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Abstract. Sepsis is a life‑threatening organ dysfunction 
caused by a dysregulated host response to infection, and is a 
leading cause of mortality worldwide. Myocardial dysfunc‑
tion is associated with poor prognosis in patients with sepsis 
and contributes to a high risk of mortality. However, the 
pathophysiological mechanisms underlying sepsis‑induced 
myocardial dysfunction are not completely understood. The 
aim of the present study was to investigate the role of toll‑like 
receptor 4 (TLR4)/c‑Jun N‑terminal kinase (JNK) signaling in 
pro‑inflammatory cytokine expression and cardiac dysfunc‑
tion during lipopolysaccharide (LPS)‑induced sepsis in mice. 
C57BL/6 mice were pretreated with TAK‑242 or saline for 
1 h and then subjected to LPS (12 mg/kg, intraperitoneal) 
treatment. Cardiac function was assessed using an echocar‑
diogram. The morphological changes of the myocardium 
were examined by hematoxylin and eosin staining and trans‑
mission electron microscopy. The serum protein levels of 
cardiac troponin I (cTnI) and tumor necrosis factor‑α (TNF‑α) 
were determined by an enzyme‑linked immunosorbent 
assay  (ELISA). The TLR4 and JNK mRNA levels were 
analyzed via reverse transcription‑quantitative PCR. TLR4, 
JNK and phosphorylated‑JNK protein levels were measured 
by western blotting. In response to LPS, the activation of 
TLR4 and JNK in the myocardium was upregulated. There 
were significant increases in the serum levels of TNF‑α and 
cTnI, as well as histopathological changes in the myocardium 

and suppressed cardiac function, following LPS stimulation. 
Inhibition of TLR4 activation using TAK‑242 led to a decrease 
in the activation of JNK and reduced the protein expression 
of TNF‑α in plasma, and alleviated histological myocardial 
injury and improved cardiac function during sepsis in mice. 
The present data suggested that the TLR4/JNK signaling 
pathway played a critical role in regulating the production 
of pro‑inflammatory cytokines and myocardial dysfunction 
induced by LPS.

Introduction

Sepsis, the most common cause of death among patients in the 
intensive care unit, is defined as life‑threatening organ dysfunc‑
tion caused by a dysregulated host response to infection (1). It 
is recognized as a global public health problem due to its high 
mortality and morbidity, as well as its substantial economic 
burden (2). Rudd et al (3) recently reported that an estimated 
48.9 million cases of sepsis and 11.0 million sepsis‑related 
deaths were recorded worldwide in 2017, representing 19.7% 
of all global deaths. Septic shock is a subset of sepsis that 
can lead to multi‑organ dysfunction and rapid death  (1). 
Myocardial dysfunction is recognized as a common complica‑
tion of septic shock and contributes to adverse outcomes (4). 
Endotoxins, such as lipopolysaccharide (LPS), which is an 
important structural component of the gram‑negative bacte‑
rial outer membrane, are important factors responsible for 
septic myocardial dysfunction  (5). Previous studies have 
demonstrated that LPS can mimic the myocardial dysfunction 
of septic shock (6,7). A number of underlying pathophysi‑
ological mechanisms, including genetic, molecular, metabolic 
and structural mechanisms, have been proposed to be involved 
in sepsis‑induced myocardial dysfunction (8). However, the 
specific mechanisms have not yet been elucidated.

