to the position-specific method, syntenic map approach based on

whole genome comparison is likely to reveal more comprehensive

orthologous information than PSIBLAST.

Natural Selection Drives the Evolution of NDGs
The process by which duplicate genes evolve and become fixed

in a genome is one of the central questions in molecular evolution

[33]. When effective population size (Ne) is small, a duplicate gene

with neutral or slightly deleterious mutations may become fixed in

the population due to genetic drift [89,90]. In addition, the

selectively neutral ‘‘duplication-degeneration-complementation’’

(DDC) model leading to a neutral sub-functionalization, hypoth-

esized that both gene copies can be maintained in the genome due

to complementary degenerate mutations. This process distributed

the functionality of the original genes between the two duplicate

copies through neutral mutations [30,37,91,92]. Both models

suggest that the lineage specific duplicate genes should be the

product of passive fixation of gene duplication especially in the

species with small Ne rather than the product of positive adaptation

to the environment.
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In contrast, many empirical examples and theoretical studies

demonstrated that the evolution of duplicate genes is driven by

positive selection resulting in either sub-functionalization or neo-

functionalization [93–96]. The classical escape from adaptive

conflict (EAC) model leading to EAC sub-functionalization suggests

that two genes can have specialized expressions in different tissues

or different development stages [30,97]. This model is different

from DDC in that function is developed through adaptive (non-

neutral) mutations. The EAC sub-functionalization model, involv-

ing selection, holds that multiple functions of the ancestral gene

cannot be optimized at the same time by natural selection. After

gene duplication, the two daughter genes can avoid this conflict

through experiencing adaptive mutations, which leads them to

specializing in different functions within the original set of functions

thereby increasing the fitness of the organism [30,98,99]. Neo-

functionalization occurs when one duplicate retains the original

function and the other duplicate copy evolves a novel function [33].

Both EAC sub-functionalization and neo-functionalization involve

duplicate genes evolving driven by natural selection.

Arabidopsis thaliana is a selfing plant species with relatively small

Ne. Previous studies reported its Ne ranges from a few to a few

thousands [100,101]. To test whether NDGs identified were under

functional constraints and were evolved under natural selection,

we estimated their Ka/Ks ratio, conducted the ‘t’ test for the rate

of substitution pattern and analyzed SNP data with various

population genetics tests. We estimated that most of NDGs in A.

thaliana were under functional constraint. Thus, neutral and/or

slight deleterious mutation to NDGs and genetic drift due to small

Ne might not be able to explain the whole picture of the NDGs

evolution in A. thaliana. Further, our polymorphism analysis

showed that about 15% of the NDGs (10 out of 67 NDGs) with

clear origination relationship and SNP data had a positive

selection signature, revealing that the evolution of a large

proportion of the NDGs in A. thaliana were driven by natural

selection. Interestingly, when compared to their parental genes,

evidence showed that 3 of the 24 NDGs that switched their tissue

expression specificity also displayed selection signatures (Table

S17). Moreover, all the three NDGs (Table S17) involved

Table 4. The 24 paralog pairs having differential expression pattern between NDGs and parental genes.

NDG Parental gene Ka NDG enriched tissue Parental gene enriched tissue
Data
source

At1g19080 At3g55490 0 Leave Non specific MPSS

At1g29410 At1g07780 0.1411 Silique Inflorescence MPSS

At1g52270 At4g28310 0.1369 Non specific Root MPSS

At1g74290 At1g74280 0.0549 Non specific Root MPSS

At1g80700 At1g80980 0.0019 Root Inflorescence MPSS

At2g09990 At5g18380 0.0029 Inflorescence Seedlings MPSS

At4g14700 At4g12620 0.0482 Inflorescence Silique MPSS

At5g28900 At5g28850 0.0015 Callus Callus and root MPSS

At5g43620 At1g66500 0.0363 Non specific Callus MPSS

At1g21530 At1g21540 0.0572 Root-specific Non specific Tiling
array

At1g29830 At1g29820 0.079 Root-specific Non specific Tiling
array

At1g31670 At1g31690 0.0978 Non specific Expanding-leave specific/seedling Tiling
array/
RNA-seq

At2g43440 At2g43445 0.0792 Non specific Seedling specific Tiling
array

At3g23510 At3g23530 0.0138 Root-specific Non specific Tiling
array

At4g10860 At4g10880 0.1353 Senescing-leave specific Non specific Tiling
array

At1g72590 At2g16530 0.0582 Non specific Bud Unigene

At2g04390 At5g04800 0.0098 Cell culture Root Unigene

At3g05160 At3g05165 0.1104 Root Non specific Unigene

At4g13500 At2g05310 0.0337 Non specific Flower Unigene

At5g25754 At5g25757 0 Non specific Silique Unigene

At3g49420 At5g01430 0 Flower/Callus Non specific Unigene/
MPSS

At4g21460 At3g18240 0.0244 Vegetative/Inflorescence Non specific/callus Unigene/
MPSS

At4g23420 At4g23430 0.0513 Non-specific/seedling Root/callus Unigene/
MPSS

At3g02240 At3g02242 0.2633 Seedling Non specific RNA-seq

doi:10.1371/journal.pone.0072362.t004
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important biological functions in A. thaliana, suggesting that they

might play an important role in the adaptation of A. thaliana,

driven by natural selection.

The Possible Mechanisms Causing the Divergent
Expression Patterns of NDGs

Gene duplication is one of the most important mechanisms to

generate biological diversity. In our studies, with available data

from four data sources, we found 24 NDGs that showed

expression patterns different from their parental genes (Table 3).

Eight of 24 (,33%) NDGs changed from non-tissue specific

parental genes to certain tissue specific genes, and 7 out of the 8

genes changed to vegetative tissues (e.g. root and leaf). This was

different from what was observed in fruit fly, silkworm and

mammals where the NDGs through retrotransposition mecha-

nisms tended to be expressed in male testis [60,72,102–104], or

NDGs tended to be expressed in nervous systems in mammals

[5,105]. Surprisingly, the rate of nonsynonymous substitution

between these 24 NDGs and their parental genes were very small

with the average Ka of 0.0599 (Table 4). In addition to the

replacement substitutions in coding regions, these NDGs may

acquire differential expression patterns from their parental genes

by obtaining new trans- or cis- regulatory motifs [106], or

epigenetic regulation by change of methylation status [107,108],

as we showed in the results. Thus, the epigenetic and cis-regulatory

pattern may play a role in driving the differential expression of the

24 NDGs from their parental genes.

The Small-scale Gene Duplications have Higher Chance
to Develop Divergent Expression Pattern

To test if the duplication mechanism is correlated with

divergent expression pattern, we examined the expression pattern

of NDGs derived from small-scale gene duplication (tandem or

dispersed duplication) and large-scale gene duplication (segmental

duplication). All 24 paralogous gene pairs of which the NDGs

exhibited asymmetric expression pattern from the parental genes

were derived through either tandem duplication or dispersed

duplication. We further examined the cis-elements of 100 pairs of

NDGs and parental genes. For the 32 gene pairs with both the

parental gene and NDG having cis regulatory motif annotated,

regardless of the motifs being the same or different between the

two paralogous genes, all NDGs were generated from either

tandem duplication or dispersed duplication. This conclusion is

consistent with that of previous studies that small-scale duplication

events have higher potential to generate the NDGs with different

expression/function from the parental genes than do the large-

scale duplication events [109].
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