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Modelling the spatial heterogeneity
and molecular correlates of lymphocytic
infiltration in triple-negative breast cancer

Yinyin Yuan

Division of Molecular Pathology, Centre for Evolution and Cancer and Centre for Molecular Pathology,
The Institute of Cancer Research, London SM2 5NG, UK

Lymphocytic infiltration is associated with a favourable prognosis and

predicts response to chemotherapy in many cancer types, including the

aggressive triple-negative breast cancer (TNBC). However, it is not well under-

stood owing to the high levels of spatial heterogeneity within tumours, which

is difficult to analyse by traditional pathological assessment. This paper

describes an unbiased methodology to statistically model the spatial distri-

bution of lymphocytes among tumour cells based on automated analysis of

haematoxylin-and-eosin-stained whole-tumour section images, which is

applied to two independent TNBC cohorts of 181 patients with matched

microarray gene expression data. The novelty of the proposed methodology

is the fusion of image analysis and statistical modelling for an integrative

understanding of intratumour heterogeneity of lymphocytic infiltration.

Using this methodology, a quantitative measure of intratumour lymphocyte

ratio is developed and found to be significantly associated with disease-

specific survival in both TNBC cohorts independent to standard clinical

parameters. The proposed image-based measure compares favourably to a

number of gene expression signatures of immune infiltration. In addition,

heterogeneous immune infiltration at the morphological level is reflected at

the molecular scale and correlated with increased expression of CTLA4, the

target of ipilimumab. Taken together, these results support the fusion of

high-throughput image analysis and statistical modelling to offer reproducible

and robust biomarkers for the objective identification of patients with poor

prognosis and treatment options.
1. Introduction
Accumulating evidence supports the clinical significance of immune response

in many cancer types [1–3]. Consistent studies have reported associations bet-

ween immune activity and disease outcome as well as treatment response [1–6].

Furthermore, data from clinical trials have demonstrated the potential of immuno-

therapies in certain types of cancer [7,8]. This is perhaps best exemplified

in late-stage melanoma where recent clinical trials have shown an increased

survival advantage in patients receiving the CTLA4 monoclonal antibody ipilimu-

mab [7]. This has led to the development of more standardized methods of

characterizing tumour immune infiltrate in cancers, such as the ‘immunescore’

that aims to quantify the in situ immune infiltrate in addition to standardized clini-

cal parameters to aid prognostication and patient selection for immunotherapy

in colorectal cancers [9].

However, to facilitate the standardization and reproducibility of scoring

immune infiltration, objective approaches are urgently needed [9]. Furthermore,

such approaches need to account for the complexity of immune infiltration in

tumours. Abundance, spatial heterogeneity and type of immune cells are the

key parameters of immune infiltration [9,10]. For example, the spatial locations

of immune cells have been shown to be useful in predicting the prognosis of
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colorectal cancer [1]. Indeed, the pathological ‘immunscore’

is based on the numeration of two lymphocyte popula-

tions (CD8þ and CD45ROþ cells), both in the core of the

tumour and in the invasive margin that maximizes the prog-

nostic power [9]. Similarly, large-scale studies of breast

cancer have demonstrated that pathological assessment of

tumour-infiltrating lymphocytes, based on haematoxylin

and eosin (H&E)-stained core biopsies, is a significant pre-

dictor for response to neoadjuvant chemotherapy in 1058

breast cancer samples [2]. Recently, a prospective study

demonstrated that in HER2-negative breast cancer stromal

lymphocytes can be an independent predictor of response

to neoadjuvant chemotherapy [11]. Thus, the spatial organiz-

ation of lymphocytic infiltration in the context of nearby

cancer cells is an important clinicopathological feature

of tumours.

Specifically for triple-negative breast cancer (TNBC), an

active immune response has been associated with favourable

prognosis [2–4]. A large-scale immunohistochemistry study

of 3400 breast cancer samples showed that TNBC is the only

subtype of breast cancer to demonstrate a significant link

between CD8-positive immune cells and a good prognosis

[4]. Assessment of lymphocytic infiltration based on whole-

tumour H&E sections has been associated with favourable

outcome in 256 patients after anthracycline-based chemother-

apy [3]. A recent prospective study showed that the presence

of tumour-infiltrating lymphocytes in residual tumours after

neoadjuvant chemotherapy is predictive of good prognosis in

TNBC [12]. Given the lack of targeted molecular treatment of

TNBC, this may suggest new therapeutic opportunities for

this aggressive tumour type [8]. For instance, accumulating

data support that anthracyclines mediate their action through

activation of CD8þ T-cell responses, hence combination with

certain immunotherapies could be especially effective for

TNBC [8].