Toll‑like receptors (TLRs) are the first line of defense in 
the mammalian immune system and recognize pathogen‑asso‑
ciated molecular patterns, such as lipoproteins, LPS, flagellin 
and nucleic acids of bacterial origin (9). Among these recep‑
tors, TLR4 has been identified as the only receptor for LPS 
and plays a key role in LPS‑mediated inflammatory responses 
and myocardial dysfunction (6). The intracellular signaling 
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pathways activated after LPS‑TLR4 binding have been 
classified as the myeloid differentiation primary response 
protein 88 (MyD88)‑independent and TIR‑containing adapter 
inducing interferon‑β (TRIF)‑dependent pathway (10). The 
MyD88‑independent pathway induces the activation of nuclear 
factor‑κB and mitogen‑activated protein kinases (MAPKs), 
thus leading to the release of pro‑inflammatory cytokines and 
regulation of cardiac function during sepsis  (11). MAPKs, 
including p38, extracellular signal‑regulated kinase (ERK)1/2, 
c‑Jun N‑terminal kinase  (JNK) and ERK5 (12), transduce 
a variety of extracellular signals that regulate the cellular 
response implicated in proliferation, differentiation, apoptosis, 
stress and inflammatory response (13,14) and play an impor‑
tant role in regulating sepsis‑induced cardiac dysfunction (15). 
JNK, also known as stress‑activated protein kinase, is a 
member of the MAPK family. However, the role of the JNK 
signaling pathway in tumor necrosis factor‑α (TNF‑α) expres‑
sion and myocardial dysfunction induced by sepsis has not yet 
been clearly defined. The majority of previous studies (16,17) 
have reported that the activation of the JNK signaling pathway 
promotes the production of pro‑inflammatory cytokines 
and the development of LPS‑induced cardiac dysfunction. 
Research from Peng et al  (18) revealed that LPS activates 
JNK1, thus leading to the inhibition of TNF‑α expression 
and improvement of the myocardial function in sepsis. In 
addition, only a few studies have investigated whether TLR4 
mediates LPS‑induced myocardial dysfunction by modulating 
the JNK signaling pathway. Thus, the aim of the present study 
was to examine the changes in cardiac function, myocardial 
histopathology and TNF‑α expression during LPS stimulation. 
Furthermore, this study also attempted to explore the regula‑
tory role of the TLR4/JNK signaling pathway in LPS‑induced 
TNF‑α expression and myocardial dysfunction. The results 
demonstrated that the production of TNF‑α increased signifi‑
cantly, cardiac function decreased, and the activities of TLR4 
and JNK in the myocardium were upregulated during LPS 
stimulation. Whereas, inhibition of TLR4 activation down‑
regulated JNK activation, reduced TNF‑α expression and 
improved cardiac function in response to LPS. The present 
results suggested that TLR4 mediated myocardial dysfunction 
by regulating the JNK signaling pathway during sepsis.

Materials and methods

Animals. A total of 54 male wild‑type C57BL/6 mice 
(8‑12 weeks old and weighing 22‑28 g), were purchased from 
the Laboratory Animal Center, Academy of Military Medical 
Sciences, [certificate no. SCXK (Jing) 2014‑0013; Beijing, 
China]. The mice were housed in a specific pathogen‑free 
environment at a constant temperature (22±1˚C) with 
50% humidity and 12‑h light/dark cycles. All mice had free 
access to food and water. All the experimental procedures 
were approved by the Animal Experiments Ethics Committee 
of Nankai University (Tianjin, China; approval no. 10011).

Experimental protocol. To induce sepsis, mice were injected 
intraperitoneally (i.p.) with 12 mg/kg LPS (from Escherichia 
coli, a phenol extract of serotype 011:B4; Sigma‑Aldrich; 
Merck KGaA), a dose that was sufficient to induce cardiac 
dysfunction as determined in our preliminary experiment (19). 

Mice were randomly assigned to three groups: Sham group 
(n=18), LPS group (n=18) and TAK‑242 group (n=18). Mice in 
the LPS and TAK‑242 groups were i.p. treated with saline or 
a TLR4 inhibitor (TAK‑242; 2 mg/kg), respectively, followed 
by LPS (12 mg/kg, i.p.) 1 h later. Mice in the sham group were 
injected with equal 0.9% saline. For time course experiments, 
mice were sacrificed at 3, 12 and 24 h after LPS or saline 
injection (n=6 for each time point). Left ventricular (LV) func‑
tion was assessed at 3, 12 and 24 h after LPS injection during 
anesthesia. After measurement of LV function, mice were 
euthanized by excessive inhalation of isoflurane, and then the 
plasma and ventricular myocardium were collected and stored 
at ‑80˚C.

