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The use of multimedia learning is increasing in modern education. On

the other hand, it is crucial to design multimedia contents that impose

an optimal amount of cognitive load, which leads to efficient learning.

Objective assessment of instantaneous cognitive load plays a critical role

in educational design quality evaluation. Electroencephalography (EEG) has

been considered a potential candidate for cognitive load assessment among

neurophysiological methods. In this study, we experiment to collect EEG

signals during a multimedia learning task and then build a model for

instantaneous cognitive load measurement. In the experiment, we designed

four educational multimedia in two categories to impose different levels of

cognitive load by intentionally applying/violating Mayer’s multimedia design

principles. Thirty university students with homogenous English language

proficiency participated in our experiment. We divided them randomly into

two groups, and each watched a version of the multimedia followed by a recall

test task and filling out a NASA-TLX questionnaire. EEG signals are collected

during these tasks. To construct the load assessment model, at first, power

spectral density (PSD) based features are extracted from EEG signals. Using

the minimum redundancy - maximum relevance (MRMR) feature selection

approach, the best features are selected. In this way, the selected features

consist of only about 12% of the total number of features. In the next

step, we propose a scoring model using a support vector machine (SVM)

for instantaneous cognitive load assessment in 3s segments of multimedia.

Our experiments indicate that the selected feature set can classify the

instantaneous cognitive load with an accuracy of 84.5± 2.1%. The findings

of this study indicate that EEG signals can be used as an appropriate tool for

measuring the cognitive load introduced by educational videos. This can be

help instructional designers to develop more effective content.
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Introduction

Cognitive load is defined as the load being imposed on
working memory while performing a cognitive task (Paas et al.,
2004). There are three types of cognitive load: intrinsic, which
is dependent on the nature of the task and cannot be modified
by the designer; extraneous, which is related to the design of
the task and can be altered by formatting the materials being
presented; germane load which is associated with the amount
of mental effort for building the schema in working memory
(Sweller et al., 2019). Cognitive load assessment has a critical role
in different areas such as education (Sweller, 2018) and human-
computer interaction (HCI) designing (Zagermann et al., 2016).
Multimedia plays an essential role in modern education.
Keeping the amount of cognitive load at an optimum level is
crucial in instructional design (Mutlu-Bayraktar et al., 2019).
Mayer (2002), in his book Multimedia Learning, introduced
twelve principles that help multimedia designers to minimize
the amount of cognitive load on learners. Among these
principles, five of them are devoted to extraneous processing,
a type of cognitive processing in instructional multimedia
learning, originating from the extra material in multimedia
without any relevance to the instructional goal. The five
principles for reducing extraneous processing are (1) Coherence
Principle: extraneous words, images, and sounds should be
excluded (e.g., attractive but non-related images); (2) Signaling
Principle: essential materials should be highlighted with a
cue (e.g., color highlight); (3) Redundancy Principle: in the
presence of graphics and narration, the on-screen text should be
excluded; (4) Spatial Contiguity Principle: corresponding words
and images should be presented near to each other; (5) Temporal
Contiguity Principle: corresponding words and images should
be presented simultaneously, not successively. The effect of
the introduced rules on cognitive load has been investigated
based on behavioral, self-reported, and performance test data
(Mayer and Mayer, 2005).

Cognitive load can be measured in five levels, within or
between distinct tasks: overall, accumulated, average, peak, and
instantaneous load (Antonenko et al., 2010). Instantaneous load
reflects the amount of imposed cognitive load in each moment
of a cognitive task (Antonenko et al., 2010). In general, there
are two methods for cognitive load assessment: subjective [e.g.,
NASA-TLX questionnaire (Hart and Staveland, 1988)], and
objective [e.g., electroencephalography (EEG) (Antonenko et al.,
2010), eye-tracking (Pomplun and Sunkara, 2003; Barrios et al.,
2004; Chen et al., 2011; Kruger and Doherty, 2016; Dalmaso
et al., 2017; Latifzadeh et al., 2020), and fMRI (Tomasi et al.,
2006)]. Subjective methods which are based on self-reporting
have limitations for instantaneous or online assessment of
cognitive load, and they are mainly being used for overall
and average assessment of mental workload (Anmarkrud et al.,
2019). In contrast, physiological measurements as objective
methods have the advantage of measuring the cognitive load

continuously and online during a cognitive task (Antonenko
et al., 2010), such as video-based learning.

Electroencephalography as a neurophysiological measure
with a high temporal resolution (approximately 1 ms) is a
well-suited candidate for the assessment of cognitive load in
educational environments because this method is objective,
non-invasive, and less restricted in comparison to other
neuroimaging methods (Antonenko et al., 2010). Nowadays,
many portable EEG devices can be easily used in classrooms
for cognitive load assessment (Xu and Zhong, 2018). Moreover,
it has a high temporal resolution which is a good property
for the assessment of instantaneous cognitive load. This ability
may provide the opportunity to monitor the dynamics of
cognitive load on working memory during a cognitive task
such as multimedia learning. During the past decades, cognitive
load has mainly been measured using subjective methods and
behavioral data such as reaction times and error rates to perform
specific tasks. According to the literature, EEG band power
spectra (i.e., delta, theta, alpha, and beta) at different brain
regions have been introduced to assess cognitive workload.
Specially, theta and alpha have been linked to cognitive
workload studies (Mazher et al., 2017; Puma et al., 2018; Castro-
Meneses et al., 2020).

