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Abstract
The amyloid-β 43 (Aβ43) peptide has been shown to be abundantly expressed in Alzheimer’s disease plaques, whereas only
relatively low levels have been demonstrated in cerebral amyloid angiopathy (CAA). To better understand this discrepant
distribution, we studied various biochemical properties of Aβ43, in comparison with Aβ40 and Aβ42. We assessed the
interaction of Aβ43 with the three apoE isoforms (apoE2, apoE3, and apoE4) using SDS-PAGE/Western blotting and ELISA,
aggregation propensity using thioflavin T assays, and cytotoxicity towards cerebrovascular cells using MTT assays. We found
that Aβ43 did not differ from Aβ42 in its interaction with apoE, whereas Aβ40 had a significantly lower degree of interaction
with apoE. At a molar ratio of 1:100 (apoE:Aβ), all apoE isoforms were comparably capable of inhibiting aggregation of Aβ40
and Aβ42, but not Aβ43. All Aβ variants had a concentration-dependent negative effect onmetabolic activity of cerebrovascular
cells. However, the degree of this effect differed for the three Aβ isoforms (Aβ40 > Aβ42 > Aβ43), with Aβ43 being the least
cytotoxic peptide towards cerebrovascular cells. We conclude that Aβ43 has different biochemical characteristics compared with
Aβ40 and Aβ42. Aggregation of Aβ43 is not inhibited by apoE, in contrast to the aggregation of Aβ40 and Aβ42. Furthermore,
cerebrovascular cells are less sensitive towards Aβ43, compared with Aβ40 and Aβ42. In contrast, Aβ43 neither differed from
Aβ42 in its aggregation propensity (in the absence of apoE) nor in its apoE-binding capacity. Altogether, our findings may
provide an explanation for the lower levels of Aβ43 accumulation in cerebral vessel walls.
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Abbreviations
Aβ Amyloid-β
AD Alzheimer’s disease
CAA Cerebral amyloid angiopathy
APP Amyloid precursor protein
SMCs Smooth muscle cells
HBPs Human brain pericytes
BBB Blood-brain barrier
apoE Apolipoprotein E
LRP1 Low-density lipoprotein receptor–related protein 1
RT Room temperature
PBST PBS containing 0.05% Tween20
OD Optical density
ThT Thioflavin T
EMEM Eagle’s minimal essential medium
hBMEC Human brain microvascular endothelial cells
MTT Thiazolyl Blue Tetrazolium Blue
VLDLR Very-low-density lipoprotein receptor
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Background

The amyloid-β (Aβ) peptide plays a central role in
Alzheimer’s disease (AD), as it accumulates into senile
plaques, one of the neuropathological hallmarks of AD. In
80% of AD patients, Aβ also accumulates in the cerebral
vessel walls, a pathology called cerebral amyloid angiopathy
(CAA) [1, 2].

The Aβ peptide is thought to be produced through proteo-
lytic cleavage of the amyloid precursor protein (APP) pro-
duced by neurons, into peptides of either 48 or 49 amino acids.
Further processing, through the sequential release of three
amino acids by γ-secretase, leads to two independent produc-
tion pathways of Aβ40 and Aβ42 (Aβ49→ Aβ46→
Aβ43→Aβ40 and Aβ48→Aβ45→Aβ42) [3–6]. Aβ40
and Aβ42 are the most abundantly produced Aβ isoforms
and are produced at a ratio of 9:1 [7]. The Aβ40 species is a
frequent constituent of CAA, whereas the more aggregation-
prone Aβ42 is the core component of senile plaques in AD [1,
8]. More recently, studies have highlighted the potential of yet
another Aβ species, Aβ43, in the pathogenesis of AD. Aβ43,
which has an additional threonine at the C-terminus relative to
Aβ42, has been shown to be highly abundant in the AD brain
and to possess neurotoxic properties [9–11]. However, only
relatively low Aβ43 levels have been demonstrated in vascu-
lar deposits in CAA [11, 12].

