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Metal-organic frameworks (MOFs) are 3D-architecture compounds of metal ions and
organic molecules with sufficient and permanent porosity, showing great potential as a
versatile platform to load various functional moieties to endow the hybrid materials with
specific applications. Currently, a variety of photothermal nanometals have been
embedded into organic ligands for integrating the unique photothermal effects with the
merits of MOFs to improve their performances for cancer therapy. In this review, we have
summarized a series of novel MOF-based photothermal materials for this unique
therapeutic modality against tumors from three main aspects according to their
chemical compositions and structures, i) metal-doped MOF, ii) organic-doped MOF,
and iii) polymer-coated MOF. In addition, we have summarized the latest
developments and characteristics of MOF-based photothermal agents, such as good
biocompatibility, low toxicity, and responsive photothermal conversion without destroying
the structure of hybrid photothermal agent. At last, we addressed the future perspectives
of MOF-based photothermal agent in the field of phototherapy.
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INTRODUCTION

Cancer is a threat that humans need to deal with it urgently; however, effective treatment for cancer
therapy is still a challenge (Li et al., 2013a; Probst et al., 2013; Li et al., 2014a; Chen et al., 2016).
Currently, chemotherapy, radiotherapy, and surgery are conventional cancer treatments. The side
effects of these therapies are not only toxic, but cause panic to patients (Liang et al., 2016; Song et al.,
2016; Jia et al., 2021). Therefore, minimally invasive medical technology causes much research
interest, which could potentially avoid the above disadvantages. Photothermal therapy (PTT) is an
important technique of minimally invasive therapy; in recent decades, near-infrared laser (NIR)-
responsive photothermal treatments have become a promising technique for cancer treatment
taking advantage of enhanced permeability and retention (EPR) effect (He et al., 2016; Jiang et al.,
2021). NIR is a commonly used bio-safe laser source, which shows a decent biological tissue
penetration ability and small attenuation. Thus, the NIR laser could reach the photothermal agent
(PTA) underneath the skin and transfer the light energy into heat, realizing the increase of local
temperature to kill cancer cells. The effectiveness of photothermal therapy has been demonstrated
in tumor treatment of mouse model (Chen et al., 1997). In the last few years, various PTAs based on
NIR laser have been reported. The key of photothermal therapy is to develop efficient,
biocompatible, and targeted photothermal conversion agents (PCAs) (Tang et al., 2018;
Mengying et al., 2021).
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The conventional PCAs have been deeply developed, such as
organic dyes (Kai et al., 2012a), carbon nanomaterials (Zhu et al.,
2016), inorganic semiconductor materials (Tian et al., 2011; Li
et al., 2013b; Liu et al., 2014a; Song et al., 2015), and noble metal
materials (Deng et al., 2016; Wang et al., 2020; Xu et al., 2020).
Gold is a common noble metal, and gold nanoparticles with
various shapes have been synthesized, such as spherical,
rectangular, and hexagonal (Li et al., 2012; Li et al., 2014b; Li
et al., 2014c; Jing et al., 2014; Rengan et al., 2015; Jiang et al., 2018;
Li and Yin, 2019). The absorption coefficient and photothermal
conversion efficiency depend on their morphology, size, and
nanostructures of noble metal, while the high price prevents it
from being widely used in industrialization. The second type of
PCAs comes from carbon-based photothermal materials, such as
mesoporous silica, flake graphene oxide, and hollow carbon
nanotubes (Chen et al., 2013; Li et al., 2019a; Tsoy et al., 2019;
Pereira et al., 2020). Carbon-based light-to-heat PCAs have many
advantages, such as relatively high stability, not being easy to be
oxidized, low toxicity, and good metabolism in the body.
However, their application is limited due to the low
photothermal conversion efficiency, and the photothermal
mechanism is not clarified. The third type of light-to-heat
PCAs is a family of organic dyes, including dyes, polyaniline
and polypyrrole nanoparticles, and so on (Chen et al., 1995; Yang
et al., 2011; Zha et al., 2013; Chen et al., 2014; Huang et al., 2015;
Alves et al., 2018; Li et al., 2020). This kind of material is relatively
small in size, which is easy to be swallowed by cells, and its
fluorescence can be used for imaging. The disadvantage is that it is
difficult to metabolize or maintain in body for a long time, and
those dyes are somehow poisonous. The last type of light-to-heat
PCAs are inorganic semiconductor materials, such as spherical
copper sulfide, flower-like bismuth sulfide, and iron sulfide with a
core-shell structure (Hu et al., 2003). The advantage of this type of

material is that it has high photothermal conversion with an easy-
prepared uniform morphology, and the price of such material is
relatively cheap. The disadvantage is that high concentrations of
metal ions are toxic and will cause everlasting threat to creatures.

Metal–organic frameworks (MOFs) with porous 3D structures
are mostly used as carriers owing to their large surface area, which
makes it easy to load drugs (Wang et al., 2015). This special
structure composed of organic and inorganic components
endows MOFs with various applications (He et al., 2015;
Simon-Yarza et al., 2017; Wang et al., 2017), such as gas
storage and adsorption (He et al., 2014), functionalized
catalyst, and high-efficiency carrier (Bae et al., 2010; Horcajada
et al., 2010; Kreno et al., 2010; Chacón-Parra et al., 2021). Some
MOFs are inherently fluorescent and can be used for imaging in
vivo. Various properties of MOFs materials play a unique role in
different fields, such as accelerated adsorption, desorption
kinetics, and improved bioavailability (Sakata et al., 2013).
Some researchers have integrated some properties of biology,
physics, and chemistry into MOFs to make them multifunctional
and play multiple roles in one field.