Several recent studies have empirically examined the
relationship between cognitive demands and EEG activity at
different frequency bands and brain regions. These studies have
used EEG, alone or along with other subjective and objective
measures, to assess participants’ cognitive workload in different
environments, including performing the arithmetic task (Borys
et al., 2017; Plechawska-Wójcik et al., 2019), engaging in a
virtual reality space (Dan and Reiner, 2017; Tremmel et al., 2019;
Baceviciute et al., 2020), and being in a multitasking situation
(Puma et al., 2018). Moreover, most studies utilized statistical
analysis to assess cognitive states/conditions based on subjective,
behavioral, and physiological measure (Baceviciute et al., 2020;
Castro-Meneses et al., 2020; Scharinger et al., 2020). However,
recent studies have been focused on the usage of machine
learning methods to improve the performance of cognitive load
measurements (Plechawska-Wójcik et al., 2019; Appriou et al.,
2020; Rojas et al., 2020).

Borys et al. (2017) applied several classification methods
on different combinations of EEG and eye-tracking features
to classify cognitive workload states on arithmetic task. They
calculated power spectra of three frequency bands (theta,
alpha, and beta) acquired from five scalp locations (Cz, F3,
F4, P3, and P4) as EEG features. Their results showed that
none of the EEG features were used in the best classification
model. One limitation of this research was concentration
on the specific brain regions with low effect in reducing
workload. In a study carried out by Dan and Reiner (2017),
they focused on EEG-based measures for cognitive load
assessment related to event processing in 2D displays against
3D virtual reality environments. They calculated the ratio of
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the average power of the middle frontal theta (Fz) and the
central parietal alpha (Pz) as cognitive load indicator. They
found that the cognitive load of processing 3D information is
lower than 2D. In a subsequent study, Tremmel et al. (2019)
evaluated the feasibility of passive monitoring of cognitive
workloadviaEEG while performing a classical n-back task in
an interactive VR environment. They extracted EEG spectral
powers of four frequency bands (theta, alpha, beta, and
gamma) from eight electrode positions (Fz, F3, F4, C3, C4,
P3, P4, and Pz). The Results revealed the positive correlation
of alpha activity in the parietal area with workload levels.
In another experimental paradigm, Puma et al. (2018) used
theta and alpha band power to assess cognitive workload
in a multitasking environment. In this task, the participants
completed a task commonly used in airline pilot recruitment,
with an increasing number of concurrent sub-tasks from one
phase to the next phase of the task. They conducted their
EEG analysis only on five electrodes centered in the frontal
area (Fz, F3, F4, F7, and F8) for the theta rhythm and
five electrodes centered in the parietal area (Pz, P3, P4, P7,
and P8) for the alpha rhythm. Besides these EEG features,
the researchers collected performance, subjective (NASA-TLX)
and pupillometry measurements as overall cognitive workload
indicators. According to the results, the power of both theta
and alpha bands increased with task difficulty, indicating
the direct effect of these bands in cognitive load. Although
different indicators have been proposed in the literature, it
is essential to explore the most optimal indices for assessing
cognitive load in a specific research area such as multimedia
learning environments.

In addition, there are a few studies on using EEG for
cognitive load assessment in multimedia and video-based
learning. Wang et al. (2013) used EEG frequency bands to
classify two videos labeled confusing and non-confusing based
on the participants’ self-reported feelings. They obtained an
accuracy of 0.67 using a Gaussian Naïve Bayes classifier. In
another study, Mazher et al. (2017) displayed identical video-
based multimedia to their participants in three different sessions
followed by a performance test. They assumed that by repeating
the same content, cognitive load decreases. They also divided
EEG signals into 10 s sections as the samples of their study.
Using partial directed coherence (PDC) and support vector
machine (SVM) classifiers, they inferred that the alpha band
in the frontal and parietal lobes of the brain cortex could be
a good indicator of cognitive load in multimedia learning. Lin
and Kao (2018) showed that using Power Spectral Density (PSD)
of all channels in EEG signal can discriminate different levels
of mental effort in online educational videos. They examine
three other models, including ANN, SVM, and decision tree. In
a recent study, Castro-Meneses et al. (2020) assigned different
levels of cognitive load based on the linguistic complexity of
the presented content. They showed that theta oscillations are
potentially an objective indicator of cognitive load.

In comparison to the previous related works, we follow
an approach to reach the most informative brain regions
and frequency bands associated with cognitive load. We
assume that multimedia learning is a complex task in which
different parts of the brain and may be different frequency
bands are involved. Thus, it is hard to claim that only
one or two regions of the brain in specific bands are
important for measuring cognitive workload. Furthermore,
we try to simulate the different conditions of instantaneous
cognitive load in instructional videos by applying/violating
the principles of multimedia which has rarely been attempted
in the previous related works. We also investigate different
time windows to find the optimal time frame for cognitive
load assessment.