Despite these advances in our understanding of the

importance of immune infiltration for TNBC, there is a lack

of reproducible approaches to objectively assess immune

infiltration based on pathological sections. Previously, we

have demonstrated that automated image analysis can be

used to objectively and accurately score heterogeneous cell

types in breast cancer H&E sections [13]. In particular,

using this methodology, we have shown that a measure of

the proportion of lymphocytes among all cell types is predic-

tive of disease-specific survival in oestrogen receptor

(ER)-negative breast tumours [13]. In parallel, other groups

have demonstrated the efficiency and accuracy of image

analysis to identify immune cells in pathological samples

[14,15]. Specifically, Basavanhally et al. [15] were among

the first to demonstrate how an automated approach combin-

ing image analysis with machine learning can be used to

characterize lymphocytes and their spatial distribution in

12 HER2þ breast cancer patients.

Given the clinical importance of the immune cell infiltration

in TNBC, the aims of this study are to (i) develop an unbiased

statistical based computational model of immune infiltrate

using automated image analysis from H&E tumour sections,

(ii) use this to assess the spatial heterogeneity and clinical

implications of immune infiltration in TNBC in two indepen-

dent TNBC cohorts from the METABRIC study [16] and

(iii) assess the molecular heterogeneity of immune cell infil-

trate through integration with gene expression molecular

profiling data.
2. Results
2.1. Statistical modelling of the spatial heterogeneity

of immune infiltration
Our image analysis tool identifies cancer, lymphocytes and

stromal cells encompassing fibroblasts and endothelial cells

based on their nuclear morphologies in H&E whole-tumour

section slides [13]. The main component of this tool is a clas-

sifier trained by pathologists over randomly selected tumour

regions and validated in 564 breast tumours with 90%

accuracy [13]. As a result of image analysis, the types and

spatial locations of on average 110 000 cells are recorded

in every breast tumour section. Thus, this fully automated

tool enables the mapping of spatial distributions of all

cancer cells and lymphocytes within a tumour section,

which can be subsequently visualized as a three-dimensional

landscape (figure 1a). The spatial relationships of immune

and cancer cells are then analysed with a statistical pipeline

exemplified in figure 1b. First, to globally profile the spatial

distribution of cancer cells, the cancer cell density was quan-

tified using a kernel estimate (Methods). Intuitively, this

builds a ‘cancer landscape’ where hills indicate tumour

regions densely populated with cancer cells. The height of a

hill thus correlates with cancer density at a specific location

in the tumour (figure 1b). Second, for every lymphocyte, its

spatial proximity to cancer can be directly quantified with

the cancer density landscape at its specific location. Thus, a

quantitative measurement of the spatial proximity to

tumour cells can be efficiently obtained for every lymphocyte

(figure 1b).

Using this approach, we quantified the spatial proximity

to cancer for every lymphocyte in 181 TNBC samples in the

METABRIC study (Methods and figure 2a). In principle, lym-

phocytes that differ in their spatial positioning to cancer can

be differentiated based on these quantitative spatial mea-

surements. We thus asked whether data-driven clustering

methods based on normal distribution can be used to differen-

tiate different classes of lymphocytes, because cell spatial

distribution is a naturally emerged pattern. Unsupervised

Gaussian mixture model clustering [17] was employed to

identify lymphocyte clusters based on their spatial proximity

to cancer using a training set of 100 000 randomly sampled

lymphocytes (figure 2b and Methods). Subsequently, a three-

cluster solution that identifies three classes of lymphocytes

was considered the optimal by the Bayesian information

criterion (BIC) [18] (figure 2b). This three-class solution is the

optimal 97% of the time upon 200 repeated sampling, whereas

the five-class solution was considered optimal 3% of the time

(Methods and figure 2c). In addition, the cluster structure of

the three-class solution was stable (median of cluster mean:

0.011, 0.06, 0.13; standard deviation (s.d.): 0.002, 0.0047,

0.0045; figure 2c), indicating that the same clusters were ident-

ified in each random sampling. We named the three classes of

lymphocytes as intratumour lymphocyte (ITL), adjacent-

tumour lymphocyte (ATL) and distal-tumour lymphocyte

(DTL). Subsequently, a classifier was trained based on the lym-

phocyte classes to predict the types of lymphocytes in all TNBC

samples (Methods).

To examine differences among the newly proposed lym-

phocyte classes, we derived additional measures based on

direct physical distances. First, for each lymphocyte, its

distance to the nearest cancer cell can be quantified (dmin,
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Figure 1. Intratumour heterogeneity of cancer cell and lymphocyte distributions. (a) Three-dimensional landscapes illustrating the spatial heterogeneity of cancer
cells and lymphocytes in an H&E breast whole-tumour section. The height of the hills in the three-dimensional landscape represents the density of cells.
(b) Combined analysis of the spatial distribution of cancer and lymphocytes can lead to quantification of lymphocytic infiltration. Shown are a small H&E
image and the corresponding three-dimensional cancer density map, which facilitate the measurement of spatial proximity to cancer for every single lymphocyte
in the image. (Online version in colour.)
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Methods and figure 2d ). We found that ITLs have a median