According to the current research field of MOFs, this review
focuses on the unique functionality of elaborately designed
nanoplatforms to generate heat for photothermal therapy of
cancer (Zhou et al., 2021; Zhong et al., 2020; Liu et al., 2018)
(Table 1). By controlling the size, composition, and other
parameters of photothermal agent, as well as its hybrid
structure, an MOF-based PTA with optimized photothermal
performance is highly desirable (Lan et al., 2019; Hu et al.,
2020; Su et al., 2021). Polyethylene glycol (PEG) is widely
employed to enhance the hydrophilicity and biocompatibility
of MOF-based materials for biomedical applications. This review
mainly summarized the combination method, performance test,
and application of MOFmaterials and PTAs for tumor treatment.

TABLE 1 | Summary of MOFs used as photothermal theranostic platforms

MOFs MOF skeleton
components

Therapeutic option Animal model References

AU@
MOF-DOX

Zn2+, 2-H-MeIM Chemotherapy, PTT H22 Tumor-bearing
mice

(Sun et al., 2012; Chen et al., 2017a; Lin et al., 2017; Koschnick et al., 2021;
Li et al., 2021)

MGH Fe3+, BTC CDT, PT, starvation
therapy

4T1 Tumor-bearing
mice

(Liu et al., 2014b; Lu et al., 2015; Ibacache et al., 2016; Yang et al., 2018)

HUC- PEG Hf4+, BDC, TCPC PTT, PDT U14 Tumor-bearing
mice

(Sun et al., 2012; Zhang et al., 2013; Wang et al., 2016)

LA-AUNR/
ZIF-8

Zn2+, 2-H-MeIM Chemotherapy, PTT H22 Tumor-bearing
mice

(Hu et al., 2009; Tian et al., 2017; Deng et al., 2019)

B9-MIL@
cat-fML

Fe3+, NH2-BDC PTT, PDT HeLa Tumor-bearing
mice

(Lee et al., 2012; Yang et al., 2012; Ercius et al., 2015; Cheon et al., 2016;
Falcaro et al., 2016)

Cu-
TCPP MOF

4-carboxyphenyl,
porphyrin

PTT, PDT Saos-2 Tumor-bearing
mice

(Li et al., 2014d; Alexander Ardagh et al., 2016; Li et al., 2019b; Han et al.,
2020)

Cu@MOF PCN 224 Chemotherapy, PTT NIH3T3 Tumor-bearing
mice

(Lee et al., 1999; Struijk et al., 2000; Chen et al., 2015; Würthner et al.,
2016)

siRNA/Zr-
FeP MOF

Zr-FeP PTT, PDT MCF-7Tumor-bearing
mice

(Mahara et al., 2002; Che et al., 2007; Kai et al., 2012b; Park et al., 2012;
Ghosh et al., 2014; Tan et al., 2014; Meng et al., 2016; Zeng et al., 2016;
Espín et al., 2018; Lü et al., 2019)

PPY@MOF MTT PTT 4T1 Tumor-bearing
mice

(Liu et al., 2006; Cairns et al., 2016; Seoane et al., 2016; Chen et al., 2017b;
Xuechao et al., 2019)

PDA@MOF Zn2+, 2-H-MeIM Chemotherapy, PTT 4T1 Tumor-bearing
mice

(Park et al., 2014; Choi et al., 2015; Liu et al., 2016b)
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For example, PTT or photodynamic therapy (PDT) based on
MOF-PTA compounds have been developed for this unique
therapeutic modality against tumors, including Au NR@ZIF-8,
UCNPs@MOF@MIL-100(Fe), Cu-TCPP@MOF, Zr-PDI@MOF,
PPy@MOF, and PDA@MOF. The combination of photothermal
reagent andMOFmaterials provides researchers a novel agent for
tumor treatment; the photothermal reagents could produce heat
under the stimulation of external lasers for thermal ablation of
tumors, while MOF materials have the properties of PDT or
fluorescence, promoting theranostic effects synergistically for
cancer treatment (Table 2). In this review, MOF-conjugate
materials as photothermal reagents have been briefly divided
into three categories based on their compositions and structures:
i) metal-doped MOF, ii) organic-doped MOF, and iii) polymer-
coated MOF.

METAL-DOPED MOF FOR PTT

Metal-doped MOF refers to the structure formed by metal
nanoparticles doped on MOF framework. PTAs with core-
shell nanostructures have been combined and applied in the
field of tumor treatment due to their good biocompatibility, drug
delivery performance, and synergistic effect between core-shell
components (Chen and Yin, 2014; Elsabahy et al., 2015). The
MOFmaterial has a large specific surface area, and there are many
covalent bonds and coordination bonds on it. Before the metal
surface being coordinated with MOF, it must undergo a
preliminary hydrophilic treatment to connect the metal surface
with more affinities, promoting the two to be combined. Once
such PTAs loaded on MOFmaterials, the surface of these hybrids
can be easily modified by various functional moieties, endowing
the PTA/MOF materials with designed functionalities, such as
fluorescence imaging, chemo-photothermal therapy, and
controlled drug release.