In this study, we aim to quantitatively measure the
instantaneous cognitive load in multimedia learning using
EEG signals. To this end, we design an experiment by
applying/violating multimedia design principles to have two
levels of cognitive load. Then, we build a classification model
on the most informative spectral features. Using this model,
we reach the goal of this manuscript, instantaneous cognitive
load assessment. The rest of the manuscript is organized as
follows. In the next section, we describe the materials of our
study, including the educational videos, and the procedure of
the experiment, and the methods that have been applied in our
analyses. In section “Results,” we report the results of the current
study, and finally, in section “Discussion,” a discussion on the
results will be provided.

Materials and methods

Participants

Thirty-six university students between the ages of 18 and
25 participated in our experiment. Except for two, all other
participants were male. The data acquired from six of them
were discarded due to failure in recordings. The final set of
our subjects includes thirty participants. We only excluded
participants whose data were entirely corrupted. Thus, we tried
to preserve as much data as possible for analysis. They are
divided into two groups randomly to perform the task in
two separate sessions. According to Figure 1A, 16 of them
are in group 1 (LV1HV2) and 14 in group 2 (LV2HV1).
Unfortunately, some participants participated only in one
session and refused to continue the experiment due to their
preferences. Thus, nine participants from group 1 and five
participants from group 2 only watch one multimedia (see
Supplementary material for detailed information about data
management approach). The native language of all participants
is Farsi (Persian), all of them are in the range of 23–32
in terms of listening skills of English which is evaluated
by simulating the listening part of the International English
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FIGURE 1

Experiment design. (A) Based on two audio narrations, four versions of videos (two for each narration) were created: LV1 (HV1) and LV2 (HV2) by
applying (violating) the principles of multimedia design. Low load and high load video identified by green and red, respectively. Participants are
randomly divided into two groups: LV1HV2 and LV2HV1. In our experiment, the LV1HV2 (LV2HV1) watched LV1 (LV2) and HV2 (HV1) videos in two
separate sessions. As illustrated in the figure, in each group, some subjects participated only in one session. (B) The procedure of the
experiment (left to right): first, looking at a black-filled circle for recording baseline data; second, watching the multimedia (no interaction);
third, taking part in the recall test (via mouse interface); and finally completing the NASA-TLX questionnaire (paper-based version). In the first
and second steps, electroencephalography (EEG) signals are collected.

Language Testing System (IELTS) exam. All participants
were right-handed and had normal or corrected-to-normal
eye vision. All participants signed informed written consent
before attending the study. The experimental protocols were
approved by the ethics committee of the Iran University of
Medical Sciences.

Educational multimedia

We created four multimedia. In two of them, we apply the
multimedia design principles to impose a minimum amount of

extraneous cognitive load on our participants. In contrast, the
other two multimedia are created by violating these principles
to impose a higher amount of cognitive load on the subjects
in our study. We selected two chapters of Open Forum 3
(Duncan and Parker, 2007) which are listening comprehension
tasks; lesson 6 and lesson 11 (for online access to the
resources, see https://elt.oup.com/student/openforum/3?cc=ir&
selLanguage=en hosted on Oxford University Press). Using the
audio of each lesson, we created two versions of motion-graphic-
animation (low-load and high-load) as two multimedia for that
lesson (see Figure 2). The videos corresponding to lessons 6
and 11 have the length of 290 and 342 s, respectively. Two
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FIGURE 2

Educational multimedia. Examples of application (i.e., left panels: A,C,E)/violation (i.e., right panels: B,D,F) of multimedia design principles.

linguists in English language teaching devised the scenario for
making the instructional videos and arranging the materials
(texts and images). Then, all four videos have been created by
a motion graphic specialist in Adobe After Effects CC 2017
v14.2.1.34 environment. We name the low-load versions of
lesson 6 and lesson 11 as LV1 and LV2, respectively. Also, the
high-load versions of lesson 6 and lesson 11 are named HV1 and
HV2, respectively.

Recall test and subjective
questionnaire

We designed a multiple-options-question (MCQ) as a
computer-based recall test with twelve identical questions for

LV1 and HV1 and twelve identical questions for LV2 and
HV2. The recall test has been designed by two linguists in
the field of English language teaching. In addition to the
recall test, we use the classic paper-based version of NASA-
TLX (Hart and Staveland, 1988) as a subjective measure to
compare the overall cognitive load between two conditions (i.e.,
low-load and high-load) in our study. NASA-TLX is a self-
report index of cognitive load in the range of 0–100. Although
the NASA-TLX is often used to measure general workload, a
study (Mutlu-Bayraktar et al., 2019) that systematically reviews
the cognitive load research literature in multimedia learning
environments introduces NASA-TLX as a subjective indicator
and performance outcomes as an indirect objective indicator for
assessing cognitive load (the detailed information about NASA-
TLX subscale values is provided as Supplementary material).
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Baseline

Before performing the main experiment, all subjects are
requested to look at a black-filled circle (r = 5 mm) at the center
of a gray screen for approximately 20 s. They are asked to keep
relax and not think about anything special. We record EEG
signals during this task and use the middle 10-s of the signals
as our baseline in the analysis.