distance of 7 mm (interquartile range 5–10) to the nearest

cancer cell, whereas it is 10 mm (7–11) for ATLs, and 20 mm

(14–26) for DTLs (figure 2e). The overlap in distance to

nearest cancer cell between ITLs and ATLs suggests that

this measure is not the fundamental difference between the

two classes. Because our kernel density measure based on

which the lymphocyte classes were derived is essentially

spatial smoothing, we postulated that the spatial arrange-

ment of cancer cells surrounding lymphocytes differs

between ATLs and ITLs. To measure spatial arrangement,

we examined the convex hull region formed by five nearest

cancer cells, which is the smallest region that covers these

cells (figure 2d and Methods). If a lymphocyte is surrounded

by cancer cells, it should fall into the convex hull region

formed by nearby cancer cells and has a small distance to

the centroid of this region (figure 2d, left). By contrast, if

nearby cancer cells are situated to one side of a lymphocyte,

the distance between the lymphocyte and the centroid of the

cancer convex hull region is likely to be large (figure 2d,

right). Thus, we used the distance between a lymphocyte

and the centroid of the cancer convex hull region as a

quantitative measure of the spatial arrangement of cancer

cells surrounding a lymphocyte (dcentroid). Three lymphocyte

classes displayed significant differences in dcentroid with

median dcentroid 3.6 mm (2.2–5.1), 7.2 mm (4.5–10.6),

17.7 mm (11.0–26.6) for ITLs, ATLs and DTLs, respectively

(figure 2e). Therefore, dmin and dcentroid together better

define and aid our interpretation of the lymphocyte classes

(figure 2f ). Taken together, our data demonstrated that the

proposed kernel-based measure of spatial proximity to

cancer can effectively account for spatial proximity and
surroundings, and that the three lymphocyte classes differ

not only in the distance to the nearest cancer cell, but

also in the ways nearby cancer cells are arranged. A represen-

tative case showing spatial distribution of lymphocytes in

these three classes is illustrated (figure 3a,b). For instance,

the ITL locations can be observed to be within regions

densely populated with cancer cells (figure 3c).

In the 181 TNBC samples, there are overall more ATLs

than the other two types of lymphocytes (on average 47%

ATLs, 32% ITLs and 21% DTLs; figure 4a). The changes in

abundance of these three classes in 181 samples can be

observed in a triangle plot (figure 4b). When the proportion

of ITLs is low (0–20%), there are, in general, more DTLs

(40–60%) than ATLs (30–50%). As the amount of ITLs

increases (20–50%), ATLs also increase (40–60%), whereas

DTLs decrease (10–40%). When there is a large amount of

ITLs (more than 50%), there is still a substantial amount of

ATLs (20–40%) with very few DTLs (less than 10%). To sum-

marize the degree of lymphocytic infiltration for a given

tumour, we first calculated the ratio between the number of

ITLs and the number of cancer cells (ITLR; Methods). In the

181 TNBC samples, a significant association was observed

between ITLR and pathological assessment of lymphocytic

infiltration of the tumours in categories of absent, mild

and severe ( p ¼ 2 � 10233, figure 4c). In terms of other

clinical parameters, there was no correlation between ITLR

and tumour size, node status and TP53 mutation status

(figure 4d ). Tumour grade was not considered, because

87% of the TNBC samples are grade 3 tumours. Taken

together, these data support ITLR’s validity as a measure-

ment of lymphocytic infiltration and its potential value in

addition to known clinical parameters for TNBC.
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2.2. ITLR is a statistical measure of lymphocytic
infiltration and an independent predictor of
disease-specific survival in two triple-negative
breast cancer cohorts

To investigate the clinical significance of ITLR, we analysed

disease-specific survival as a function of ITLR. The TNBC
samples can be divided into two independent cohorts based

on contributing hospitals (Methods, n ¼ 89 and n ¼ 92). To

dichotomize the continuous ITLR, the optimal cut-off was

selected to have the best prognostic value in cohort 1 as the

discovery cohort (Methods). The best cut-off was selected

to be 0.011, and 20% of the patients have ITLR lower than

this cut-off (figure 4e). These patients have significantly
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worse disease-specific survival compared with patients with

higher ITLR in cohort 1 (log-rank test p ¼ 0.0063, hazard

ratio HR ¼ 0.36, 95% confidence interval, CI ¼ 0.17–0.77;

table 1 and figure 4f ). This observation was verified in the

validation cohort 2 ( p ¼ 0.0037, HR ¼ 0.25, CI ¼ 0.09–0.69;

figure 4f ). Good patient stratification was observed upon

repeated analysis with cohort 2 as the discovery and cohort 1

as the validation cohort (figure 4g). The same tests were per-

formed for the ratio of ATLs and DTLs to cancer cells (ATLR

and DTLR), but neither showed a significant correlation with

disease-specific survival (discovery and validation cohort:

ATLR p ¼ 0.064 and 0.75; DTLR p ¼ 0.43 and 0.25; electronic

supplementary material, figures S1–S2). We subsequently

focused on ITLR. ITLR-high TNBC patients have a survival

probability of 80% 5 years from diagnosis versus 49% for

ITLR-low patients (Kaplan–Meier survival estimates, two

cohorts combined).

We compared ITLR with eight other immune signatures.

These include our previously published image-based signa-

ture, lymphocyte abundance (Lym), defined as the ratio

between the number of lymphocytes and the number of

cancer cells (Methods) [13]. The difference between ITLR and

Lym is that Lym does not account for different classes of lym-

phocytes, whereas ITLR considers infiltrating lymphocytes.