Echocardiographic assessment of LV function. A Vevo 2100 
ultrahigh resolution small animal ultra‑sound imaging system 
(VisualSonics, Inc.) with a MS‑400 ultrasound scanning 
transducer was used to evaluate LV function (20‑22). Briefly, 
mice were anesthetized with 1‑1.25% isoflurane via a mask, 
and their chest was shaved before the animals were placed in 
the supine position on a 37˚C pad. Warm electrode gel was 
applied to the limb leads, allowing for the electrocardio‑
gram and respiration rate to be recorded during ultrasound 
imaging. Briefly, an even layer of ultrasound coupling agent 
was spread on the mouse thoracic, and the console was used 
at a downward sloping angle of 30‑45 .̊ Two‑dimensional 
cine loops and guided M‑mode frames were recorded from 
the parasternal long axis. The following parameters were 
measured as indicators of function: LV end diastolic diam‑
eter (LVEDD), LV end systole diameter (LVESD), LV end 
diastolic volume (LVEDV), LV end systolic volume (LVESV), 
LV ejection fraction percentage (LVEF%), and LV fractional 
shortening percentage  (LVFS%). All data were analyzed 
off‑line at the end of the study with the software in‑built in the 
ultrasound system (20).

Histopathological examination of myocardial tissues. 
Immediately after the sacrifice of the mice, their hearts were 
removed, fixed in a 10% paraformaldehyde solution for 24 h at 
room temperature and embedded in paraffin. Serial sections 
(4 µm) of the ventricle were affixed to slides, deparaffinized, 
and stained with hematoxylin and eosin (H&E) for 5 min at 
room temperature. Pathological changes of the myocardial 
tissues were observed under a light microscope (magnifica‑
tion, x400).

Transmission electron microscopy. Transmission electron 
microscopy was performed as described in a previous study 
by Wang et al (23). After pretreatment, the samples were cut 
into thin sections and visualized at 120 kV with a H7650 
transmission electron microscope (Hitachi, Ltd.). A total of 
10‑15 micrographs per sample were obtained using a Philips 
CM12 (Philips Medical Systems, Inc.) by random sampling.

Measurement of cardiac troponin I (cTnI) and TNF‑α protein 
levels. cTnI and TNF‑α protein levels in the plasma were 
determined using a mouse cTnI ELISA kit (Biotopped Life 
Sciences; cat. no. TOPEL02104) and a TNF‑α ELISA kit 
(BioLegend; cat. no. 430907) according to the manufacturer's 
instructions.
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Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from the myocardial tissues using TRIzol® 
reagent (Ambion; Thermo Fisher Scientific, Inc.), following 
the manufacturer's instructions. RT of the purified RNA (4 µg) 
was performed using random primers and the RevertAid 
First Strand cDNA Synthesis kit (Thermo Fisher Scientific, 
Inc.), according to the manufacturer's instructions. TB Green 
Premix EX Taq II (Tli RNase H Pus) (Takara Bio, Inc.; cat. 
no. RR820A) in a CFX96 system (Bio‑Rad Laboratories, Inc.) 
was used to determine the mRNA expression of TLR4 and 
JNK. All reactions were performed in triplicate. The sequences 
of the sense and antisense primers used for amplification are 
listed in Table I. The relative expression of the target genes was 
determined by calculating the values of the Δ cycle quantifica‑
tion (ΔCq) by normalizing the average Cq value to that of the 
endogenous control (GAPDH), and then calculating the 2‑∆∆Cq 
values (24).