Experiment design

After setting up the EEG cap on the participant’s head
by a technician, the recording was started. The participant
was alone in the semi-dark room, sitting 57 cm away from
a 17-inch monitor with a refresh rate of 60 Hz. After a few
seconds, when a timer in the center of the screen ends, the
multimedia was played automatically. We asked participants to
pay attention to the concepts presented in the video. There was
no interaction between the person and the computer during
the playing video. A few seconds after the multimedia is over;
the recall test was started automatically. The participants could
answer the questions in 420 sviaa mouse interface. Participants
had this option to leave any question unanswered. Moreover,
there was the feasibility of moving between questions at any
time, but only one question with all its options was displayed
on the screen at a time. Also, the subject could terminate
the recall test before the end of the timer. But by stopping
the timer, the test phase was being finished automatically.
The software platform for presenting the multimedia and
recall test has been written in Java (for more details, see
https://github.com/K-Hun/multimedia-learning-hci hosted on
GitHub). After these steps, the EEG was stopped, and then
the paper-based NASA-TLX was given to them. To make
sure participants are familiar with the procedure and software
environment of the experiment, we designed a trial phase
before the experiment. In the trial phase, EEG signals are not
recorded and also the multimedia is a 1-min video that is
quite different in content and topic from the main multimedia
of the experiment.

We assigned all thirty participants into two groups
randomly, called LV1HV2 and LV2HV1 groups. Each subject
participated in two distinct sessions of the experiment.
The conditions in each group were counterbalanced across
participants. Subjects in the LV1HV2 (LV2HV1) group
performed the experiment in a session with LV1 (LV2)
multimedia and in another session with HV2 (HV1) (some
starting with the low load condition, and others with the
high load one). Using this arrangement, each participant
will not observe two multimedia with the same topic and
audio and thus the concept of each multimedia is new
to her/him. We summarized the experiment procedure in
Figure 1.

Electroencephalography recording and
preprocessing

To collect EEG data, we use a portable 32-channels eWave
amplifier (Karimi-Rouzbahani et al., 2017a,b; Shooshtari et al.,
2019) paired with eProbe v6.7.3.0 software. In this study, we
recorded EEG data from 29 passive wet electrodes (FP1, FP2,
FPz, F3, F4, F7, F8, Fz, FC1, FC2, FC5, FC6, C3, C4, Cz, T7,
T8, CP1, CP2, CP5, CP6, P3, P4, P7, P8, Pz, O1, O2, and
Oz) according to the 10–20 system of electrode placement,
plus two bilateral mastoids (M1: left and M2: right) as the
online reference for EEG signal potentials (see Figure 3A). The
system has 24-bits data resolution with capturing 1K samples
per second. Electrode impedances were kept below 5 K� in all
recordings and electrode sites.

Analysis of EEG data and preprocessing are performed using
the EEGLAB Toolbox v2020.0 and scripting in the MATLAB
(R2019b) environment as shown in Figure 3B. As the first
step, the basic FIR band-pass filter in the range of 1–30 Hz
is applied to remove DC and high-frequency noise. Mastoid
referencing makes EEG signals prone to external experimental
artifacts. These artifacts come from the unstable connection
of the EEG sensor to the mastoids, generating large spikes
that are several orders of magnitude more prominent than
the neural response produced by EEG. Therefore, in the next
step, to reduce the effect of these artifacts, we apply the
re-referencing part of the PREP pipeline algorithm (Bigdely-
Shamlo et al., 2015) to estimate the true reference. Next, we
utilize the Artifact Subspace Reconstruction (ASR) algorithm
(Mullen et al., 2013) to correct corrupted parts of EEG data. ASR
is being used to detect and remove high-amplitude components
such as eye blinks, muscle movements, and sensor motion
(Mullen et al., 2015). We perform ASR using Clean_Rawdata
plug-in with default settings. A visual examination of the
signals indicates that there are still some artifacts related to eye
movements in the data. Thus, in the last step of preprocessing,
independent component analysis (ICA) is applied using fastICA
algorithm and the remaining artifacts (i.e., eye movements) are
removed from the data using IC Label with threshold of 90%
(Pion-Tonachini et al., 2019).

Segment length analysis

One challenge in the assessment of instantaneous cognitive
load is selecting the most appropriate segment length. This issue
has not been clearly answered in the previous related studies,
so different time interval has been adopted as segment length.
Here, we are faced with a content-oriented task (i.e., multimedia
learning). To this end, we are seeking to achieve the smallest
meaningful and informative interval in the multimedia learning
task by analyzing the optimal time window selection. Hence, we
consider the average time spent to convey a meaningful phrase
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to learners as a metric to determine the segment length. For
this purpose, we use the silent moments in the audio narrations
of the multimedia as an appropriate situation for learners to
understand the contents presented before these moments. We
use WavePad Sound Editor v12.4 to find silence points with
minimum duration of 300 ms and below 25 dB level. The
segments with audio narration that conveys some words without
silent interruptions in two multimedia are shown in Figure 4.
The figure illustrates the number of time frames with audio
narration for each segment length. As shown in this figure, it
is desirable to choose a segment length in the range of 2.5–4 s.
Thus, in the following, we assess the instantaneous cognitive
load for segments with a length of 3 s.