The remainder of signatures are published gene expression-

based signatures from Calabro et al. [19] that are predictive of

ER-negative breast cancer prognosis, a five-gene signature
from Ascierto et al. [20] that predicts recurrence-free survival

across breast cancer subtypes, and the B-cell, IL8 and combined

signatures to predict prognosis of TNBC [21]. CXCR3 and

CXCL13 expression were also included because they have

been shown to correlate with breast cancer prognosis [22,23].

We applied the same cut-off selection approach to test the

association between these signatures and disease-specific

survival (electronic supplementary material, table S1). The sig-

natures that showed the best prognostic values are shown in

figure 5a–e (all are provided in the electronic supplementary

material, figure S3) and table 1. None of these signatures corre-

lated with prognosis in both cohorts. This analysis was

repeated using cohort 2 as the discovery cohort for selecting

the optimal cut-offs and cohort 1 for validation (electronic

supplementary material, figure S4 and table S2). In both exper-

iments, only ITLR consistently stratified patients into two

groups of different outcome among the nine signatures (elec-

tronic supplementary material, figures S3–S4). Furthermore,

we compared the best cut-offs selected in two cohorts for all

nine signatures (Methods; figure 5f ). ITLR was among the

most consistent signatures in terms of optimal cut-offs in two

cohorts, supporting the consistency and the potential use of

ITLR as an objective measure for identifying patients with

low lymphocytic infiltration.

Compared with published immune signatures, ITLR was

also the only signature to show significant correlation with

disease-specific survival in multivariate Cox proportional
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hazards model together with standard clinical parameters of

nodal status and tumour size in both cohorts, whichever

cohort was used as the discovery cohort (table 1 and elec-

tronic supplementary material, tables S1 and S2). Using

samples from both cohorts, ITLR has a log-rank p-value of

2.1 � 1024 and HR 0.32 (0.17–0.58). To test the robustness

of the Cox model in determining the prognostic value of
ITLR, we used bootstrap analysis in randomly perturbed

data and repeated the univariate and multivariate regression

analysis 1000 times. In 95.6% and 94.7% of the time, ITLR

remained significantly associated with prognosis in univari-

ate and multivariate analysis, respectively. Taken together,

our data support the stability and robustness of ITLR as an

independent prognostic biomarker in TNBC.



Table 1. Univariate and multivariate Cox regression results for ITLR and other signatures in two TNBC cohorts. Uni, univariate Cox regression; HR, hazard ratio;
CI, lower and higher 95% confidence interval; Conc, concordance; 0(0-Inf ): where the Cox model failed to converge. p-values that pass the significant threshold
of 0.05 are shown in italics.

cohort 1 cohort 2

HR (CI) p conc. HR (CI) p conc.

ITLR uni. 0.36(0.17 – 0.77) 0.0063 0.601 0.25(0.09 – 0.69) 0.0037 0.659

ITLR 0.32(0.15 – 0.7) 0.0042 0.668 0.15(0.05 – 0.43) 0.00051 0.76

node 0.63(0.29 – 1.4) 0.26 4.93(1.61 – 15.08) 0.0052

size 2.62(1.27 – 5.41) 0.0092 2.07(0.9 – 4.74) 0.087

Lym uni. 0.47(0.21 – 1.02) 0.051 0.574 0.41(0.12 – 1.43) 0.15 0.575

lym 0.48(0.22 – 1.05) 0.066 0.656 0.23(0.05 – 1.02) 0.053 0.735

node 0.69(0.32 – 1.5) 0.35 4.65(1.46 – 14.81) 0.0092

size 2.35(1.16 – 4.77) 0.018 1.66(0.65 – 4.25) 0.29

Calabro uni. 0.25(0.12 – 0.52) 5.2 � 1025 0.66 0.5(0.18 – 1.39) 0.18 0.587

calabro 0.27(0.13 – 0.56) 3.8 � 1024 0.703 0.41(0.14 – 1.19) 0.1 0.744

node 0.75(0.35 – 1.6) 0.45 4.57(1.45 – 14.37) 0.0093

size 2.26(1.07 – 4.76) 0.032 1.91(0.82 – 4.46) 0.13

Ascierto uni. 0.34(0.15 – 0.77) 0.0066 0.621 1.23(0.4 – 3.83) 0.72 0.51

ascierto 0.39(0.17 – 0.88) 0.024 0.671 1.18(0.37 – 3.72) 0.78 0.735

node 0.85(0.39 – 1.84) 0.68 3.6(1.21 – 10.7) 0.021

size 2.06(1.02 – 4.16) 0.044 2.16(0.86 – 5.45) 0.1

IL8 uni. 3.09(1.46 – 6.51) 0.0018 0.615 0(0-Inf ) 0.0099 0.645

IL8 2.79(1.32 – 5.92) 0.0073 0.679 0(0-Inf ) 1 0.808

node 0.81(0.37 – 1.75) 0.59 3.14(1.06 – 9.34) 0.039

size 2.23(1.08 – 4.63) 0.031 1.75(0.71 – 4.28) 0.22

CXCL13 uni. 0.21(0.1 – 0.46) 1.5 � 1025 0.69 0.76(0.28 – 2.1) 0.6 0.545

CXCL13 0.24(0.11 – 0.54) 4.5 � 1024 0.721 0.83(0.29 – 2.37) 0.73 0.739

node 0.69(0.32 – 1.49) 0.35 3.61(1.22 – 10.71) 0.021

size 1.71(0.83 – 3.55) 0.15 2.12(0.86 – 5.22) 0.1
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2.3. ITLR heterogeneity is reflected on the
transcriptional level by CTLA4 and APOBEC3G
expression