Western blot analysis. The Whole Protein Extraction kit 
(Applygen Technologies, Inc.) was used to extract the whole 
protein of myocardial tissue, according to manufacturer's 
instructions. The concentration of whole protein was deter‑
mined with a Qubit™  Protein Assay kit (Thermo Fisher 
Scientific, Inc.), according to the manufacturer's instructions, 
and the mean values of concentration were determined. The 
samples were stored at ‑80˚C until use. Following quantifica‑
tion, equal amounts of protein samples (11.25 mg) from the 
homogenized total tissues were separated using 5% stacking 
and 10% separating gels, and subsequently transferred to a 
PVDF membrane. After blocking at room temperature for 
2 h with 5% non‑fat milk and Tris‑buffered saline with 0.05% 
Tween‑20 (TBST) or 5% bovine serum albumin (cat. no. A8010; 
Beijing Solarbio Science & Technology Co., Ltd.) and washing 
with TBST, the membranes were incubated overnight at 4˚C 
with primary antibodies against TLR4 (1:100; Santa Cruz 
Biotechnology, Inc.; cat. no. sc‑293072), JNK (1:500; Abcam; 
cat. no. ab112501), phosphorylated (p)‑JNK (1:500; Abcam; 
cat. no. ab4821) or GAPDH (1:10,000; ProteinTech Group, 
Inc.; cat. no. 60004‑1‑lg). Subsequently, the membranes were 
rinsed and incubated with the corresponding secondary 
antibody, either horseradish peroxidase‑conjugated goat 
anti‑rabbit or goat anti‑mouse IgG (1:5,000; Boster Biological 
Technology; cat. nos. BA1055 and BA1051), for 2 h at room 
temperature. Immunoblots were visualized with an enhanced 

chemiluminescence reagent (Bio‑Rad Laboratories, I nc.), 
and developed and analyzed using Quantity One software 
(version 4.6; Bio‑Rad Laboratories, Inc.). The protein signals 
were quantified by gray scale values. GAPDH was used as an 
internal control. The total protein level was normalized to the 
GAPDH protein level, and the level of p‑JNK to total JNK 
were presented.

Statistical analysis. All experiments were repeated ≥3 times. 
All data are presented as the mean  ±  SD. Statistical 
analysis was performed using SPSS 22.0 statistical software 
(IBM Corp.) and graphs were generated using Prism 6.0 soft‑
ware (GraphPad Software, Inc.). Comparisons among multiple 
groups were analyzed using one‑way ANOVA followed by the 
SNK post hoc test. P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

Changes in cardiac function. The beneficial effect of 
TAK‑242 pretreatment on LPS‑induced cardiac dysfunction 
was confirmed by quantitative analysis of echocardiograms. 
Representative echocardiograms in the different groups are 
presented in Fig. 1. The results of echocardiography analysis 
in various groups are summarized in  Fig.  2. Compared 
with the values in the sham groups, the LPS groups showed 
a significant decrease in LVEDD at 24 h, and in LVEDV 
at 12 and 24 h (P<0.05), as well as a significant increase in 
LVESD and LVESV at 3 and 12 h (P<0.05), and a significant 
decrease in LVEF% and LVFS% at all time points after LPS 
injection (P<0.05). However, compared with the values in the 
LPS groups, pretreatment with TAK‑242 induced a significant 
increase in LVEDD and LVEDV at 12 and 24 h (P<0.05), 
alongside a significant reduction in LVESD and LVESV at 3 h 
(P<0.05), and a significant increase in LVEF% and LVFS% at 
3 h following LPS injection (P<0.05).

Histological changes in the myocardium. To directly observe 
the effect of TAK‑242 pretreatment on the LPS‑induced 
alterations in myocardial structure, the histology of the LV 
myocardial tissues was examined  (Fig.  3). H&E staining 
showed that distinct myocardial injury occurred in the myocar‑
dial tissues of the LPS groups, including myocardial interstitial 
edema, prominent hemorrhaging, rupture of myocardial fibers, 
myocardial cell swelling, degeneration, loss of transverse 
striations and infiltration of leukocytes. Under the transmis‑
sion electron microscope, the myocardial ultrastructure in 
the LPS groups was damaged, which was characterized by 
myofibrillar disarray, cellular disorganization, disarrangement 
of sarcomere and/or disruption, mitochondrial swelling and 
cracking, disappearance of mitochondrial crista, as well as 
autophagic vacuoles. As time increased, the degree of myocar‑
dial damage in the LPS groups gradually worsened. However, 
the LPS‑induced myocardial injuries were ameliorated by 
pretreatment with TAK‑242.

Serum levels of cTnI and TNF‑α. Significant increases in the 
enzyme cTnI, a myocardial injury marker, were observed in 
the LPS groups compared with the values of the sham groups, 
and the level of cTnI increased gradually with time (P<0.05). 