Feature extraction

We adopt a time-frequency-based analysis approach for
feature extraction. For each participant’s EEG data, the PSD in
each channel is estimated by calculating the squared magnitude
of the fast-Fourier transform (FFT) (Semmlow, 2011) from 50%
overlapping windows, which is tapered by the Hanning window
to reduce the spectral leakage. A window size contains 1,000
sample points (1 s) and an overlap of 500 sample points (500 ms)
(see Figure 3C). Next, relative band power (rBP) of 3 s segments
are extracted in each frequency band: delta (δ : 2–3 Hz), theta
(θ : 4–7 Hz), alpha (α : 8–12 Hz) and beta (β : 13–30 Hz). In
order to extract these frequency bands, for each segment, we
performed the decibel (dB) conversion (Cohen, 2014). The dB
conversion is a baseline normalization method that quantifies
the ratio of the median PSD in each band and the median PSD of
the baseline on a logarithmic scale. In this way, we overcame the
positively skewed distribution of EEG power data. By applying
this method, power values are often normally distributed and
thus parametric statistical analysis is an appropriate approach
for feature extraction (Cohen, 2014).

To calculate the rBP, we use Eq. (1) where rBPi
ch,b is the

median power of i-th segment seg in the channel ch (ch ∈
{1, 2, ..., 29}) and the band b (b ∈ {δ, θ, α, β}) relative to the
median power of the baseline base in same channel and band.
Moreover, segi indicates EEG data of the i-th segment.

rBPi
ch,b = 10log10

(
median PSDsegi

ch,b

median PSDbase
ch,b

)
(1)

By concatenating the extracted features for the i-th segment,
a feature vector (FV i) is constructed for that segment. This
feature vector consists of 116 elements (4 rBPs in 29 channels),
as follows:

FV i = [rBPi
1,δ, rBPi

1,θ, rBPi
1,α, rBPi

1,β, ..., rBPi
29,δ, rBPi

29,θ,

rBPi
29,α, rBPi

29,β]1 × 116 (2)

Extracted features of each participant in all segments are
illustrated in Figure 3D.

Feature selection

In the next step, we select the best discriminative feature
set with the highest prediction accuracy. Also, it is essential
to determine the regions of the brain and frequency bands
that are highly informative for predicting cognitive load. To
address this goal, we use the minimum redundancy-maximum
relevance (MRMR) algorithm (Peng et al., 2005), which is
a mutual information-based feature selection method. The
algorithm follows an incremental search method iteratively. At
each iteration, the candidate feature will be examined whether it
has: (1) maximum relevance with respect to the class label, and
(2) minimum redundancy with respect to the features selected
at previous iterations. To evaluate the importance of features,
a score is calculated for each feature according to these two
criteria. Next, the MRMR algorithm will rank the features based
on the scores in descending order. This process returns the
ranking of 116 features which indicates the importance of each
frequency band and channel. However, the limitation of this
process is that the best feature set is not determined, and the
optimal feature set must be selected by evaluating the ranked list
with respect to the classification performance. To this end, we
evaluated the ranked features by applying Linear Discriminant
Analysis (LDA) (McLachlan, 2004) to samples in the following
manner, to achieve the best set that improves the performance
of classification. At first, the samples of all segments are split
into 10 folds such that one fold is considered as the test set and
the remaining folds are used to train the LDA model. Then, by
increasing the number of features for every sample from 1 to
116 according to the ranking obtained by the MRMR algorithm,
the LDA model is trained using selected features and prediction
accuracy is computed on the test set. This process is repeated
10 times by considering each fold as a test set. Finally, by
averaging over prediction accuracy of different folds, the final
accuracy is computed for a subset of features (from 1 to 116)
(see Figure 3E).

Classification of cognitive load

In this phase, in order to assess the instantaneous cognitive
load, we follow an approach that classifies segments into two
conditions (i.e., low-load and high-load). Our goal is to assign a
score of cognitive load to each 3 s segment based on the distances
between the samples and decision boundary (see Figure 3F).

To perform classification and assign scores to segments, we
use the SVM algorithm. The algorithm has been widely used for
non-linear binary classification problems in machine learning.
It has achieved desirable results in cognitive and mental task
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applications (Amin et al., 2017). SVM transforms input data
into higher dimensional space by applying the kernel trick,
after which it finds the hyperplane with the best generalization
capabilities by maximizing the margins (Wang et al., 2009).
SVM with the kernel is extremely sensitive to hyperparameters,
so it must be tuned to achieve a good level of performance.
Hence, we apply the radial basis function (RBF) kernel, which
only needs to optimize two hyperparameters (i.e., C as the
penalty parameter and γ as the kernel width parameter) (Hsu
et al., 2003). We examine various pairs of (C, γ) values using
the Bayesian optimization algorithm, and the one set with the
lowest cross-validation loss is selected. In the next step, in
order to measure the performance of the optimized classifier
and extract classification scores, we randomly select 70% of
samples as a training set, and the rest of the samples are
considered as a test set. Then, the classification scores are
computed as mental workload scores. Indeed, these scores
indicate the signed distance between a sample and the decision
boundary. The score (si) for i-th segment is computed as
follows:

si =

n∑
j = 1

pjyjG
(
svj, segi

)
+ q (3)

where G
(
svj, segi

)
is a non-linear transformation with radial

basis function (RBF) which is defined in Eq. (4).