Cerebral vessels consist of endothelial cells, covered by a
basement membrane, and vascular smooth muscle cells
(SMCs) in the arterioles and arteries or human brain pericytes
(HBPs) in the capillaries. Both SMCs and HBPs contribute to
brain function, including regulation of cerebral blood flow and
blood-brain barrier (BBB) maintenance [13, 14]. In CAA,
vascular Aβ initially deposits in the basement membrane
and in later stages compromises SMC and HBP viability.
Cerebrovascular cells are known to be susceptible to Aβ-
mediated toxicity [15–17]. In final stages of CAA, the smooth
muscle cell layer in larger vessels is completely replaced by
Aβ, the endothelial cell layer is well preserved [18–20].

Apolipoprotein E (apoE) is a protein involved in the regu-
lation of Aβ clearance at the BBB, although the exact mech-
anisms remain somewhat unclear [21, 22]. apoE exists in three
isoforms (apoE2, apoE3, and apoE4) that have different struc-
tural conformations as a result of substitution of 1 or 2 amino
acids [23]. The possession of an APOE ε4 allele increases the
risk of developing CAA or AD [24–26]. The apoE protein
might affect Aβ clearance, either by binding to Aβ [27], and
thereby affecting its aggregation and clearance, or by binding
to receptors that are responsible for Aβ clearance across the
BBB, such as the low-density lipoprotein receptor–related
protein 1 (LRP1) [28, 29].

We hypothesized that the relative absence of Aβ43 in CAA
may be explained by Aβ peptide–specific characteristics. A
peptide-dependent interaction between Aβ isoforms and apoE

might affect clearance of a specific Aβ peptide at the BBB.
Furthermore, levels of Aβ peptides in CAA may be deter-
mined by differences in aggregation properties of the peptides
that may either promote or prevent peptide accumulation in
the vasculature. Finally, a variable vulnerability of cerebrovas-
cular cells towards various Aβ isoforms may also determine
the degree to which different Aβ isoforms accumulate in ce-
rebral vessel walls. In this study, we characterized the interac-
tion of Aβ43 with apoE isoforms and the aggregation prop-
erties of Aβ43 as well as its cerebrovascular toxicity in com-
parison with that of Aβ40 and Aβ42.

Methods

Preparation of Aβ Peptide and apoE Solutions

Synthetic human Aβ40, Aβ42, and Aβ43 were purchased
from Anaspec (Fremont, CA, USA) and monomeric solutions
were prepared according to Ryan et al. [30]. In short, Aβ
peptides were dissolved in 10% NH4OH at 0.5 mg/ml. After
10-min incubation at room temperature (RT), samples were
sonicated for 5 min and dispensed into Eppendorf tubes (50 or
100 μg per tube). Samples were snap-frozen in liquid nitrogen
and lyophilized to remove the NH4OH. Aliquots were stored
at − 80°. Immediately prior to use, the peptides were dissolved
in 60 mM NaOH followed by immediate dilution in distilled
water to a concentration of 288 μM Aβ in 13 mM NaOH.
Recombinant apoE, produced in Escherichia coli, was obtain-
ed from Fitzgerald Industries (Acton, MA, USA) and dis-
solved in sterile PBS to a concentration of 1 mg/ml.
Bradford reagent (B6916, Sigma-Aldrich, St. Louis, MO,
USA) was used to determine exact protein concentrations.
For this purpose, 2.5 and 5 μl of both Aβ and apoE stock
solutions were added to a 96-well plate. Then, 250 μl of
Bradford reagent was added and the plate was mixed on a
shaker for 30 s. After 15-min incubation at RT, absorbance
of the samples was measured at 620 nm, and the absor-
bance was used to calculate correction factors to ensure
equal input of different protein isoforms for further ex-
periments. As we observed major differences (up to
400%) in supplied quantities of commercially obtained
peptides that should contain the same amount of Aβ,
we found it critical to assess and control for these dif-
ferences. For the MTT assay, Aβ solutions in 13 mM
NaOH were neutralized in 10X Dulbecco’s PBS, yield-
ing a pH of 7.4, before further dilution in culture me-
dium to the desired concentration. For analysis of com-
plex formation with apoE, the various Aβ isoforms
(Aβ40, Aβ42, or Aβ43; 50 μM) and the various
apoE isoforms (apoE2, apoE3, or apoE4; 500 nM) were
co-incubated overnight in PBS at 37 °C.
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ELISA for Aβ-apoE Complexes