Table I. Primers used for reverse transcription-quantitative PCR.

Gene	 Primer sequences (5'→3')

TLR4	 F:	 GCTAAGTGCCGAGTCTGAGTGTAA
	R	  TGCAGCCTTTCAGAAACACATT
JNK	 F:	 GCTCTCAGCATCCATCGTCTTC
	R :	A GGTCCAGCTGATGCTTCTAGACT
GAPDH	 F:	C TCTGCTCCTCCCTGTTCCA
	R :	A TACGGCCAAATCCGTTCAC

F, forward; R, reverse; TLR4, toll-like receptor 4; JNK, c-Jun N-terminal 
kinase.
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Pretreatment with TAK‑242 significantly reduced the level of 
cTnI compared with that of the LPS group (P<0.05). Compared 
with the levels of the sham groups, the serum TNF‑α level 
increased significantly in the LPS groups (P<0.05) and 
reached the maximal level at 3 h following LPS injection. 
Pretreatment with TAK‑242 induced a significant decrease in 
the serum TNF‑α level (P<0.05), compared with that of the 
LPS groups (Fig. 4).

TLR4 and JNK gene expression in the myocardium. As shown 
in Fig. 5, the relative TLR4 and JNK mRNA expression levels 
were significantly increased in response to LPS (P<0.05) and 
reached the maximal levels at 3 and 12 h after LPS injec‑
tion, respectively. Compared with that of the LPS groups, 
pretreatment with TAK‑242 significantly downregulated the 
expression levels of TLR4 and JNK mRNA at 3 and 12 h after 
LPS injection, respectively (P<0.05).

TLR4, JNK and p‑JNK protein expression in the myocardium. 
As revealed by western blot analysis (Fig. 6), compared with 
that of the sham groups, the relative protein expression of 
TLR4 and p‑JNK was significantly increased in response to 
LPS (P<0.05), and reached the peak ~3 and 12 h following 
LPS injection, respectively. Pretreatment with TAK‑242 
significantly reduced the protein levels of TLR4 and p‑JNK 

(P<0.05). LPS induced a significant increase in the protein 
level of the total JNK, compared with the level of the sham 
groups (P<0.05). Although TAK‑242 significantly decreased 
the protein expression of total JNK compared with the LPS 
groups at 3 and 12 h (P<0.05), there was no significant differ‑
ence at 24 h (P>0.05).

Discussion

The present study demonstrated that, in response to LPS, 
the activation of TLR4 and JNK in the myocardium was 
upregulated, and the serum levels of TNF‑α and cTnI were 
increased. Pathological myocardial damage was observed 
using H&E staining and transmission electron microscopy, 
and cardiac function was shown to be reduced. Inhibition of 
TLR4 activation led to the reduction of JNK activation and 
protein expression of TNF‑α in the plasma, and alleviated 
histopathological myocardial injury and improved cardiac 
function during sepsis in mice. The present data supported the 
notion that the TLR4/JNK signaling pathway plays an impor‑
tant role in myocardial dysfunction induced by sepsis.

Sepsis is a complicated syndrome that begins with a 
systemic immune response to an infection and can progress to 
septic shock leading to multiple organ failure and death (25). 
Although the identification of clinical biomarkers in patients 

Figure 1. Representative echocardiographic images (M‑mode) in different groups. Left, representative echocardiographic images in sham group (top), LPS 
group (middle) and TAK‑242 group (bottom) at 3 h after LPS or saline injection. Middle, representative echocardiographic images in sham group (top), LPS 
group (middle) and TAK‑242 group (bottom) at 12 h after LPS or saline injection. Right, representative echocardiographic images in sham group (top), LPS 
group (middle) and TAK‑242 group (bottom) at 24 h after LPS or saline injection. LPS, lipopolysaccharide.
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to facilitate earlier diagnosis and rapid therapeutic intervention 
is likely to have the greatest impact on improving prognosis, 
understanding the underlying mechanisms of the disease and 
evaluating the therapeutic efficacy of novel interventions using 
animal models are also of critical importance. Animal models 
of sepsis are broadly divided into three categories: Toxemia 
models, bacterial infection models and host‑barrier disruption 
models (26). The advantage of toxemia models is that there is 
a rapid onset of pathological changes, and they can have rela‑
tively low inter‑animal variability because the exact dose and 
route of administration can be standardized (26). In addition, 
toxemia models are often used to study the basic biology of 
septic shock, and in particular, they are employed in mecha‑
nistic studies on the role of TLR signaling (26). Considering 
the aforementioned reasons, in the present study, the sepsis 
models were established by i.p. injection of 12 mg/kg LPS, 
a dose demonstrated to ensure cardiac dysfunction in our 
preliminary experiment (19).