To identify molecular associations of immune infiltration and

to test the biological relevance of ITLR, we integrated image-

based ITLR with microarray gene expression data profiled

for the same set of 181 TNBC tumours. The analysis identified

307 genes positively correlated and 105 genes negatively corre-

lated with ITLR (false discovery rate (FDR) multiple testing

correction, q-value , 0.05; Methods). Genes with the most

significant correlations with our immune signature ITLR

include kinases (SH3KBP1, LCK, MAP4K1) and receptors

(FCRL3, GPR18, TNFRSF13B, SEMA4D, CXCR3, IL2RG), as

well as the known immunotherapy target CTLA4 (electronic

supplementary material, table S3). Thus, significant corre-

lations between ITLR- and immune-related genes support the

biological relevance of the proposed ITLR signature.

Subsequently, enrichment analysis was performed on the

positively and negatively correlated genes, respectively, against

MSigDB gene set categories [24], including KEGG pathways

[25], canonical pathways curated by domain experts and
immunological signatures (Methods and electronic supple-

mentary material, figure S5). Genes positively correlated with

ITLR are enriched with natural killer cell-mediated cyto-

toxicity, T cell receptor, antigen processing and presentation

KEGG pathways, CD8 T cell, CD4 T cell and B cell upregula-

ted immunogenic signatures, as well as IL12 and CD8 TCR
canonical pathways (electronic supplementary material, tables

S5–S9). Conversely, genes negatively correlated with ITLR

were enriched with ECM receptor interaction and focal

adhesion KEGG pathways, regulatory T cell and TGFb-related

immunological signatures as well as integrin-related pathways

(electronic supplementary material, table S10–S12). The

molecular analysis on the pathway level suggests ITLR is posi-

tively associated with anti-tumour immune activities in TNBC.

To further dissect their interconnected relationships

and discover de novo molecular modules, tightly connected

gene modules were identified within ITLR-associated genes

(figure 6a; electronic supplementary material, figure S6;

Methods). As such, seven modules of positively correlated

genes (P1–P7), and two modules of genes negatively corre-

lated with ITLR (N1 and N2) were identified. Known

immune-related genes in the modules include IFNG (P1),
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RLPTR (P3), GPR18 (P4), CXCR3 (P5), MAP4K1 (P6), CTLA4
(P7), ANXA2 (N1) and FAP (N2). Notably, two of the mod-

ules contain APOBEC3G (P2) and CTLA4 (P7), which may

suggest co-regulation among APOBEC3G, NKG7 and inter-

leukins, including IL21R and IL18RAP, as well as high

correlations among CTLA4, chemoattractant for B lympho-

cytes CXCL13 [2] and TIGIT T cell immunoreceptor with Ig
and ITIM domains (electronic supplementary material,

table S13). Furthermore, expression profiles of these genes

were significantly associated with disease-specific survival

in TNBC, including APOBEC3G as well as GPR18 (P4) and

MAP4K1 (P6) ranked as the top ITLR-associated genes

(figure 6b and electronic supplementary material, figure S7).

CTLA4 expression was able to stratify patients into groups

with significantly different prognosis, and could further

stratify the ITLR-high group into two subgroups with signifi-

cantly different outcomes ( p ¼ 0.046, figure 6c and electronic

supplementary material, figure S7). Comparing ITLR with

ITLR-associated genes in terms of prognostic value, multivariate

analysis showed that ITLR stratification has additional, and in

many cases superior, value to ITLR-associated genes (electronic

supplementary material, figure S8 and Methods).
3. Discussion
This paper describes, to the best of our knowledge, the first

study to identify categories of lymphocytes based on statistical

analysis of tumour spatial heterogeneity and demonstrate their
clinical implications using samples from a large number of

patients. A standardized scheme is urgently needed for measur-

ing heterogeneity of lymphocytic infiltration in tumours. The

ability to generate reproducible, quantitative scores will provide

new opportunities for incorporating immune infiltration into

staging of cancer, for example the use of immunoscore for

colorectal cancer [9]. We have developed a fully automated

computational approach based on image analysis and statistical

modelling to dissect the cellular and spatial heterogeneity of

TNBC. Using H&E-stained whole-tumour slides, cancer cells

and lymphocytes were identified and their spatial relation-

ships quantified based on a kernel density method. Using

unsupervised learning, three categories of lymphocytes were

identified based on their spatial proximities to cancer.