G
(
svj, segi

)
= exp

(
−
∣∣∣∣svj−segi

∣∣∣∣2) (4)

where n is the number of support vectors, svj is j-th support
vector, yj ∈{−1,1} (i.e., low-load: −1 and high-load: +1) is the
label of j-th support vector, pj is the estimated SVM parameter
for j-th support vector and q is the bias term. For more details on
the estimation of (p1, ..., pj, q) see Cristianini and Shawe-Taylor
(2000).

Three values of the score (s) would be possible based on
the position of each sample: (1) zero value (s = 0) when
the sample is located on the decision boundary (hyperplane);
(2) positive value (s > 0) when the sample has been correctly
classified; (3) negative value (s < 0) otherwise. Once the scores
are determined, we will normalize them to the range of 0–1 using
the min-max normalization method as follows:

SCi =
si −min (S)

max (S)−min (S)
(5)

where si and S are the scores of the i-th segment and the set of all
segments’ scores obtained after SVM classification, respectively.

Results

In this section, first, we validate the experimental
conditions. Second, we examine the appropriate time
interval for assessing the cognitive load imposed by the

educational videos. Third, we evaluate the selected features
and identify the most important frequency bands and brain
regions for distinguishing two mental workload conditions.
Finally, we present the results of the scoring model for
instantaneous cognitive load assessment and investigation of its
generalizability.

Validation of experimental conditions

To validate two experimental conditions (i.e., low-
load and high-load), we performed statistical analysis on
NASA-TLX scores and recall test. The assumption is that
applying/violating multimedia design principles imposes
different levels of cognitive load on learners. As a result, a
two-sided independent samples t-test was used to investigate
statistical differences for the two experimental conditions.
The average and standard deviation of NASA-TLX scores and
recall test scores in each group are presented in Figure 5. This
analysis on NASA-TLX scores indicates a significant difference
between cognitive load imposed by the different instructional
design in multimedia, t (18) = − 4.87, p < 0.0002 and
t (24) = − 6.07, p < 0.0001 for multimedia 1 (i.e.,
LV1 and HV1) and multimedia 2 (i.e., LV2 and HV2),
respectively. Also, the same analysis on recall test shows that
t (18) = 6.41, p < 0.0001 and t (24) = 6.22, p < 0.0001
for multimedia 1 and multimedia 2, respectively. Thus,
two groups in both multimedia have significantly different
performances. These results validate the assumption
that the different mental demands are elicited due to the
experimental conditions.

Evaluation of selected features and
activated cerebral regions

The goal of feature selection is to extract the optimal feature
set by reducing redundancy while keeping the information of
gathered data. After performing the method described in section
“Feature selection,” we select the top 14 features of the MRMR
algorithm as the best subset. This feature set can achieve the
highest classification accuracy of 78.34± 1.3% using the LDA
method for two load conditions. The best feature set is ordered
in Eq. (6), where each element represents the selected channel
with the band in the subscription.

Best Features = {O1α, C3α, P3θ, P7θ, CP1δ, P7β, O2δ, FC5α,

CP1β, FPzα, FC6α, C4θ, F7α, F7δ} (6)

For evaluating the selected features, we investigated the
overall brain topographic difference between two experimental
conditions in each frequency band. For this purpose, first, we
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FIGURE 3

Electroencephalography (EEG) analysis workflow. (A) EEG acquisition: data collected from 29 channels for each participant during displaying
the multimedia. (B) Pre-processing: includes band-pass filter, re-referencing, and artifacts removal processes. (C) Data segmentation: a sliding
window (size = 1,000 ms; 50% overlappings) moves on the signal of each channel. Each of the six adjacent windows forms a 3s segment.
(D) Feature extraction: by performing Hann window and by using the FFT method, PSD of all frequency sub-bands is calculated for each
window. Next, the ratio of the median power of each 3s segment to the median power of the baseline is considered as the relative band power
(rBP) of that segment. For each rBP, the superscript shows the segment number and the subscripts show the channel number and the band,
respectively. Finally, the extracted features of each participant for each of the multimedia will be formed in 96 × 116 and 114 × 116 dimensions
for multimedia 1 (i.e., LV1 and HV1) and multimedia 2 (i.e., LV2 and HV2), respectively. (E) Feature selection: the best set of features will be
selected by evaluating the importance of the features which is ranked by the MRMR algorithm. (F) Classification: an SVM (kernel: RBF) is built to
assign a score to each segment (assessment of instantaneous cognitive load).

calculated the average rBP [see Eq. (1)] of all 3 s segments of
each condition (i.e., low-load and high-load) in each band and
then subtracted the average of low-load average from the average
of high-load. Figure 6 illustrates the difference between the rBP
averages of two conditions in each band. The powers in each
band are scaled to the range of −1 to +1. According to this
figure, active cortical areas are different in each band, and we can
determine active cerebral regions for each band as below where
the superscription (i.e., L: low-load and H: high-load) indicates
the corresponding condition.