TLR4 is a type I  transmembrane protein and has a 
modular structure composed of an extracellular domain 

formed by 17‑31  leucine‑rich repeats and an intracellular 
domain that is known as the toll‑IL‑1 receptor domain, which 
is responsible for signaling transmission (27). Since the iden‑
tification of TLR4 as the LPS receptor, it has been assumed 
that this molecule triggers all the responses to LPS  (28). 
The TLR4 signaling pathway plays an important role in 
initiating the innate immune response and inflammation in 
sepsis. Typically, activation of TLR4 is preceded by binding 
of LPS to CD14 protein, and then CD14 transfers the LPS to 
the TLR4/myeloid differentiation factor 2 (MD‑2) complex, 
which dimerizes and triggers MyD88‑ and TRIF‑dependent 
production of pro‑inflammatory cytokines (29). The signaling 
pathway associated with MAPKs is an important signal trans‑
duction pathway that mediates sepsis‑induced myocardial 
dysfunction. It has been reported that the activation of ERK, 
JNK and p38 is increased in response to LPS stimulation in 
cardiomyocytes (30), which is consistent with the results of 
the current study that found LPS administration increased the 
phosphorylation levels of JNK. A previous study demonstrated 
that TLR4/MyD88 triggers a signaling cascade that leads to 

Figure 2. Echocardiographic characterization of cardiac function in different groups. Quantitative assessment of dilation and systolic function of heart based 
on (A) LVEDD, (B) LVEDV, (C) LVESD, (D) LVESV, (E) LVEF and (F) LVFS. Data are expressed as the mean ± SD from six animals in each group. 
*P<0.05 vs. sham group; #P<0.05 vs. LPS group. LVEDD, left ventricular end diastolic diameter; LVESD, left ventricular end systole diameter; LVEDV, left 
ventricular end diastolic volume; LVESV, left ventricular end systolic volume; LVEF, left ventricle ejection fraction; LVFS, left ventricle fractional shortening; 
LPS, lipopolysaccharide.
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early‑phase activation of MAPKs (29). In the present study, 
to investigate whether TLR4 plays a role in the activation of 
JNK in response to LPS, TAK‑242 was employed to block 
TLR4 signaling. TAK‑242 is a small‑molecule compound 
that selectively inhibits the TLR4 signaling pathway by 
binding directly to the intracellular domain of TLR4 (27). 
Pretreatment with TAK‑242 inhibited the activation of JNK 

induced by LPS, indicating that JNK is located downstream 
of TLR4 signaling.

Myocardial dysfunction is regarded as a well‑recognized 
clinical manifestation of sepsis and septic shock, and is 
characterized by biventricular dilation, reduced ejection frac‑
tion (EF), and a recovery period of 7‑10 days in patients with 
sepsis (31). Echocardiographic techniques have revealed that 

Figure 3. Histological changes of myocardium in different groups. (A) Representative images of hematoxylin and eosin‑stained sections of the mouse heart 
tissues in different groups. (A‑1) The LPS (top) and TAK‑242 (bottom) groups. (A‑2) The sham group. Magnification, x400. (B) Representative images of 
transmission electron micrographs of the mouse heart in different groups. Black arrows indicate myofibrillar disarray, and red arrows indicate mitochondrial 
swelling and cracking. (B‑1) The LPS (top) and TAK‑242 (bottom) groups. (B‑2) The sham group. Magnification, x3,000. LPS, lipopolysaccharide.