These lymphocyte categories are consistent with a patho-

logical quantification scheme that considers intratumoral,

adjacent stroma and distant stroma compartments [26]. Statisti-

cally, these clusters are stable, reported as the optimal clustering

solution 97% of the time upon repeated sampling. Furthermore,

we demonstrated their significant differences both in spatial dis-

tance to the nearest cancer cell and spatial positioning of

surrounding cancer cells, supporting their biological relevance.

For instance, an intratumour lymphocyte defined in this study

is, on average, 7 mm away from a cancer cell and 3 mm from

the centroid of a convex hull region formed by nearby cancer

cells. An adjacent-tumour lymphocyte may be also close

to the nearest cancer cells, but would be further away from

the centroid of the convex hull region because it is not sur-

rounded by cancer cells. Thus, the new classification approach
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is based on spatial measures that account for spatial positioning

of cancer cells while being computationally efficient enough to

analyse whole-tumour sections. Compared with our previously

reported measure of lymphocyte abundance as a direct output

from image analysis [13], the new approach offers a step for-

ward by accounting for the spatial heterogeneity of immune

infiltration recognized as an important property of immune

infiltration [1] but rarely quantitatively analysed.
As a result, we propose a new spatial and quantitative

measure of intratumour lymphocytes (ITLR). Furthermore,

we demonstrate that this measure is a consistent, stable and

independent predictor of disease-specific survival across

two independent cohorts of 181 TNBC patients in total.

Our measurement uses an optimal cut-off of 0.011 (1.1% of

infiltrating lymphocytes to cancer cells) that dichotomizes

the ITLR score. Indeed, the approximately 20% of TNBC
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patients with ITLR scores lower than this cut-off have signifi-

cantly worse disease-specific survival than patients with

higher scores, and this association is independent of standard

clinical parameters. Taken together, our data support the

potential of ITLR as a prognostic biomarker for TNBC, and

we anticipate further validation of its prognostic value in

larger patient cohorts. Further, its predictive value for treat-

ment response like other measures of immune infiltration

[2,3] remains to be investigated. Nevertheless, the highlight

of this study is an objective, fully automated scoring system

as a step towards standardized assessment of immune infiltra-

tion that can potentially be used in the context of clinical trials

and subsequently aid the treatment decision-making process.

ITLR measures the ratio of intratumour lymphocytes to

cancer cells, thus is different to the pathological assessment

approach described in references [2,3,12], where the proportion

of tumour nests that were infiltrated by lymphocytes were

reported. Nevertheless, in agreement with our findings,

tumour-infiltrating lymphocytes were found to be significantly

correlated with favourable outcome in TNBC. All these

approaches are based entirely on H&E-stained pathological

samples and, although their different strengths remain to be

compared, together these support that measures of lympho-

cytic infiltration can be useful tools to aid clinical decisions in

TNBC. We showed that the image-based ITLR outperforms

some of the gene-expression-based signatures using the

optimal cut-off selection method, but a more comprehensive

analysis is needed to compare it with all prognostic gene

expression signatures reported in the literature. However, con-

sidering the cost of microarray data acquisition, we reason that

our approach opens a new avenue for large-scale analysis on

readily available pathological samples.

Furthermore, ITLR as an unbiased assessment of immune

infiltration facilitates the discovery of molecular correlates

with this clinically important phenomenon. While the

expression of many immune-related genes was significantly

associated with ITLR, it is unclear whether these genes are

expressed on cancer cells or lymphocytes. This is because

the microarray data were obtained using whole-tumour

materials without microdissection. Our data indicate that

the RNA expression of cytotoxic T-lymphocyte-associated

protein 4 (CTLA4), a receptor of the immunoglobulin family

and the target of ipilimumab, was significantly associated

with ITLR as well as longer disease-free survival in TNBC.

This is consistent with the recent observation in none-small

cell lung cancers that overexpression of CTLA4 is associated

with reduced death rate [27]. CTLA4 is expressed in tumour

cells in different cancer types [28]. In breast cancer, it has

been reported to be expressed in both tumour cells and

T cells, and an inverse correlation between CTLA4 expression

and clinical outcome has been previously reported in 60

patients with different breast cancer subtypes [29]. This is

in contrast to our observation in TNBC, which highlights

the need to investigate immune infiltration by cancer

subtypes. A recent study showed that in situ mRNA

expression of another receptor of the immunoglobulin super-

family, PDL1, is associated with increased immune infiltration

and favourable recurrence-free survival across different breast

cancer subtypes [30]. Such an assay could be useful for

further investigation of expression of CTLA4 as well as other

ITLR-associated genes in TNBC. Taken together, our data

support further evaluation of CTLA4 and the potential of

CTLA4-targeted therapies in TNBC.
In addition, our gene module analysis revealed several

tightly connected, functionally related modules with several

key genes that warrant further investigation. For example,

one module contains APOBEC3G (apolipoprotein B MRNA

editing enzyme, catalytic polypeptide-like 3G), which is

known to play important roles in adaptive and innate immu-

nity and has been investigated extensively in viral infection

[31] but its role in breast cancer remains unclear. It is a

member of the apolipoprotein B mRNA-editing enzyme,

catalytic polypeptide-like editing complex family together

with APOBEC3B, which was found to be a source of muta-

genesis in many major cancer types, including breast cancer

[32]. In our TNBC samples, APOBEC3G expression is signifi-

cantly correlated with favourable prognosis (log-rank p ¼
0.02), but not other APOBEC members, including APOBEC3B
( p ¼ 0.29). APOBEC3G is primarily expressed in CD4þ T lym-