Au NPs@ZIF-8 for PTT
Au NPs is widely used as PTAs for photothermal therapy due to
its low toxicity and good photothermal convertibility. However,
gold nanoparticles with this structure have many shortcomings in
the field of tumor treatment, such as poor biodegradability and
surface modification. Besides, Au NPs is easy to aggregate in vivo.
In order to solve these shortcomings of Au NPs, it is highly
desirable to develop new types of Au NPs-based functional
materials for highly efficient cancer therapy. Au NPs based

MOF materials are recently developed as promising hybrid
materials to avoid the abovementioned deficiencies.

Recently, Tang, and co-workers reported a multifunctional
nanoplatform-based Au NPs@ZIF-8 for improved
multifunctional tumor therapy under NIR irradiation (Li et al.,
2018). They have designed the novel Au NRs by the seed-
mediated method and then utilized cetyltrimethylammonium
bromide (CTAB) to modify the Au NRs surfaces to achieve a
better stability (Figure 1A). Finally, they added 2-
methylimidazole (2-MIM) to the PVP-stabilized Au NRs for
changing surface structure. There are representative Au NPs
and typical Au NRs@ZIF-8 with core-shell structure
(Figure 1B). The combination of gold nanoparticles and
MOFs in PBS solution can heat up to 54°C in 5 min
(Figure 1C). However, the PBS of the control group only
increased by 2°C under the same power of light. These data
indirectly prove that the combination of MOFs and gold
nanoparticles also has a strong photothermal effect under the
808-nm NIR laser. The temperature (photo-induced
hyperthermia) can be tuned by changing the concentration of
the Au NRs@ZIF-8 core–shell nanostructures. For the animal
experiments, the safety must be considered, and the weight of
mice can reflect the toxicity of PTA-MOF. There was no
significant change in body weight within 14 days, indicating
that Au NRs@ZIF-8 core-shell nanostructures have lower
systemic toxicity (Figure 1D). Mice injected with Au NRs@
ZIF-8-DOX complex had the best tumor suppressor effect
under near-infrared irradiation, about 90%. In contrast, Au
NRs@ZIF-8 core-shell nanostructures injected with near-
infrared irradiation (58%) and Au NRs@ZIF-8-DOX complex
(30%) without near-infrared irradiation reveal the obvious and
effective synergistic effect of photothermal therapy and
chemotherapy in the body.

On the other hand, crystalline zeolitic imidazolate framework-
8 (ZIF-8) is a classic MOF, which is connected by the
coordination between low-toxic Zn2+ and 2-MIM. It has a
cross three-dimensional structure with guest-matching pore
size and large specific surface area, which can significantly
increase the drug-carrying capacity and facilitate surface
modification in order to accurately deliver drugs or make cells
penetrate deeply (Liu and Tang, 2012; Sun et al., 2012). In
addition, a series of multifunctional core-shell NPs@ZIF-8
nanostructures, including polyacrylic acid@ZIF-8, CuS@ZIF-8,
and graphene quantum dot@ZIF-8 62–64, have been widely used
as advanced therapeutic functional nanomaterials.

TABLE 2 | The advantages and disadvantages of the three categories

MOFs Advantages Disadvantages

Metal-
doped MOF

PTA/MOF materials with designed functionalities, such as fluorescence
imaging, chemo-photothermal therapy and controlled drug release

Low yield of nanoparticles, low biocompatibility

Organic-
doped MOF

Low toxicity, magnetic resonance (MR) imaging capability, PDT therapy,
controlled drug release, superior photothermal conversion efficiency

Connection between MOF structure and treatment efficiency, chronic
toxicity assessment caused by acute toxicity and molecular level

Polymer-
coated MOF

Good stability, biocompatibility and degradation performance, stimulus-
response multifunctional abilities, chemo-photothermal therapy

Low yield of nanoparticles, redirection of drug release
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The Au NRs@ZIF-8 core–shell nanostructures had pH and
NIR dual stimuli-responsive drug release. The acidic
environment of tumor sites and the local NIR
photoconversion heat are greatly beneficial to trigger the break
of the coordination bond between DOX and ZIF-8 shell or
between Zn2+ and the imidazoline of ZIF-8 shell itself, thereby
realizing the stimuli-responsive drug release. The multi-modal
system based on Au NRs@ZIF-8-DOX complex has good
biodegradability.

Li and co-workers designed a novel core−shell Au@MOF
nanocarrier with NIR-II (Deng et al., 2019). Under the same
laser power conditions, NIR-II has a higher penetration depth on

the surface of organisms than NIR-I, which is more conducive to
the application of photothermal materials in tumor treatment.
The temperature (photo-induced hyperthermia) can be tuned by
changing the concentration of the Au NRs (Figure 2E). By
contrast with H2O, the temperature of Au@MOF solution
increases to almost 100°C under the same power and the
concentration of Au NPs (Figure 2F). These results
demonstrated that the Au@MOF was an attractive
photothermal agent, and the photothermal conversion
efficiency of Au@MOF was 48.5% under 1,064 nm laser, which
was higher than that of the representative materials such as Cu2−x
S (30.8%), Au nanoplate, and Nb2C (46.65%) (Hu et al., 2009; Lin