A 96-well plate was coated overnight with goat anti-apoE
(K74190G, Meridian Life Sciences, Memphis, TN, diluted
1:3000 in PBS) at 4 °C, followed by washing with PBS con-
taining 0.05% Tween20 (PBST) and 2-h blocking with
Odyssey blocking buffer (LI-COR Biosciences, Bad
Homburg vor der Höhe, Germany) diluted 1:1 in PBS. After
washing, wells were incubated with the Aβ-apoE protein sam-
ples (added in duplicate) diluted 200 times in sample diluent
(INNOTEST ß-Amyloid (1-42) ELISA kit; Fujirebio, Ghent,
Belgium) for 2 h at RT, while shaking at 600 RPM.Wells were
then washed and incubated for 1 h at RT with biotinylated
anti-Aβ antibody (mouse-α-Aβ clone 4G8, Biolegend, San
Diego, CA; cat. 800701, diluted 1:2500 in PBS containing 1%
BSA), while shaking at 600 RPM. Subsequent washing was
followed by 30-min incubation with streptavidin-HRP
(ThermoFisher, Waltham, MA, diluted 1:60000 in PBST), at
RT, with shaking at 600 RPM. After the final washing step,
TMB solution (Sigma-Aldrich) was added as a substrate. The
reaction was stopped with 1 M H2SO4. Optical density (OD)
values were measured at 450 nm on a Tecan Infinity F50 plate
reader.

SDS-PAGE and Western Blotting for Detection
of Aβ-apoE Complexes

SDS-stable complex formation was analyzed under non-
reducing conditions. Samples were diluted in concentrated
non-reducing sample buffer (62.5 mM Tris-HCl, pH 6.8,
22% glycerol, 2% SDS and bromophenol blue) and separated
by electrophoresis on a 12% polyacrylamide gel containing
SDS. Proteins were transferred to PVDF membranes by
Western blotting. Membranes were blocked using Odyssey
blocking buffer (LI-COR), diluted 1:1 in PBS. Staining of
the proteins was performed successively for apoE and Aβ,
by incubation with goat anti-apoE (1:2500, overnight at
4 °C, Meridian Life Sciences, Memphis, TN) followed by
donkey anti-goat Alexa-680 (1:5000, 1 h at RT, Invitrogen,
Carlsbad, CA), and rabbit anti-Aβ 40-4 (1:2500, 1 h at RT, a
kind gift of Dr. van Nostrand, Rhode Island University,
Kingston, RI) followed by goat anti-rabbit IRDye800
(1:10000, 1 h at RT, Rockland, Pottstown, PA). Antibody
solutions were prepared in Odyssey blocking buffer (LI-
COR), diluted 1:1 in PBS. Between antibody incubations,
membranes were washed extensively with PBST. Protein
bands were visualized and band intensities were quantified
using the Odyssey infrared imaging system (LI-COR).

Thioflavin T Assay

Thioflavin T (ThT) was freshly dissolved in PBS before every
experiment and filtered through a 0.22-μM filter. Aβ peptides

were diluted to 10 μM in PBS containing 20 μM ThT and
dispensed (100 μl) into a 96-well optical bottom black plate
(VWR, Radnor, PA). Vehicle controls, containing 13 mM
NaOH, were also diluted in PBS. To assess the effect of
apoE onAβ aggregation, apoE2, apoE3, or apoE4were added
to a final concentration of 0.1 μM. A Fluostar Optima plate
reader (BMT Labtech, Ortenberg, Germany) with an excita-
tion wavelength of 448 and emission wavelength of 482 was
used to measure ThT fluorescence. The plate was incubated at
37 °C for 48 h and fluorescence was measured every 15 min,
immediately preceded by 15 s of agitation. Fluorescence
levels relative to ThT alone were calculated and normalized
to the maximum fluorescence value.

Cell Culture

Primary human cerebrovascular (leptomeningeal) smooth
muscle cells (SMCs) and primary human cerebrovascular
(leptomeningeal) brain pericytes (HBPs) were isolated from
human brain tissue obtained at autopsy as described previous-
ly [31, 32] and maintained in EMEM supplemented with an-
tibiotics, human serum (5% for SMCs; 10% for HBPs), 20%
FCS, and 1 pg/ml human bFGF. Culture flasks were precoated
with fibronectin. Primary human brain microvascular endo-
thelial cells (hBMEC, ACBRI 376) were purchased from
Cell Systems (Kirkland, WA) and cultured in EBM2 basal
medium (Lonza, Basel, Switzerland) supplemented with
FCS (5%), hydrocortisone (1.4 μM), ascorbic acid
(5 μg/ml), chemically defined lipid concentrate (1%), human
bFGF (1 ng/ml), HEPES buffer (10 μM), and antibiotics.
Culture flasks were precoated with collagen I (150 μg/ml in
PBS).