δACTIVE = {F7H, CP1H, FC5H, FC2L, P3L, FPzL, CP2L,

OzL, CP6L, FzL, O2L
} (7)

θACTIVE = {P7H, F3H, FC5H, T7H, T8L, OzL, FzL,

FP2L, O1L
, C4L, P3L

} (8)

αACTIVE = {C3H, FC5H, F7H, P4H, FC1H, P3L, O2L,

OzL, FC6L, FPzL, O1L
} (9)

βACTIVE = {P7H, FC1L, P4L, T8L, FPzL, CP1L, P8L
} (10)

The results show that the selected features are consistent
with the active cerebral regions in different locations and bands.
It is inferred from the comparison of the best feature set [as
mentioned in Eq. (6)] and the active cerebral regions [as stated
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FIGURE 4

Segment length analysis in (A) multimedia 1 and (B) multimedia 2. Histograms show the frequency of number of meaningful timeframes
regarding segment length for multimedia 1 (A) and multimedia 2 (B).

FIGURE 5

Comparison of (A) NASA-TLX scores and (B) recall test scores in two experimental conditions. In each graph the scores [NASA-TLX scores in
panel (A) and Recall scores in panel (B)] are compared between two conditions (LV and HV) for each multimedia (Multimedia 1 and Multimedia
2). The scores have been scaled in the range [0, 100].

FIGURE 6

Differences between average relative band powers of electroencephalography (EEG) features (bands and locations) in two conditions.
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TABLE 1 Classification accuracy and standard deviation (std) of
electroencephalography (EEG) band powers using linear discriminant
analysis (LDA).

Frequency bands

Delta (δ) Theta (θ) Alpha (α) Beta (β)

Accuracy 72.97 68.33 73.85 68.22

Std (±) 2.29 2.23 2.73 2.23

Results are presented in percentage.

above in Eqs (7–10)]. So that, all the selected features were
selected from the active cortical areas. This indicates that the
feature selection method effectively selects a combination of
informative and relevant features to cognitive load with respect
to the brain activity map.

In order to identify which frequency band can distinguish
two cognitive load conditions more effectively, we perform
the classification task in each frequency band separately
by selecting the feature subset associated with that band.
Again, we apply 10-fold cross-validation using the LDA
method on data. As presented in Table 1, the alpha is
the best frequency band for predicting mental workload.
The predictive power of the alpha feature set is 73.85±
2.73%. Figure 7 illustrates brain topographies of relative
alpha power distribution in two conditions compared to the
baseline. According to this figure, the diagonal activity of
alpha power in each condition attracts attention. In low-
load condition, most alpha activation is concentrated in the
left lateral posterior to the right lateral anterior cortices.
Conversely, in high-load condition, this pattern is localized
in the right lateral posterior to the left lateral anterior
cortical areas. By comparing Eqs (6) and (9), it is found that
alpha power suppression in prefrontal midline (FPz), right
lateral frontal (FC6), and left lateral occipital (O1) cortices

have a more significant impact on increasing cognitive load.
Also, activation of alpha power in the left lateral frontal
(FC5, F7) and left central (C3) cortical areas synchronize by
increasing cognitive load.

Instantaneous cognitive load scoring
model results

After evaluating the best feature set, we evaluate the
performance of the classification method presented in section
“Classification of cognitive load” for assigning scores to
segments. Thus, we compute the average and standard deviation
of classifier accuracy to assess the SVM model performance. The
performance of the model is achieved 84.5± 2.1%. As described
previously, assigned scores are converted into normalizing
scores (SCs) using Eq. (5).

Then, the cognitive load imposed at each moment of each
multimedia is calculated by averaging over the normalized
scores obtained by the SVM in the corresponding segments at
that moment. Figure 8 displays predicted workload scores in
two multimedia over time. As depicted in this figure, the average
of predicted scores corresponding to two load conditions is
significantly different across multimedia timeline. These scores
for LV1, HV1, LV2, and HV2 are 29, 43, 46, and 60, respectively.

Discussion

In this study, based on the most informative feature set,
we construct an SVM model for assessing instantaneous
cognitive load. To impose low or high levels of cognitive
load on the participants, we designed an experiment with
two versions of multimedia by applying or violating the
principles of multimedia design. The conditions of our

FIGURE 7

Brain topographies of alpha power distribution in two conditions compared to baseline. From left to right, the topographies represent the
average relative alpha power for the eye-opened baseline, low-load, and high-load conditions.
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FIGURE 8

Predicted cognitive load scores in (A) multimedia 1 and (B) multimedia 2 over time.

experiment are evaluated by a recall test and a NASA-
TLX as a subjective measurement of cognitive load. As a
result, applying the principles leads to lower NASA-TLX
scores and improvement of performance tests, indicating
that this experimental condition will induce a lower
cognitive load in comparison to the condition of violating
design principles.

In order to extract the informative and relevant EEG
features as an objective measurement of cognitive load, first,
we calculated the PSD of the common frequency bands.

Then, we extracted the optimal feature set by using the
MRMR algorithm, which is a ranking method based on
mutual information. The main advantage of this feature
selection method is the effective reduction of redundant features
while preserving relevant features. In addition, compared to
other dimensionality reduction techniques such as PCA, the
readability and interpretability of the features are held, and no
changes are made to the data.