FIGURE 1 | (A) Schematic representation of the Au NRs@ZIF-8 core–shell nanostructures. (B) TEM image of CTAB-stabilized Au NRs and HAADF-STEM image of
single Au NRs@ZIF-8 core shell nanostructure. (C) The temperature increased by Au NRs@ZIF-8 core–shell nanostructures in PBS solution l. (D,E) Observation of
changes in (D) body weight and (E) relative tumor volume from 4T1 tumor-bearingmice with different treatments. Reproduced with permission (Li et al., 2018). Copyright
2018, Nano Research.
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et al., 2017; Li et al., 2021). The combination of gold nanoparticles
and MOFs has many advantages: Au NPs will convert light
energy into heat energy under the irradiation of NIR. A
certain amount of heat will make the cavities on the surface of
MOFs larger, and the release rate of drugs caused by heat will also
be increased. The more specific surface area of MOFs provides
more attachment surfaces for gold particles, so that there are
more gold particles per unit area, the light-to-heat conversion
efficiency is greatly improved, and the release of drugs is also
greatly accelerated.

Compared with NIR-I, the shell Au@MOF shows higher light-
to-heat conversion efficiency under 1,064-nm laser irradiation. In
addition, in other reports, a new core-shell Au@MOF nanocarrier
was successfully prepared, which has high anti-cancer drug
delivery ability, pH-sensitive drug release ability, superior NIR-
II responsive photothermal conversion ability, and good
biocompatibility. In addition, chemotherapy-photothermal
combined therapy has achieved significant synergistic effects in
inhibiting tumor growth. At the same time, infrared/PAI imaging
also shows its superiority in imaging-guided monitoring and
treatment.

UCNPs@MOF@MIL-100(Fe) NPs for PTT
Some research teams have used MOFs materials in the field of
cancer treatment (Koschnick et al., 2021). Multifunctional MOFs
with iron elements have been used in the treatment of cervical
cancer, and MOFs ware regarded as deliver for hydrophobic drug
DHA (Chen et al., 2017a). Due to the special structure of MOFs,
some of its own components can produce ROS which can poison
cancer cells under the irradiation of laser, achieving the effect of
photodynamic therapy (PDT) (Liu et al., 2016a; Lu et al., 2016). In
addition, MOFs have a large specific surface area and can carry

some photothermal reagents. Therefore, it demonstrated further
study for cancer theranostics with MOFs, and other potential
properties of MOFs materials are slowly being explored by some
researchers for clinical translation (Lu et al., 2015).

Interestingly, researchers have developed iron-composite
MOFs materials for PTT, PDT, and chemotherapy as a
multifunctional treatment method. Due to the 3D structure of
MOFs, iron ions can be combined by coordination bonds or
covalent bonds. In response to excessive hydrogen peroxide
(TME), the element generates a large amount of ROS to
achieve the therapeutic effect of PDT. The chemotherapeutic
drug DOX can respond under acidic conditions and release the
drug in a specific area of the tumor to achieve the purpose of
exquisite treatment. The heat generated by PTT can promote the
release of drugs and can also kill tumor cells at high temperature.
This multi-functional drug delivery platform realizes the
combination of multiple treatment methods, which is better
than a single treatment effect, and provides a lot of
meaningful reference for future clinical transformation.

Yang and his team prepared a combination of MOFs and
upconversion particles for tumor treatment (Yang et al., 2018)
and confirmed that the MIL-100(Fe) shell effectively converts
light energy into heat energy for tumor ablation. They also
demonstrated that the temperature quickly increased to about
57°C (Figures 3A,B). In addition, the sample produces a large
amount of hydroxyl radicals (OH) reactive oxygen species (ROS)
in the presence of H2O2 produced by Fenton reaction, which is
highly toxic to tumor cells. In this process, due to the generation
of carriers in Fe-O clusters, electrons are transferred from O2− to
Fe3+ after light stimulation to form reduced Fe2+ ions
(Figure 3D). Based on the Fenton reaction, the transmitted
photons can further react with H2O2. Free radicals attack

FIGURE 2 | (A) Heating and cooling circles for Au@MOF. (B) The photothermal performance of the Au@MOF with different concentrations of Au irradiated. (C) The
temperature increasing and cooling curves of Au@MOF aqueous solution with concentration fixed on 50 ppm Au. (D–F) are measured under the 1,064 nm laser
irradiation, (A–C) are measured under the 808 nm laser irradiation. Reproduced with permission (Deng et al., 2019). Copyright 2019, Nano Letters.
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cancer cells through the process of photodynamic therapy. The
biocompatibility of this nanomaterial is relatively good, and it can
be noted that the multi-mode treatment is better than the single-
mode treatment (Figure 3G).

Metal-doped MOF have two main advantages, which can
adjust the size of the metal particles and the structure of the
organic frame depending on elaborate design. On the other hand,
this MOF material is capable of loading due to its high specific
surface area; it can deliver some drugs, which can be applied to
imaging and therapeutics in biomedical sciences.

ORGANIC-DOPED MOF FOR PPT

Organic inorganic hybrid@MOF is composed by metal
compounds and MOFs, whose connection is mainly
contributed by polymers. In MOF NPs, organic ligands
provide a series of space framework of MOF; inorganic
compounds offer metal ions in the reaction. They hybridize
each other under certain conditions, forming polycrystalline
nanoparticles in the form of covalent bond or coordination
bond. What’s more, the polycrystalline nanoparticles have

many unique properties, playing an important role in the field
of photothermal treatment.