MTT Assay

To assess the cytotoxic effects of Aβ on cerebrovascular cells,
changes inmetabolic activity were assessedwith aMTTassay.
Cells were cultured to confluence in 96-well plates coated
with fibronectin (SMCs/HBPs) or collagen (HBMECs) and
pre-incubated with EMEM (SMCs/HBPs) or EBM2
(hBMECs) supplemented with 0.1% BSA for a minimum of
4 h. Then, cells were incubated for 20 h with different Aβ
peptides at a final concentration of 0.001–10 μM in EMEM-
0.01%BSA or EBM2-0.01%BSA. Subsequently, Thiazolyl
Blue Tetrazolium Blue (MTT, Sigma-Aldrich) was added at
a final concentration of 0.8 mg/ml and cells were incubated for
3 h. MTT precipitates were dissolved in MTT solvent
(isopropanol containing 0.1% NP-40 and 3 mM HCl) before
absorbance was measured at 560 nm on a Tecan Infinity F50
plate reader. Experiments were performed in duplicate and
results were expressed as percentage metabolic activity rela-
tive to untreated cells.
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Statistical Analysis

All statistical analyses were performed using Graphpad Prism
5 for windows (San Diego, Ca, USA), and IBM SPSS
Statistics 25 (Armonk, NY, USA). ELISA and Western blot
data for Aβ-apoE interaction were analyzed by two-way
ANOVA, with apoE and Aβ isoforms as variables. The ag-
gregation half times (t50), i.e., the times at which ThT fluo-
rescence reached 50% of the maximum amplitude, were ana-
lyzed by ANOVA, followed by Bonferroni’s post hoc testing.
MTT data were analyzed by ANOVA, followed by Dunnet’s
post hoc testing.

Results

apoE-Aβ Complex Formation

Semi-quantitative analysis of the degree of interaction be-
tween various apoE and Aβ isoforms under non-reducing
conditions showed that the degree of interaction was only
determined by the specific Aβ isoform, but not by the specific
apoE isoform. Aβ43 did not differ from Aβ42 in its interac-
tion with apoE, whereas Aβ40 had a significantly lower de-
gree of interaction with apoE compared with Aβ42 (p < 0.01)
and Aβ43 (p < 0.001, Fig. 1a).

SDS-PAGE/Western blot analysis provided information
about the formation of Aβ-apoE complexes under more strin-
gent conditions, that is, in the presence of SDS. Upon co-
incubation of apoE2 or apoE3 with Aβ42 or Aβ43, an extra

band at approximately 40 kDa was observed, detected both by
antibodies directed against apoE and Aβ, indicating that a
(SDS-resistant) protein complex of apoE and Aβwas formed.
No complex formation between apoE4 and any of the Aβ
isoforms was observed (Fig. 1b). The extra band was also
not observed when analyzing samples containing only Aβ
or apoE (data not shown). Comparing the intensities of these
apoE-Aβ complex bands revealed a significantly weaker in-
teraction between Aβ40 and apoE2 compared with Aβ43 and
apoE2 (p < 0.01), and the interaction between Aβ40 and
apoE3 was significantly weaker compared with both Aβ42
(p < 0.05) and Aβ43 (p < 0.01).

Aβ43 Aggregation in the Absence and Presence
of apoE

Normalized aggregation curves of Aβ42 and Aβ43 were
comparable, whereas Aβ40 had a lower ThT incorpora-
tion rate (Fig. 2a). ThT fluorescence half times (t50), i.e.,
the time at which ThT fluorescence reaches 50% of the
maximum amplitude, were significantly higher for Aβ40
(11.3 h) compared with Aβ42 (6.3 h, p < 0.05) and Aβ43
(4.1 h, p < 0.01; Fig. 2b). The addition of apoE3 to Aβ40
resulted in a concentration-dependent decrease of ThT
incorporation (Fig. 2c). At a concentration of 0.1 μM,
all apoE isoforms were comparably capable of inhibiting
aggregation of Aβ40 (Fig. 2d) and Aβ42 (Fig. 2e). Aβ43
aggregation was not inhibited by any of the apoE iso-
forms (Fig. 2f).