phocytes, macrophages and dendritic cells [33]. Our data

revealed strong association between APOBEC3G and natural

killer cell gene NKG7 and interleukins in this module and

support the importance of APOBEC3G in TNBC. Therefore,

the associations between ITLR and immune-relevant genes,

pathways and modules support the validity of ITLR as a

measure of lymphocytic infiltration and revealed potential

co-regulations of key immune genes, which warrant further

investigation to help elucidate the biological processes under-

lying lymphocytic infiltration with potentially important

clinical implications.

Lymphocytes in tumours are known to encompass diverse

subclasses, including helper T cells, regulatory T cells, natural

killer cells and B cells with sophisticated implications for treat-

ment response [10,23,34]. Admittedly, our current approach is

not discriminative for different subclasses of lymphocytes. This

could be improved by performing immunohistochemistry

analysis with immune cell markers, for which automated

immunohistochemistry image analysis and statistical model-

ling methods could be developed to discern interactions

between cancer and anti-/pro-tumoural immune response.

Another limitation in this study is the number of samples.

Once its mature survival information becomes available, The

Cancer Genome Atlas breast cancer dataset [35] with its H&E

and matched molecular profiling data will be the ideal cohort

to validate the prognostic value and molecular correlates of

ITLR. Finally, it is worth noting that our computational

approach can be adapted for studying other cancer types that

will benefit from objective approaches for scoring immune

infiltration, such as melanoma and non-small cell lung cancer.
4. Methods
4.1. Clinical samples
The complete set of METABRIC [16] samples contains 1980 pri-

mary frozen breast tumours from five contributing hospitals.

Among these, 1026 of the 1047 tumours from three hospitals

have H&E sections without severe artefacts, whereas all H&E

samples from the other two hospitals are highly fragmented

owing to long-term frozen storage. Therefore, we considered

only the 1026 tumours for this study (long-term follow-up

median 68.3 months). On average, three tumour sections were

obtained from different locations of each primary tumour and

placed onto the same slide [13]. Tumour materials sandwiched

between these sections were sectioned, mixed and used for

molecular profiling, thereby maximizing the biological relevance

of multiple data types being generated. Further details on
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experimental procedure, staining and molecular profiling proto-

cols can be found in reference [13]. Gene expression data were

profiled using the Illumina HT-12 platform. ER status was deter-

mined based on the bimodal distribution of ESR1 expression

microarray data, and HER2 amplification status based on micro-

array SNP6 data from the same tumours. In total, there are 181

ER-negative, HER2-negative samples, and we conventionally

defined them triple-negative/TNBC. Samples from two of the

three hospitals were merged to form cohort 1 (89 samples), and

samples from the other hospital form cohort 2 (92 samples), in

order to obtain a similar population size in each cohort. Immune

infiltration was scored for 112 of the 181 samples by the pathol-

ogists in the METABRIC consortium into three categories:

absent, mild and severe: absent if there were no lymphocytes,

mild if there was a light scattering of lymphocytes and severe if

there was a prominent lymphocytic infiltrate. The pathological

scores of immune infiltration were not significantly correlated

with prognosis (electronic supplementary material, figure S9).

4.2. Haematoxylin and eosin image analysis
We have previously validated the accuracy of our automated image

analysis tool for H&E breast tumour frozen section images based on

pathological tumour scores and cell-by-cell evaluation [13]. For

METABRIC samples, this tool achieved 90% cross-validation

accuracy for cell classification and high correlation with patho-

logical scores of cell proportions (cor. ¼ 0.98) [13]. This tool was

used to classify all cell nuclei in 181 TNBC whole-tumour sec-

tions, resulting in an average of 81 810 (s.d. 80 330) cancer cells,

15 500 (25 133) lymphocytes and 14 090 (14 180) stromal cells for

each image. Lymphocytes have a typical morphology of small,

round and homogeneously basophilic nuclei, thus can be reliably

differentiated from other cell types in breast cancer. Because this

analysis is based on nuclear morphology only in the H&Es, the

identified lymphocytes are likely to be a mixture of immune cell

types, including T- and B-lymphocytes.