Ultrathin Cu-TCPP MOF Nanosheets
for PTT
Some groups reported that two-dimensional nanosheet
photothermal materials have a better photothermal conversion
rate than solid photothermal materials due to a larger specific
surface area and faster conversion rate (Liu et al., 2014b; Ibacache
et al., 2016). Various nanosheets, such as graphene oxide, black
phosphorus (Yang et al., 2012; Cheon et al., 2016) Germanium,
boron, metal oxides, and transition metal sulfides (Lee et al.,
2012), have been demonstrated to have light-heat transforming
effects. Recently, some groups have successfully prepared a new
member of the 2D MOF materials (Ercius et al., 2015). In
particular, these MOFs have specific functionalities by
changing the categories of metal ions and ligands (Falcaro
et al., 2016), and some reported copper-based nanostructures
exhibited NIR light absorption properties (Li et al., 2015), which
could effectively generate heating under the 808 nm laser
irradiation. In addition, 2D Cu-TCPP MOF nanosheets

FIGURE 3 | (A) Photothermal imaging in mice and (B) The temperature rise before and after injection of MOF-Fe nanomaterials. (C) The emission spectrum of
NaGdF4:Yb,Tm@NaGdF4:Yb and shell of iron ions. (D) Schematic diagram of the role of iron ions. (E) Confocal image of HeLa cells with different treatment (UCNPs@
MIL-100[Fe] NPs and control). (F) The weight of mice are treated differently. (G) The changes in tumor volume are treated differently. (H) Photos of the changes in the
body weight and (I) tumor volume of mice. (J) Physical photos of mice after different treatments with control, pure DOX, and UCNPs@MIL-100(Fe) NPs.
Reproduced with permission (Yang et al., 2018) Copyright 2018, Chemical Engineering Journal.
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possess the ability for both SO generation and NIR absorption for
phototherapy of cancers. In addition, when the copper
nanosheets are not combined with the MOFs, some
hydrophilic chemicals will be grafted on copper surface, and
those hydrophilic chemical bonds will hybridize with the
hydroxyl or carboxyl groups on the surface of the MOFs to
form a stable composite, which could be used for cancer
treatment.

Recently, Wu, and co-workers reported a Copper nanosheet
MOFmaterial is used for tumor treatment under laser irradiation
(Li et al., 2019b) and then demonstrated that photothermal
conversion rate of nanosheets was higher than that of
grapheme oxide. The previously reported copper-based
nanostructures have PTT activity due to non-equivalent ions
(Cu+ and Cu2+), which leads to ionized free carriers to achieve
NIR absorption (Figure 4A). According to the valence state of Cu
in Cu nanosheet, the binding energy of 944.0 eV is assigned to the
oscillating satellite peak of Cu2+ (Figure 4B); the Cu 2p 3/2
(934.8 eV) peak and Cu 2p 1/2 (954.7) in the Cu 2p spectrum eV)
peak and two oscillating satellites confirmed the coexistence of
two copper valence states (Cu2+ and Cu+) (Alexander Ardagh
et al., 2016). The relative atomic percentages of Cu2+ and Cu+

measured by XPS method were 63% and 37% respectively. This
phenomenon is based on the abnormal defect structure and ultra-
thin characteristics of Cu-MOF nanosheets, and it is believed that
it has a broad spectrum and strong light absorption intensity, and
it has abundant copper vacancies. Cu-MOF nanosheets can
effectively convert laser energy into heat energy because of

strong light absorption at this wavelength (Figures 4C,D). For
mice injected with PBS, the surface temperature of the irradiated
area increased by less than 2°C under 808 nm laser irradiation.
Under the same power, the tumor surface temperature of Cu-
MOF nanosheets increased from 31°C to 45°C (Figures 4E,F).
The tumor volume of mice reflected therapeutic effect by
changing laser irradiation or Cu-TCPP MOF nanosheets
injection. Comparing with the other groups (1–3), among
them, PDT alone (Group 4) or PTT alone (Group 5) had a
slight inhibitory effect on tumor growth. After PTT + PDT
combined treatment, the tumors in the six groups completely
resolved (Figures 4G,H). They proved that the multi-modal
treatment of copper-tcpp MOF nanosheets is an efficient and
feasible strategy for phototherapy of cancer cells.

Very recently, Yuan, and co-workers reported that copper ions
and Copper ions and Purin 224 are combined for use in the field
of photothermal catalysis 224 are combined for use in the field of
photothermal catalysis (Han et al., 2020) (Figure 5A). They
demonstrated that the photothermal of Cu10MOF had the
highest photothermal conversion efficiency and have proven
that the MOFs containing porphyrin also showed
photothermal properties under 660 nm light (Li et al., 2014d;
Luo et al., 2017). The incorporated Cu2+ could translate the light
energy into heat due to the d-d transition (Figure 5C), and this
hybrid can improve the photothermal property of porphyrin by
introducing a proper amount of Cu2+ into the porphyrin.
However, the photothermal conversion of porphyrin will
decrease when too much Cu2+ is introduced. When the light is