Fig. 1 Aβ-apoE complex formation. The complex formation between
different isoforms of Aβ and apoE was assessed semi-quantitatively
using ELISA and SDS-PAGE/Western blotting. (a) Under the non-
reducing conditions of the ELISA, apoE isoforms bound to the Aβ pep-
tides in a comparable way. Aβ40 bound significantly less efficient to all
apoE isoforms as compared with Aβ42 and Aβ43. (b) Under the reduc-
ing conditions of SDS-PAGE/Western blot analysis, Aβ40 bound less
efficient to apoE2 and apoeE3 compared with Aβ42 and Aβ43. In

addition, no interaction between apoE4 and any of the Aβ isoforms
was observed using SDS-PAGE/Western blot analysis. The upper panel
shows the quantification of the apoE-Aβ complex band of the blot that is
shown in the lower panel. For ELISA experiments, samples were
assessed in duplicates. Data represent mean (sd) of n = 4 (ELISA) and
n = 2 (SDS-PAGE/Western blot) experiments. *p < 0.05; **p < 0.01; and
***p < 0.001 as analyzed by two-way ANOVA including apoE and Aβ
isoform as variables
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Effect of Aβ Isoforms on Cerebrovascular Metabolic
Activity

All Aβ variants had a concentration-dependent decreasing
effect on metabolic activity of HBPs (Fig. 3a). However, the
degree of this effect differed for the three Aβ isoforms; Aβ40
reduced metabolic activity at a concentration of 0.001 μM in
HPBs (p < 0.01), whereas at this concentration, we observed
no effect of either Aβ42 or Aβ43. Aβ42 reduced metabolic
activity only at 0.01 μM (p < 0.01) or higher concentrations,
whereas a concentration of 0.1 μM Aβ43 (or higher) was

required to compromise metabolic activity of HBPs
(p < 0.05). Direct comparison between the peptides revealed
a significant difference only between 0.001 μM Aβ40 and
0.001 μM Aβ43 (p = 0.026).

Similar effects were observed in SMCs treated with Aβ
peptides, although these cells were slightly more resistant to
Aβ treatment (Fig. 3b). This may be due to biological vari-
ability (e.g., growth rate) that is inherent to the use of primary
cells. At a concentration of 0.01 μM, metabolic activity of
SMCs was reduced by Aβ40 (p < 0.01) and Aβ42
(p < 0.05). No effect of Aβ43 was observed at any of the

Fig. 2 Aggregation kinetics of Aβ. Compared with Aβ42 and Aβ43,
Aβ40 aggregated slower (a) and had a significantly higher t50 value, at
which ThT fluorescence reached 50% of the maximum amplitude (b).
ApoE3 inhibited Aβ40 aggregation in a concentration-dependent manner
(c). Aggregation of Aβ40 (d) and Aβ42 (e) was inhibited by the addition
of 0.1 μM apoE2, apoE3, or apoE4. Aβ43 aggregation was not affected

by the addition of 0.1 μM of any apoE isoform (f). Aβ concentrations in
all experiments were 10 μM. a, b Data represent mean (sd) of n = 4
experiments performed. c–f Representative data of n = 3 experiments.
The t50 times were analyzed by ANOVA, followed by Bonferroni’s post
hoc testing. *p < 0.05 and **p < 0.01
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tested concentrations. Direct comparison between the peptides
revealed no significant differences between peptides.

Metabolic activity of hBMECs also decreased in a
concentration-dependent manner as a result of Aβ treatment
(Fig. 3c). However, these cells were less sensitive to Aβ treat-
ment: Aβ concentrations needed to be 100-fold higher in or-
der to induce a cytotoxic effect on hBMECs. A cytotoxic
effect of Aβ40 treatment was observed at a concentration of
0.1 μM (p < 0.05) and higher (p < 0.001), whereas only at
concentrations as high as 10 μM, metabolic activity of
hBMECs was decreased by treatment of Aβ42 (p < 0.001)
and Aβ43 (p < 0.001). A direct comparison between the pep-
tides revealed a significant difference only between 0.1 μM
Aβ40 and 0.001 μM Aβ43 (p = 0.044).