Figure 4. Protein levels of cTnI and TNF‑α of mouse serum in different groups. Statistical results from ELISA for (A) cTnI and (B) TNF‑α. Data are expressed 
as the mean ± SD from six animals in each group. *P<0.05 vs. sham group; #P<0.05 vs. LPS group. cTnI, cardiac troponin I; TNF‑α, tumor necrosis factor‑α; 
ELISA, enzyme linked immunosorbent assay; LPS, lipopolysaccharide.
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either systolic or diastolic dysfunction is commonly present 
in sepsis (32). Currently, two‑dimensional echocardiography 
is the most common diagnostic tool for assessing myocardial 
dysfunction in sepsis (33), and the M‑mode‑derived fractional 

shortening, EF and ventricular dimensions are regarded as 
common parameters to evaluate cardiac function (20). Among 
these parameters, EF is most commonly employed to evaluate 
LV systolic function (34). Diastolic dysfunction occurs in ~50% 

Figure 5. TLR4 and JNK gene expression in mouse hearts from different groups. The relative expression levels of cardiac (A) TLR4 and (B) JNK mRNA were 
assessed by reverse transcription‑quantitative PCR. Results were normalized to GAPDH. Data are expressed as mean ± SD (each group, n=6). *P<0.05 vs. sham 
group; #P<0.05 vs. LPS group. TLR4, toll‑like receptor 4; JNK, c‑Jun N‑terminal kinase; LPS, lipopolysaccharide.

Figure 6. TLR4, JNK and p‑JNK protein expression in the mouse hearts from different groups. Representative western blotting images showing protein expression 
of (A‑1) TLR4 and (B‑1) total and p‑JNK in the mouse heart from various groups. Semi‑quantification of western blot analysis, (A‑2) TLR4, (B‑2) p‑JNK/JNK 
and (B‑3) expression. Protein expression shown as relative densitometric absorption units (left axis). Data are expressed as the mean ± SD (each group, n=6). 
*P<0.05 vs. sham group; #P<0.05 vs. LPS groups. TLR4, toll‑like receptor 4; JNK, c‑Jun N‑terminal kinase; LPS, lipopolysaccharide; p‑, phosphorylated.
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patients with sepsis and is associated with high mortality (35). 
LV dilation can be assessed by estimating the LVEDV, a simple 
measure of ventricular dilation that is associated with worse 
clinical outcomes (34). In the present study, suppressed cardiac 
function was confirmed by reduced EF% and FS% in response 
to LPS, and was improved by pretreatment with TAK‑242 at 
3 h following LPS injection, which suggested that TLR4/JNK 
signaling plays an important role in LPS‑induced systolic 
dysfunction. However, the present study showed that TAK‑242 
failed to reverse the inhibitory effect of LPS on LVEF% and 
LVFS% at 12 and 24 h. The reasons for this finding may be 
because TAK‑242 has been demonstrated to act early in the 
process of TLR4 signaling (36) or it may be related to the 
half‑life of TAK‑242. Further studies will explore whether 
TAK‑242 can reverse the inhibitory effect of LPS on LVEF% 
and LVFS% at different time points through continuous and 
intermittent administration of TAK‑242. Contrary to previous 
studies  (37), the current data showed that the decreases in 
LVEDD and LVEDV were induced by LPS stimulation, which 
may be related to decompensation of ventricular diastolic func‑
tion and further studies are necessary to explore the reasons.