FIGURE 4 | (A)UV absorption curve of copper nanosheet MOF. (B)Cu 2p XPS spectrum for copper nanosheet MOF. (C)Heating curve of different concentrations
of copper nanosheet MOF. (D) Temperature change curve of different concentrations of MOF material. (E) The light-heat curve of mice with light time. (F) Change of
heating curve before and after adding MOFs. (G) Changes in tumor volume in mice after receiving different treatments. (H) Picture of changes in mouse tumor volume
after different treatments. 1: PBS; 2: Cu nanosheet; 3: PBS + Laser; 4: Cu nanosheet + PDT; 5: Cu nanosheet + PTT; 6: Cu nanosheet + Laser. Reproduced with
permission (Li et al., 2019b). Copyright 2018, Theranostics.
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over, the temperature of the MOF composite material is lowered
to room temperature, and the temperature of the material starts
to rise again after the light is taken off again. This phenomenon
proves that this MOF material has a good photothermal effect
(Figure 5E). The synthesized MOF nanoparticles reacted with
CuCl2 through a simple hydrothermal method to introduce Cu2+

into the porphyrin ring through the formation of NeCu bond, and
the series of Cu-dopedMOF were termed as CunMOF (where “n”
represented the different molar ratio between Cu and Zr when the
Cu was added, indicating Cu was n% of Zr). The structure of the
Cu2+-doped MOF consisted of Zr6 clusters linked with both
TCPP and CuTCPP.

In addition, they also demonstrated that Cu10MOF didn’t have
any appreciable toxicity (Würthner et al., 2016); when skin
wounds receive bacterial infection, this MOF material can be
used for wound healing and photothermal sterilization. What’s
more, the Cu-TCPPMOF nanosheets also possessed T1-weighted
magnetic resonance (MR) imaging capability due to the unpaired
3d electrons of copper and also demonstrated that the ultrathin
Cu-TCPP MOF nanosheets exhibited ability to produce singlet
oxygen because of the inherent characteristic of TCPP. It was
noted that Cu5MOF was a typical sample with the lowest
electron-hole recombination speed; and with an increase in the
amount of doped Cu2+, the recombination speed of electrons and
holes gradually became slightly faster. This occurrence might be
because when more Cu2+ was introduced, more photo-generated
electrons would be trapped, and the reduced metallic Cu would in
turn consume the photogenerated holes, resulting in a faster
recombination of the electron-hole pairs, especially for

Cu25MOF. In addition, doping with a proper amount of Cu2+

could also reduce the electrical impedance, thereby favoring
charge transfer. Herein, designing multifunctional MOF
nanostructure as PCAs is a meaning direction for enhancing
the multi-theranostic tumor therapy.

Zr@PDI for Boosting NIR Photothermal
Conversion
Perylenediimides (PDIs) are an organic dye that can be used in
the preparation of biological materials (Struijk et al., 2000; Chen
et al., 2015). PDI can be converted into freely movable anions
(RAs) under the change of external conditions. These anions
can be used for photocatalysis and cancer treatment (Lee et al.,
1999; Che et al., 2007; Kai et al., 2012b; Ghosh et al., 2014).
Under the stimulation of near-infrared light, RAs can generate
heat for the thermal ablation of tumors (Park et al., 2012; Tan
et al., 2014; Meng et al., 2016). Recently, Yin and co-workers
reported a Zr-PDI•− as a NIR photothermal material (Lü et al.,
2019), which demonstrated higher light and thermal stability
and high specific surface area. Zr-PDI forms a fascinating 3D
grid, which is regarded as sheet to capture electron donors, so as
to achieve the effect of photoelectron conversion (PET)
(Figures 6A–D).

In comparison, the temperature of the quartz glass coated with
Zr-PDI rose to 114°C under NIR laser irradiation, while blank
quartz glass increased by only 2.4°C (Figure 6H). They
demonstrated that Zr-PDI•− had good photothermal
conversion efficiency (52.3%), which was much higher than

FIGURE 5 | (A) Schematic diagram of the preparation of copper MOF material. (B) TEM images. (C) Heating and cooling curves of copper MOF materials under
light. (D) Light and heat curves of MOFmaterials with different copper content, Cu5MOF, Cu10MOF, and Cu15MOF, Cu25MOF. (E) Schematic diagram of the mechanism
of copper MOF material improving photocatalysis and photothermal effect. Reproduced with permission (Han et al., 2020). Copyright 2020, Applied Catalysis B:
Environmental.
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latest reported traditional materials such as Au nanorods (21.0%),
organic cocrystals (18.8%), and selenophene-derived polymer
films (40%) (Espín et al., 2018; Zeng et al., 2016; Mahara
et al., 2002; Kim et al., 2013). The photothermal effect is
linearly dependent on the NIR laser power from 0.25 to
1W cm−2, an indication of a thermal control performance
(Figure 6I). They also demonstrated the high stability of Zr-
PDI•− at high temperatures, which was attributed to the effective
NIR absorbance of TEA, TPA, EDA-loaded Zr-PDI•−, and
displayed the potential of the RAs in photothermal imaging
(Figure 6K). The high temperature of Zr-PDI•− has great
potential for bio-imaging and biomedical applications such as
photothermal therapy (Zheng et al., 2015; Chen et al., 2017b;
Zhang et al., 2017). The combination of Zr nanoparticles and

MOFs has many advantages: a PDI-based 3DMOF (Zr-PDI) with
ultrastable RAs provides a unique platform for NIR photothermal
conversion. The suitable pores allow electron donor amine vapors
to occupy the cages of Zr-PDI. Upon irradiation with blue light,
black Zr-PDI•− with NIR absorbance can be formed through
PET. The produced RAs, which are in the Zr-PDI cages, can stay
unobstructed under ambient conditions for at least a month. So, a
strategy to stabilize PDI•− without complicated design and
tedious synthesis was discovered. Under 808 nm laser
irradiation, the temperature of the Zr-PDI•− sharply increases;
it has a superior photothermal conversion efficiency due to non-
radiative pathway. With post-synthesis modifications, this MOF
material of outstanding stability has great potential in biomedical
applications such as bio-imaging and photothermal therapy.