Discussion

Some years ago, it has been shown that the Aβ43 peptide is
highly abundant in the brains of AD patients and has neuro-
toxic properties [9, 10]. Interestingly, despite high levels in
AD plaques, only very low Aβ43 levels in vascular deposits
in CAA have been demonstrated [11, 12]. This observation
may indicate that, compared with other Aβ species, the Aβ43
peptide has distinct properties, which prevent its accumulation
in the cerebral vasculature, e.g., by more efficient clearance
across the BBB. We assessed several characteristics of Aβ43
that may help to understand its preferred accumulation in
plaques as opposed to cerebral vessels and related these to
Aβ40 and Aβ42 characteristics. We analyzed Aβ43 in terms
of its interaction with apoE, its aggregation propensity, and its
toxicity towards cerebrovascular cells, including smooth mus-
cle cells, pericytes, and endothelial cells.

A protein that is involved in the processes of Aβ aggrega-
tion, deposition, and clearance across the BBB is apoE [].
However, despite many years of research and numerous stud-
ies, the precise role of apoE in the development of AD and
CAA remains subject of investigation. Possession of the
APOE ε4 allele is a strong risk factor for the development of
both AD and CAA [33–35]. However, it is still not clear how
apoE4 increases the risk of CAA and AD. An obvious expla-
nation may be found in the interaction between apoE and Aβ,
as these proteins are known to be able to form protein com-
plexes [36]. In addition, while apoE2 or apoE3 appear to clear
Aβ via the receptor LRP1, apoE4 seems to redirect Aβ clear-
ance to the less efficient very-low-density lipoprotein receptor
(VLDLR), possibly leading to slowing of this process [37].
These protein-receptor interactions have been suggested to
contribute to the increased risk for developing AD and CAA
seen in APOE ε4 carriers. Using SDS-PAGE/Western blot-
ting, we observed that, unlike apoE2 or apoE3, apoE4 did
not form complexes with Aβ, which is in line with previous
observations [27, 38–41]. As SDS-PAGE/Western blotting is
performed in the presence of SDS and therefore under rela-
tively stringent conditions, this may indicate that the binding
of apoE4 with Aβ is less stable compared with apoE2 and
apoE3 and more easily disturbed by denaturing agents such
as SDS [42]. In addition to the lower Aβ-binding properties of
apoE4, we observed lower apoE-binding properties of Aβ40
compared with Aβ42 and Aβ43, both using ELISA analysis
as well as the more stringent SDS-PAGE/Western blot
analysis.

A particularly high aggregation speed might prevent Aβ43
from reaching the vasculature, due to immediate aggregation
in the parenchyma. Alternatively, a low aggregation propen-
sity might allow efficient clearance of monomeric Aβ43
across the BBB. The Aβ42 isoform is known to have

Fig. 3 Effect of Aβ onmetabolic activity of cerebrovascular cells. Aβ40,
Aβ42, and Aβ43 reduced metabolic activity of HBPs (a), SMCs (b), and
hBMECs (c) in a concentration-dependent manner. This effect was most
pronounced for Aβ40, and least pronounced for Aβ43. HBMECs were
less sensitive to Aβ compared with SMCs and HBPs, as only relatively

high concentrations of 1 and 10 μM reduced metabolic activity. Data
represent mean (sd) of 3 experiments. Data were analyzed by ANOVA,
followed by Dunnet’s post hoc testing *p < 0.05; **p < 0.01; and
***p < 0.001 for Aβ-treated cells versus vehicle-treated cellsz
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increased hydrophobic properties and aggregation potential
compared with Aβ40, due to the C-terminal addition of iso-
leucine and alanine [43, 44]. Our studies suggest that the ad-
dition of a neutral threonine does not affect the aggregation
kinetics of Aβ43, compared with Aβ42, as has been reported
before [11, 43, 45]. However, other studies have demonstrated
an increased aggregation propensity of Aβ43 compared with
Aβ42 [9, 10, 46]. Conversely, also decreased aggregation
propensity of Aβ43 compared with Aβ42 has been reported
[47]. These varying observations indicate that the aggregation
properties of Aβ43 compared with the shorter Aβ peptides
might not be straightforward and possibly could be dependent
on the analytical method used and the source and concentra-
tion of Aβ. However, we are confident about the quality of our
study since we carefully controlled for both reproducible con-
ditions of the experiments and for the absolute amount of Aβ
used in these aggregation studies, as we will discuss below.

