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Prostate cancer is the most prevalent malignant tumor in men across developed
countries. Traditional diagnostic and therapeutic methods for this tumor have become
increasingly difficult to adapt to today’s medical philosophy, thus compromising early
detection, diagnosis, and treatment. Prospecting for new diagnostic markers and
therapeutic targets has become a hot topic in today’s research. Notably, exosomes,
small vesicles characterized by a phospholipid bilayer structure released by cells that is
capable of delivering different types of cargo that target specific cells to regulate biological
properties, have been extensively studied. Exosomes composition, coupled with their
interactions with cells make them multifaceted regulators in cancer development.
Numerous studies have described the role of prostate cancer-derived exosomal
proteins in diagnosis and treatment of prostate cancer. However, so far, there is no
relevant literature to systematically summarize its role in tumors, which brings obstacles to
the later research of related proteins. In this review, we summarize exosomal proteins
derived from prostate cancer from different sources and summarize their roles in tumor
development and drug resistance.
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INTRODUCTION

Prostate cancer (PCa) is a highly prevalent and the second highest cause of cancer-related
mortalities in men. Although PCa incidence is lower in Asia, relative to that in Europe and the
United States, there is a continuous increasing trend (1). Currently, clinical treatment of PCa faces
numerous challenges, due to its progression to Castration-resistant prostate cancer (CRPC)and a
high rate of bone metastasis. Therefore, prospecting for new diagnostic and therapeutic targets is
imperative to effective management of the malignancy. Previous studies have shown that novel
diagnostic and therapeutic pathways, represented by exosomes, have potential for solving such
problems. For example, miR-21 in PCa-derived exosomes (PCaDE) was found to inhibit apoptosis
thereby promoting survival of cancer cells (2), whereas miR-423-5p was differentially expressed in
PCa bone metastases a phenomenon that provided a basis for diagnosis of potential bone metastases
(3). On the other hand, long non-coding RNA (lncRNA)was associated with vascular regeneration,
tumor survival and metastasis, as well as tumor microenvironment (TME) establishment (4). Apart
from RNA, prostate cancer-derived exosomal proteins (PCaDEPr), such as Exportin1(XPO1) which
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is present in all PCa cell lines exosomes, have been studied.
Notably, this nuclear protein which is involved in nucleoplasmic
exportation of the carry signal protein, not only plays a crucial
role in the tumorigenic signaling pathway but also increases with
the Gleason score (5, 6). This may be a new avenue for diagnosis
and treatment of advanced PCa.

Exosomes are small membranous vesicles with a diameter of
30-150 nm that are formed by cells budding inward to form early
endosomes that subsequently evolve into multi-vesicular bodies,
which then fuse with the plasma membrane and are eventually
released into the extracellular matrix. They participate in
intercellular signaling by carrying various biomolecules such as
proteins and nucleic acids, and regulate the pathophysiological
processes of the organism (7). Exosomal proteins include
endosomal proteins, plasma proteins and nuclear proteins. In
PCa, these proteins have been shown to have a higher level of
glycosylation than cellular ones (1). In addition, exosomes carry
both membrane transport and fusion proteins, such as
RabGTPases, Annexin, flotillins1(Flot), microvesicle-forming
proteins Alix and Tsg101, as well as lipid-associated protein
families including CD9, CD81, CD82and CD63 integrin proteins
(8–11). Notably, the four transmembrane proteins play an
important role in exosome-mediated regulation of cellular
homeostasis components (Figure 1).

Although several studies have described the role of exosomal
proteins in PCa, precise markers for PCa development have not
been elucidated. Therefore, identification of the main types of
PCaDEPr, coupled with elucidating the precise roles and
underlying mechanisms of action for these proteins in cancer
are imperative to guiding future developmental studies. Recent
studies have demonstrated that exosomes proteins derived from
PCa cell lines, plasma, tissues and urine are closely associated
with tumor development (Figure 2). Therefore, understanding
the roles played by these proteins, coupled with elucidating their
underlying mechanisms of action in tumors will enable better
targeting of these proteins for clinical treatment and improve the
quality of survival of PCa patients (Figure 3).
PCADEPR FROM DIFFERENT SOURCES