FIGURE 6 | Synthetic schematic diagram of Zr-PDI. (A) Schematic diagram of the special structure of Zr and P-2COOH. (B) The connection method of Zr and P-
2COOH. (C) a-Axis crystal structure of Zr-PDI. (D) The microstructure of Zr-PDI. (E) Light and heat stability curve of Zr-PDI. (F) Nitrogen adsorption curve of Zr-PD and
pore size distribution. (G) Schematic diagram of photothermal conversion of Zr-PD. (H) Photothermal conversion curves of Zr-PDI

•− film on quartz glass. (I)Heating and
cooling curves of Zr-PD at different optical powers. (J) Light and heat stability curve of Zr-PDI. (K) Photothermal digital picture of Zr-PDI-BUCT. Reproduced with
permission (Lü et al., 2019). Copyright 2019, Nature Communication.
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POLYMER-COATED MOF FOR PTT

Polymer-coated MOF refers to a MOF material that has been
coated by photothermal polymers. The high specific surface area
of MOF provides coatings with more footholds, so that the
common advantages of the two can be brought into full play.
Polydopamine (PDA) and polypyrrole (PPy), as versatile coating
material in surface treatment, combined with MOF, emerged as
excellent photothermal transduction, because these coating
materials have strong and wide near-infrared absorption.
Comparing with other photomal reagents, PPy has good
stability, biocompatibility, and degradation performance. These
properties can be applied in the biomedical field perfectly. On the
other hand, some groups demonstrated that the combination of
polydopamine and MOFs, a multifunctional coating material,
makes it easy to integrate different functional therapies to obtain

stimulus-response multifunctional MOFs, with a wide range of
photothermal efficiency and outstanding ability to eliminate
tumors through chemo-photothermal therapy.

Polypyrrole-Coated MOF for PTT
The combination of iron MOF composite materials for tumor
treatment has been reported with the linker of
azobenzenetetracarboxylicacid (H4-ABTC) ligand (Liu et al.,
2006; Cairns et al., 2016). Recently, Lin and co-workers
reported a PPy-coated Fe-soc-MOF as multifunctional
theranostic platform (Seoane et al., 2016; Xuechao et al., 2019)
(Figure 7A). They demonstrated that the temperature rose with
increasing the concentration of Fe-soc-MOF@PPy from 31.25 μg/
ml to 500 μg/ml, and the maximum temperature reached to
72.4°C, while it also has no obvious photothermal effects
(Figure 7C). The results also show that the same amount of

FIGURE 7 | (A) Schematic diagram of Fe-soc-MOF@PPy composite material synthesis; (B) 808 nm Laser for PTT. (C) Different concentration of Fe-soc-
MOF@PPy heating curve. (D) Fe-soc-MOF@PPy heating and cooling curve. (E) The body weight change curve of mice after different treatments. (F) Tumor
volume change curve after different treatments in mice, respectively. Reproduced with permission (Xuechao et al., 2019). Copyright 2019, Chemical
Engineering Journal.
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polypyrrole nanoparticles (approximately 75 μg/ml) and Fe-soc-
MOF@PPy have similar photothermal effects. At the same time,
the synthesized Fe-soc-MOF@PPy also showed a photothermal
effect related to the laser power intensity (Figure 7D). The
calculated photothermal conversion efficiency of Fe-soc-
MOF@PPy aqueous solution is 13.9%. The results show that
Fe-soc-MOF@PPy has stronger absorption than Fe-soc-MOF
under the near-infrared spectrum of 808 nm, and the
absorption intensity increases with the increase of Fe-soc-
MOF@PPy concentration.

The body weight of the experimental group increased
slightly during the treatment, and the biocompatibility of
Fe-soc-MOF@PPy was good (Figure 7E). The tumor
volume of the Fe-soc-MOF@PPy group was basically the
same as that of the control group, but the tumor volume of
the Fe-soc-MOF@PPy + NIR group was much smaller than
that of the other groups. The results show that Fe-soc-MOF@
PPy has good biocompatibility and can effectively inhibit
tumor growth under laser irradiation. The combination of
Fe nanoparticles and MOFs has many advantages: due to the
low toxicity, good biocompatibility, and excellent
photothermal effect, the as-synthesized Fe-soc-MOF@PPy
nanocomposites could be used to inhibit and kill cancer
cells efficiently under the 808 nm laser irradiation. This
work extended and proves its feasibility of the LSS method
to synthesize nano MOFs. The combination of MOFs with
other functional materials shows prospective futures in
construction of multifunctional theranostic agents for
treatment of tumors and other applications.