Although many studies aimed to elucidate the effect of
apoE on Aβ aggregation, the precise interaction between
these proteins with respect to aggregation remains unclear.
The effect of apoE may depend on the concentration of Aβ:
at very high Aβ concentrations (∼ 80 to 300 μM), apoE has
been reported to accelerate the fibrillization of Aβ [48–50].
However, at lower and more physiological Aβ levels (4–
50 μM), apoE may have an inhibitory effect on Aβ aggrega-
tion [51–54], by inhibiting oligomerization [51, 52, 55] and, at
higher concentrations, fibrillization of Aβ [51, 52]. Our find-
ings of the inhibitory effect of apoE on relatively low concen-
trations (10 μM) of Aβ40 and Aβ42 aggregation support
these observations. Only low, substoichiometric amounts of
apoE (molar apoE:Aβ ratios of 1:100, absolute apoE concen-
trations of 100 nM) were required to block Aβ seeding or
fibril growth. This suggests that apoE exerts its inhibitory
effect not by binding to monomeric Aβ, but merely by
blocking fibrillar Aβ growth sites [51, 52]. If apoE indeed
has a higher affinity to bind Aβ fibrils as opposed to mono-
meric Aβ, this may explain the lower apoE-binding properties
of (monomeric) Aβ40, compared with Aβ42 and Aβ43,
which we observed with SDS-PAGE/Western blot and
ELISA analysis. Since Aβ40 is less prone to oligomerization
and aggregation than Aβ42 and Aβ43, it is likely more pres-
ent in a monomeric state and therefore, it may bind less effi-
ciently to apoE. Interestingly, in contrast to the effects of apoE
on Aβ40 and Aβ42 aggregation, no inhibitory effect of apoE
on Aβ43 aggregation was observed.

For our studies, we used the unlipidated recombinant
(E. coli) form of human apoE, which may behave differently
than lipidated apoE [56]. We repeated our experiments with
apoE lipidated according to an established and published so-
dium cholate dialysis method [28]. Unfortunately, we found
that the ThT aggregation assay is disturbed in the presence of
lipid particles, hindering us to test the hypothesis that
lipidation of apoEwould result in an isoform-dependent effect

on in vitro aggregation. We did assess the interaction between
lipidated apoE and Aβ using ELISA, and SDS-PAGE and
Western blotting, and found that lipidation of apoE did not
affect the results (data not shown).

Increased toxicity of Aβ43, compared with Aβ40 and
Aβ42, has been demonstrated in primary neurons and various
cell lines, including SH-SY5Y cells, and PC12 cells [9, 10, 57,
58]. However, not all cells may be equally sensitive towards
the effects of Aβ, which is illustrated by the recent observa-
tion that Aβ42 is much more toxic towards neurons compared
with glial cells [59]. We studied, for the first time, the effects
of Aβ43 on cerebrovascular cells, including SMCs, HBPs,
and hBMECs. In SMCs and HBPs, we observed a toxic effect
in the order Aβ40 > Aβ42 > Aβ43, which is in contrast to
findings in neurons [10]. HBMECs were much less sensitive
towards all Aβ isoforms; a toxic effect was only observed at
high Aβ concentrations, again with a stronger effect for Aβ40
compared with Aβ42 and Aβ43. The lower vulnerability of
endothelial cells to Aβ-mediated toxicity is not unexpected, as
in CAA-affected cerebral vessels, the endothelial cell layer is
usually well preserved [20, 60]. Interestingly, the degree of
cytotoxicity exerted by the various Aβ isoforms towards ce-
rebrovascular cells is consistent with the tendency of these
peptides to accumulate in CAA (Aβ40 > Aβ42 > Aβ43
[61]). We speculate that lower sensitivity of cerebrovascular
cells to Aβ43 may prevent its accumulation in cerebral vessel
walls, although our data do not prove such a direct relation.
Aβ-induced dysfunction and death of cerebrovascular cells
(mainly SMCs) have been shown in several animal models
of CAA [62–67]. The sequence of events during the develop-
ment of CAA seems to entail initial deposition of Aβ in base-
ment membranes in the tunica media of cerebrovascular arter-
ies, followed by Aβ deposition at the cellular surface and
replacement of the SMC layer and connective tissue [18].
Aβ deposition in arteries may lead to further CAA develop-
ment through disruption of perivascular drainage [68], one of
the clearance pathways of Aβ, in which SMCs seem to play a
pivotal role [69]. An alternative explanation for lower Aβ43-
mediated toxicity may be its fast aggregation, since larger Aβ
aggregates have been shown to be less toxic towards cerebro-
vascular cells [70]. However, this is not a likely explanation
since we did not observe different aggregation propensities for
Aβ43 compared with Aβ42.