However, there were some limitations of the present study. 
The results showed that LPS had no significant effect on LVEDD, 
but in the TAK‑242 group, there was either a decrease or an 
increase in LVEDD at 3 and 12 h, respectively. These results 
suggested that the effect of TAK‑242 was independent of LPS 
exposure. TLR4 is an important pathway and is most commonly 
known for inducing inflammation in response to LPS, which is 
the most understood TLR4 agonist. However, it has also been 
established that TLR4, as a single protein, has a remarkably low 
affinity for LPS. Triggering the TLR4 pathway by LPS requires 
at least four co‑receptors: MD‑2, CD14 and CD11b bound to 
CD18 (38). In response to LPS, TLR4‑expressing normal cells 
significantly increase the production of inflammatory factors 
due to the combined upregulation of TLR4, its intracellular 
adapters and co‑receptors, which enhances cooperation among 
the pathway's components (38). TAK‑242 is a small‑molecule 
compound that selectively inhibits the TLR4 signaling pathway 
by binding directly to Cys747 in the intracellular TLR4 
domain (27). Therefore, theoretically, the effect of TAK‑242 
cannot be independent of LPS exposure. In order to examine 
the effect of TAK‑242 on various parameters, an additional 
group of sham animals treated with TAK‑242 is needed, so 
further relevant experiments will be performed in the future.

Previous evidence suggests that structural abnormalities 
may play a critical role in the pathophysiology of sepsis‑induced 
cardiac dysfunction (39). In previous years, cardiac biomarkers 
have been used to detect myocardial injury (40). Troponin‑I, a 
sensitive and specific marker of myocardial injury, is the subunit 
of the troponin complex. Previous studies have demonstrated 
that cardiac troponin release in sepsis is related to LV dysfunc‑
tion and poor outcomes (41,42). In the present study, consistent 
with previous findings  (40,43), LPS‑induced myocardial 
injury was confirmed by the loss of integrity of myocardial 
membranes on histological examination (Figs. 3 and 4) and 
elevation of the cTnI enzyme. Furthermore, myocardial injury 
and elevation of cTnI could be attenuated by TAK‑242 admin‑
istration. According to the current results, it could be suggested 
that the TLR4/JNK signaling pathway plays a critical role in 
myocardial injury induced by LPS.

Systemic inflammatory response syndrome (SIRS) is a key 
characteristic in the development of organ injury during sepsis 
and overactivated inflammatory response plays a critical role 
in sepsis (40). Although there is no definitive cause‑and‑effect 
association between systemic cytokine levels and survival 
outcomes in sepsis, numerous studies have reported that inhi‑
bition of the cardiac inflammatory processes is beneficial in 
sepsis‑induced cardiac dysfunction (43,44). The production 
of pro‑inflammatory cytokines stimulated by LPS has been 
demonstrated to be one of the primary underlying mechanisms 
of cardiac dysfunction (44). As a trigger of inflammation, 
TNF‑α participates in the production of IL‑1β, and together 
with IL‑1β, it induces the formation of secondary inflammatory 
factors, such as IL‑6, resulting in an inflammatory cascade (45). 
In addition, cytokines, in particular TNF‑α, can also induce 
the release of additional inflammatory factors, such as induc‑
ible nitric oxide synthase (iNOS), cyclooxygenase‑2 (COX‑2) 
and reactive oxygen species (ROS), which eventually induce 
myocardial dysfunction  (46,47). Administration of TNF‑α 
directly suppresses myocardial function in animal and human 
cardiomyocytes  (48,49), and treatment with anti‑TNF‑α 
protects cardiac function in sepsis animal models and patients 
with sepsis (50,51). In the present study, LPS increased the 
production of TNF‑α in mouse serum, which is supported by 
a previous finding that inflammatory cytokines such as TNF‑α 
were induced by LPS in mice (30). Inhibition of TLR4 by 
pretreatment with TAK‑242 significantly reduced the protein 
levels of TNF‑α induced by LPS. These results indicated that 
TLR4/JNK signaling was an important pathway leading to 
TNF‑α expression in response to LPS stimulation. However, 
the present study failed to include assays that demonstrated 
the differential expression of inflammatory‑related proteins, 
such as iNOS, COX‑2 and IL‑6, and accumulation of ROS. 
Relevant experiments to determine the expression of inflam‑
matory‑related proteins will be performed in the future.

In conclusion, the present study demonstrated that the 
TLR4/JNK signaling pathway appeared to be of critical impor‑
tance in sepsis, as its inhibition attenuated cardiac dysfunction 
and the overactivated inflammatory response. Therefore, this 
study indicated that the TLR4/JNK signaling pathway plays an 
important role in regulating myocardial dysfunction in sepsis.
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