Polydopamine-Coated MOF for PTT
Polydopamine (PDA), as a coating material, has been developed
by combining MOFs for photothermal treatment (Liu et al.,
2014c) Some groups reported that due to the unique and
convenient coupling properties of PDA, the modified MOFs
can be easily connected with functional molecules of interest.
MOFs, such as ZIF-8, MIL-101, and UIO-66, once functionalized
with PDA could couple with targeting molecules, such as
aptamers and folic acid (FA), to achieve targeted drug
delivery. Liu and his colleagues reported a multifunctional
MOF material with a coated PDA for photothermal therapy
(Figure 8A) (Feng et al., 2019).

Some researchers have proved that PDA@ZIF-8 can effectively
convert 808 nm laser energy into ambient heat (Figure 8B), and
the temperature rises rapidly after 500 s to reach a steady state.
The temperature of the two materials has risen by about 36.5°C,
while the temperature changes of the water, ZIF-8, and DOX@
ZIF-8 systems are negligible (Figure 8C). These results confirmed
that the light-to-heat conversion performance of ZIF-8 was
attributable to the PDA coating. It has been reported that
PDA can react with molecules containing nucleophilic groups,
such as amines and thiols, through Michael addition or Schiff
base reactions, and these molecules are easily combined through
p-p interactions and hydrogen bonds (Park et al., 2014; Choi
et al., 2015; Liu et al., 2016b). They proved that under laser
irradiation, the viability of HeLa cells incubated with PDA-
DOX@ZIF-8 was significantly reduced (Figure 8D).

Compared with the control group, they proved that under NIR
irradiation, mice administered PDA@ZIF-8 had a higher

FIGURE 8 | (A) Schematic MOFs as combinational therapy. (B) Heating curve of different concentrations of sgc-8-PDA-DOX/ZIF-8. (C) Heating curve of various
components of PDA-DOX/ZIF-8. (D) Viability of HeLa cells with various concentrations of PDA–DOX/ZIF-8 and sgc-8–PDA–DOX/ZIF-8 in the presence or absence of 808 nm
irradiation. (E) The change curve of tumor volume in mice after different treatments. Reproduced with permission (Feng et al., 2019). Copyright 2019, J. Mater. Chem. B.
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inhibitory effect on tumor growth (Figure 8E). More
importantly, PDA-DOX/ZIF-8 chemotherapy, photothermal
therapy, and NIR light can cause tumor ablation. These results
indicated that the combination of chemotherapy and
phototherapy improved the anti-tumor activity and enhances
the therapeutic effect. Other MOFs including ZIF-8, UIO-66, and
MIL-101 could also be employed to prepare stimuli-response
multifunctional hybrid material, which demonstrate the
versatility of this strategy. This method enabled multiple
treatments for targeted drug delivery and stimulus-response
release and allowed the combination therapy to have good
in vitro and in vivo anti-tumor activity. The combination of
PDA and MOFs has many advantages: multifunctional MOF
nanoparticles using PDA as a functional interface that affords
facile conjugation with molecular units of interest as well as
excellent photothermal transduction efficiency.

CONCLUSION AND OUTLOOK

In this review, we have summarized a series of phototherapy
agents based on MOF advanced materials. Compared with
conventional PCAs, MOF-based PTA exhibited versatile
advantages, including good biocompatibility, low toxicity, and
enhanced photothermal conversion. The novel structure design
combining metal core-shell nanomaterials withMOF shows great
potential to regulate each component to achieve an enhanced
photothermal conversion. There is a small limit for combined
with photothermal nanomaterials with MOF; thus, the
composition, size, and structure of metal particles, as well as
the structure of the organic frame, could be independently
constructed.

These PTAs based on MOF maintained their original
photothermal properties, and the unique structure of MOF
endowed photothermal reagents with great potential for
various functionalization. Bulk MOFs and nanoscale MOFs
(NMOFs) have exhibited many intriguing characteristics as

drug carriers due to their low toxicity, exceptionally high
surface areas, large pore sizes, and abundant functional groups
on surface for drug loading via versatile interactions, such as
vander Waals forces, π-π stacking, hydrogen bonds, electrostatic
forces, and coordination bonds. To develop efficient delivery
platforms, targeted delivery and stimuli-responsive release of
various treatments will be effective for the treatment of cancer
and other diseases. Besides, with post-synthesis modifications,
MOF materials are ready to be endowed with various biomedical
functionalities, such as bio-imaging and disease diagnosis. In
order to create programmable MOFs for nanotherapeutic
delivery and realize different functionalities, a universal
method that can manipulate the surface of different MOFs is
urgently needed.

On the other hand, post-synthetic modification by introducing
well-designed functional groups into the organic linkers is a
powerful strategy to improve the comprehensive performance
of MOFs. MOF material is an excellent platform that could easily
be modified with functional moieties to endow MOF hybrid
material with specific properties. For example, once MOF
being combined with functional groups (TCPP and UIO-66-
AA), the obtained hybrid materials can produce singlet oxygen
because of their inherent characteristics, which could be used as
photosensitizers (PS) in PDT to kill nearby cancer cells by
generating toxic singlet oxygen (SO). Accordingly, two
categories of phototherapies (i.e., PDT and PTT) could work
in a synergistic manner to kill cancer cells as the photothermal
effect enhances the efficacy of PDT by relieving tumor hypoxia.
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