Receptor-mediated uptake of Aβ by cerebrovascular cells
plays an important role in Aβ clearance, and differences in the
uptake of the various Aβ peptides might also contribute to the
low levels of Aβ43 in CAA. There are, however, indications
that Aβ43, compared with Aβ40, is cleared less efficiently by
cells of the Drosophila nervous system [71]. Furthermore,
assessment of brain tissue of immunized AD cases may pro-
vide insight into clearance of Aβ peptides as immunotherapy
leads to solubilization of Aβ parenchymal plaques but perse-
verance or even increase of CAA due to failing clearance
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mechanisms. However, assessment of Aβ levels in these cases
did not reveal differences in cerebrovascular expression be-
tween Aβ43, and Aβ42 and Aβ40 [61]. From these studies, it
may be speculated that low abundance of Aβ43 in CAA is not
explained by more efficient clearance of Aβ43 across the
BBB. However, mechanistic studies are needed to further elu-
cidate the efficacy of active Aβ43 clearance from the cerebral
vasculature, for example by assessing the binding affinity of
Aβ43 for LRP1, and transport of Aβ43 across BBB-model
systems.

A crucial requirement for the assessment of Aβ kinetics or
cytotoxicity is the availability of a monomeric Aβ stock. The
presence of pre-existing Aβ aggregates complicates the inter-
pretation of data, and may also impede the reproducibility of
findings. A common approach for the removal of pre-existing
aggregates is treatment with hexafluoroisopropanol (HFIP)
[72, 73], followed by resuspension in DMSO [74]. Despite
this assumption, HFIP treatment has also been suggested to
induce self-assembly of Aβ peptides [30, 75–77]. Another,
frequently used, method to obtain monomeric Aβ solutions
is pre-treatment with alkaline reagents such as NH4OH or
NaOH, which prevents the Aβ solution of reaching the iso-
electric point of 5.5 at which Aβ aggregation is maximal
[78–80]. We followed a previously established protocol based
on this latter method [30, 81–85] for the preparation of
aggregate-free Aβ solutions and found that it tremendously
increased reproducibility of our findings as compared with
HFIP pre-treatment. Furthermore, we carefully controlled ex-
perimental conditions by determination and normalization of
Aβ concentrations before every experiment, as we observed a
high variation in actual protein content of commercially avail-
able Aβ peptides, often not consistent with the indicated
amounts. We are confident that, by carefully controlling ex-
perimental Aβ input, we present highly reproducible and nov-
el findings concerning several biochemical characteristics of
Aβ43.

Conclusions

We found that the extra amino acid residue(s) in Aβ43 alters
the characteristics of this peptide compared with Aβ40 and
Aβ42. We found that, despite strong interactions between
Aβ43 and apoE as shown by ELISA and SDS-PAGE/
Western blotting, at substoichiometric amounts, apoE does
not inhibit Aβ43 aggregation. This is in contrast to our obser-
vation that the aggregation of both Aβ40 and Aβ42 was
inhibited by the addition of apoE. As apoE is abundantly
present in the brain, possibly, Aβ43 more readily aggregates
and accumulates in the brain parenchyma leading to a reduced
net transport towards the vasculature, which may explain its
low levels in CAA. Furthermore, we demonstrated lower sen-
sitivity of cerebrovascular cells towards Aβ43 compared with

Aβ40 and Aβ42, whichmay also contribute to lower levels of
Aβ43 accumulation in cerebral vessel walls. The results of
this study suggest that differential aggregation propensity
and cytotoxicity towards cerebrovascular cells may explain
the relatively low abundance of Aβ43 in CAA.
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