4.3. Modelling the spatial heterogeneity of cancer –
immune interaction

Let x ¼ x1, x2, . . . , xn be the spatial locations of n cancer cells, and

y ¼ y1, y2, . . . , ym be the spatial locations of m immune cells in an

H&E tumour section image. Using a quartic kernel function K, we

can establish a kernel density estimate over the whole-tumour

slide: f (x) ¼
Pn

i K(x� xi)=h, where h is the bandwidth parameter

for K. h was optimized using the minimum square error criteria

[36] in 10 randomly sampled images as described in the electronic

supplementary material, Sweave file. Thus, the spatial proximity

to cancer for an immune cell i is si¼ f(yi). We can then identify lym-

phocyte classes based on s, s ¼ s1, s2, . . . , sm using unsupervised

Gaussian mixture clustering [37]. This method aims to identify mul-

tiple components/clusters within the data with probabilities that

quantify the uncertainty of observations belonging to the clusters.

p(s) ¼
XK

k¼1

wkG(sjmk, sk),

where K is the number of clusters, mk and sk are the mean and var-

iance that define the probabilistic density function G for the kth

component, and wk is theweight of a component k. These parameters

were estimated by expectation–maximization [38]. Selection of

models with different numbers of clusters can be done using statisti-

cal criteria, one of the most common being the BIC [18]. It can be used

in conjunction with mixture model clustering to select the best

number of clusters K

BIC ¼ �2L(p(s))þ d log (m),

where L() is the maximum log likelihood function and d is the

number of free parameters to be estimated. Effectively, the BIC
aims to evaluate modelling error as well as model complexity. The

higher the value of BIC, the better the solution is considered to be.

To perform clustering, 100 000 immune cells were randomly

sampled. Their spatial proximity to cancer data s was used for clus-

tering with a range of different K, K ¼ 1–5. This was repeated 200

times, in 97% of which the solution with three clusters was con-

sidered the optimal by BIC. Mean mk of the clusters are consistent

(median: 0.011, 0.06, 0.13; s.d.: 0.002, 0.0047, 0.0045). Subsequently,

we classified all lymphocytes in all tumour samples based on

these clusters. We used the ratio of the number of intratumour lym-

phocytes and the number of cancer cells as the final measurement of

intratumour immune infiltration

ITLR =
Nintratumour lymphocyte

Ncancer
:

4.4. Measuring cell distances and spatial arrangement
To identify physical properties of ITLs, ATLs and DTLs that differ-

entiate them, in 10 000 lymphocytes randomly sampled from 20

tumours, we identified the five nearest cancer cells and the centroid

of the convex hull region formed by these cancer cells. The distance

from a lymphocyte to the nearest cancer cell (dmin) and to the cen-

troid of the convex hull (dcentroid) were computed. Centroid of a

convex hull region was calculated as the mean positions of the

subset of points that define the convex hull. Differences among

lymphocyte classes in terms of dmin and dcentroid were tested with

Student’s t-test.

4.5. Other immune signatures in comparison
Lymphocyte abundance based on our image analysis result was

calculated as

lym ¼
Nlymphocyte

Ncancer
:

The gene expression signatures were calculated as described

in the referred papers.

4.6. ITLR gene modules
Hierarchical clustering was used to identify highly correlated

gene modules by clustering the correlation matrix of all ITLR-

associated genes into 100 clusters. Modules were selected from

these clusters based on average absolute Pearson correlation

exceeding 0.75 and cluster size exceeding five.

4.7. Comparing ITLR and ITLR-associated genes
To test whether ITLR has additional value to ITLR-associated

genes, we performed multivariate Cox regression analysis with

ITLR paired with the expression profile of an ITLR gene. This

was performed for all of the top 100 ITLR-associated genes

ranked by correlation. ITLR was dichotomized using the threshold

reported in the paper, and gene expression was dichotomized into

two equal-size groups or three groups (25 lower, 50 middle and 25

upper percentiles). Tables with hazard ratio, log-rank p-value and

95% confidence interval were produced. In both analysis with

two and three patient groups according to gene expression data,

p-values of ITLR were consistently higher than the p-values of

gene expression profiles, as well as being higher than significance

level of 0.05 (2log( p) 2.99).

4.8. Other statistical methods
Monotone trend between ITLR and clinical parameters was

tested using the Jonckheere–Terpstra trend test [39]. Survival

analysis was performed with breast-cancer-specific 10-year survi-

val data. The Kaplan–Meier estimator was used for patient
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stratification and log-rank test was used for testing difference

among groups. Cox proportional hazards regression model

was fitted to the survival data and hazard ratios and 95%

CIs were computed to determine the correlation with disease-

specific survival, where the log-rank test with p , 0.05 was

considered significant. Correlation between ITLR and gene

expression was computed with Pearson correlation and

q-values computed from FDR correction using 25% of the data

for fitting the null model. Cut-offs for dichotomizing all

immune signatures were optimized stepwise from 20 to 80 per-

centiles at an interval of 1.5. The cut-offs that displayed the

highest prognostic significance with log-rank test were selected.

For a consistency test in figure 5f, each signature was centred at

0 and scaled to standard deviation 1. Optimal cut-offs were

also mapped to the new data before comparison. MSIGDB gene
set v. 4.0 [24] was used in conjunction with a hypergeometric

test for enrichment analysis.

Data accessibility. For full reproducibility, R code and full datasets for the
proposed methodology and reproducing all reported results are pro-
vided as Sweave files as part of the electronic supplementary material.
Cell types and spatial location data for the entire set of 181 TNBC samples
are also provided as part of the data in the electronic supplementary
material. Raw pathological images are deposited in the European
Genome–Phenome Archive (http://www.ebi.ac.uk/ega/) under acces-
sion number EGAS00000000098. Gene expression data are available
upon application to the METABRIC consortium.
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