The selected feature set includes less than 12% of the
total features. These 14-top features confirmed the different
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conditions of the cognitive load imposed on the subjects
very good. The selected features show a remarkable
combination of activated frequency bands in different
brain regions associated with executive functions of brain
which are referred to as supervisory cognitive processes
(e.g., attention, cognitive inhibition, or learning) because
they involve higher level organization and execution of
complex thoughts and behavior (Alvarez and Emory, 2006;
Whelan, 2007). Especially, in multimedia learning, verbal
information (e.g., words or sentences) and visual part
(e.g., illustrations, photographs, or diagrams) are merged
(Gyselinck et al., 2008). These audio/visual signals may
arise conflicting effects and overloads on the overall brain,
and thus it is expected to have a simultaneous activation
of different areas of the cerebral cortex. Given the specified
locations/frequencies, it can be possible to find cognitive
load differences at these locations/frequencies using simple
statistical analysis.

Most of the selected features are from the frontal region
(FPzα, FC5α, FC6α, F7α, and F7δ). Except for one of them
(F7δ), the other mentioned features belong to the alpha
band. In addition, two features have been selected from the
centro-parietal (C3α) and the occipital (O1α) regions. This
result is in line with previous studies that link cognitive
processes to the frontal and parieto-occipital regions (e.g.,
Puma et al., 2018 for review), and alpha band activity
(e.g., Foxe and Snyder, 2011 for review). According to
the literature, activation of alpha indicate two opposite
behaviors related to cognitive processing: active processing
associated with memory maintenance and inhibition of
irrelevant information (Jensen and Mazaheri, 2010). In fact,
the increase in cognitive workload may be due to either
of these two reasons or both of them. In this study, we
observed that the power of alpha band in the low-load
condition (i.e., applying design principles) is higher than
the high-load condition (i.e., violating design principles),
prominently in the prefrontal and the occipital regions. The
increases of alpha spectral power seems to reflect the top-
down control of the parieto-frontal attention network. As
reported in recent studies, this mechanism inhibits irrelevant
information flow from the visual perception system and
internal cognitive processing (Pi et al., 2021). In this way,
the information is transferred from task-irrelevant regions to
task-relevant ones (Jensen and Mazaheri, 2010). Therefore,
the decrease in alpha power near Broca’s area, which plays
a significant role in language comprehension (Novick et al.,
2005), suggests the effective engagement of cognitive resources
related to the task.

After feature analysis, we propose a scoring model to
measure instantaneous cognitive load in 3s segments of
multimedia. The model can predict the mental workload
scores in multimedia across time at appropriate accuracy.
In other words, applying (violating) principles at each

moment has caused that the predicted cognitive load score
for LV1 (HV1) and LV2 (HV2) is lower (higher) than
HV1 (LV1) and HV2 (LV2) at that moment. This allows
us to monitor and manage learners’ cognitive status while
watching multimedia at each moment. In this way, we
can evaluate the quality of presented instructional materials
and design principles in multimedia across time. Also, it
can be possible to measure the effect size and impact of
applying each principle. Therefore, by detecting the segments
of multimedia that impose a great cognitive load on learners,
we can provide the optimal load and improve learning
performance by applying appropriate instructional materials
and effective design principles. Moreover, a comparison of
several multimedia that convey the same content can be
feasible. This ability facilitates the production or selection
of appropriate educational multimedia based on cognitive
neurophysiological indicators.

Several limitations in the current research should be
noticed. The first limitation of this study is the use of
gel-based EEG equipment to collect data. The sensitivity
of this device to get good contact of electrodes to scalp
sites makes data prone to noise, resulting into extra time
for preprocessing and increase in data loss rate. Moreover,
for future studies, it might be useful to evaluate some
cognitive-related abilities of subjects such as short-term memory
capacity, visual attention, auditory and visual processing, etc.
These abilities can be evaluated by common psychometric
tests. In addition, it is a good idea to consider the
cognitive and learning styles of participants in future studies.
Another limitation to be mentioned here is the restriction
of the analytical method. We assessed cognitive load by
analyzing features extracted from the electrodes individually.
Therefore, the interconnected functionality of the brain
during a cognitive task is not considered. It is essential to
consider the brain connectivity analysis approach in future
researches to investigate information flows that are important
in cognitive processes.

Conclusion

In this study, we investigated the possibility of instantaneous
assessment of cognitive load in educational multimedia
using EEG data as an objective measure. Our experimental
conditions, which impose two distinct levels of cognitive
load by applying/violating multimedia design principles to
learners, were validated by using the result of the NASA-
TLX and recall test. We extracted the relative band powers
for common frequency bands in each cerebral area. The most
informative and relevant feature set for measuring cognitive
load was selected using the MRMR method. We constructed
an SVM classification model to predict cognitive load scores
at 3s moments. The proposed model was validated for
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generalization from one multimedia to another. This capability
can significantly help educational multimedia designers to
construct multimedia by imposing an optimal amount of
cognitive load on learners. In short, our main contributions in
this study can be considered as (1) investigation of active cortical
areas and major frequency bands associated with cognitive
load in learning task, (2) instantaneous assessment of cognitive
load in educational multimedia using objective indicators, and
(3) generalizability of the workload scoring model from one
multimedia to another.
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