PCaDEPr in the Cell Line
Findings from several exosomal proteomics and subsequent
functional validation in PCa cell lines have shown that
exosomal proteins secreted by the cell lines play an important
role in both tumorigenesis and development (Table 1). The
exosomal proteins secreted by PCa cell lines are relatively high in
tetraspanins such as CD9, CD82, CD61, heat shock protein
(HSP) family HSP90, HSP70, and integrin proteins ITGA3,
ITGB1, etc., and previous studies have confirmed these
Proteins may play a role in the occurrence and development of
tumors. Kurozumi et al. found that knocking down ITGA3 and
ITGB1 significantly downregulated phosphorylation of FAK,
SRC, AKT and ERK1/2 proteins, thereby markedly inhibiting
migration and invasion of PCa cells (16). Similarly, Ramteke
et al. extracted exosomes from LNCaP and PC3 cells exposed to
Frontiers in Oncology | www.frontiersin.org 2
hypoxic (1% O2) and normoxic (21% O2) media and found that
CD63, CD81, HSP90, HSP70, Annexin II were expressed at
higher levels in the hypoxic environment and that hypoxia
enhanced the invasiveness and motility of LNCaP and PC3
cells as confirmed by cell invasion assays. Further research
found that this may be related to the above-mentioned
proteins promoting the formation of pre-metastatic niche in
cancer cells and inducing stem cell proliferation and epithelial–
mesenchymal transition (EMT) transformation (38).
Furthermore, an exosomal protein study by Jinlu et al. found
that the exosomal protein PKM2 secreted by C4-2B cells can be
transported to bone marrow stromal cells (BMSC) via exosomes
and upregulate CXCL12 production in BMSC in a HIF-1a-
dependent manner to promote bone metastasis of PCa (45).

PCaDEPr in Plasma
Studies evaluating the clinical value of exosomal proteins in PCa
have confirmed that plasma-derived exosomal proteins play a
key role in tumor survival and metastasis, among others
(Table 2). Notably, PCa patients exhibit significantly higher
levels of proteins involved in substance metabolism (P-gp),
bioactive enzymes (NEU3, C1r), and cell survival (Survivin,
PIF1) in their plasma exosomes, relative to cell lines, and have
reportedly been associated with a variety of tumor survival and
metastasis. Bergelson et al. found that NEU3 is highly expressed
in various cancers such as colon cancer and renal cancer, and
significantly inhibits the apoptosis of cancer cells. Another study
found that NEU3, as an enzyme that specifically hydrolyzes
gangliosides, can reduce the ganglioside-mediated immune
activation process (54). This result suggests that NEU3 may act
as an immunosuppressant in tumors. Kishi et al. detected the
expression of Survivin in the tissues of 82 PCa patients and found
that its expression was positively correlated with the pathological
stage, Gleason score (ranges from 1-5 and describes how much
the cancer from a biopsy looks like healthy tissue (lower score) or
abnormal tissue (higher score)) and cell proliferation activity of
PCa, and could inhibit cell apoptosis (58). Additional research
evidences have shown that plasma exosomal proteins may also
have bidirectional effects on tumors. For example, P-gp in
exosomes was reportedly elevated in doxorubicin-resistant PCa
(18), while another study showed that it enhanced the anti-
cancer ability of anti-cancer cytokines, such as CD4+ T cells, in
ovarian cancer (84). Conversely P-gp was also found to activate
expression of pro-tumor progressive M2 type macrophages (85).
Collectively, these findings suggest that plasma exosomeal
protein P-gp may be a potential therapeutic target for tumors.

PCaDEPr in Urine
Numerous studies have shown that urinary exosomal proteins from
PCa patients play a non-negligible role in tumors (Table 3). The
urine exosomes are more abundant in substance synthesis
(Sepiapterin), signaling (Ras GTPase, Flot-2), tight junction
(Claudin-3, d-catenin) and other proteins compared to the
plasma exosomes. Wu et al. compared SMMC-7721 containing
epiapterin reductase (SPR) with SMMC-7721(human
hepatocarcinoma cells) containing this mutant and concluded
that SPR might be a tumor promoter in HCC (hepatocellular
June 2022 | Volume 12 | Article 873296
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carcinoma). Results from further cellular experiments, as well as
analysis of a nude mouse xenograft model, revealed that SPR
depletion inhibited HCC cell proliferation and promoted
apoptosis, affirming that SPR may regulate hepatocellular
carcinoma progression via the FoxO3a/Bim pathway (a
transcriptional target in apoptosis regulation in vivo and in vitro)
(99). On the other hand, Hazarika et al. performed
immunohistochemical staining of Flot-2 and found significantly
higher intensities in metastatic melanoma from lymph nodes or
visceral sites relative to those in nevi and primary melanoma and
their results indicated that overexpression of Flot-2 promoted tumor
cell proliferation and vascular regeneration (124). In addition, Flot-2
reportedly plays a role in promoting tumor metastasis, such as and
has been shown to induce metastasis in nasopharyngeal carcinoma
by activating the NF-kB and PI3K/Akt3 signaling pathways (125).
This factor has also been shown to regulate the cell cycle and induce
EMT, thereby promoting growth and metastasis of HCC (126). Lin
et al. found that knocking down the expression of Claudin 3
(CLDN3) resulted in significant changes in the phenotype of
ovarian cancer cells, and further studies found that this would
significantly downregulate the expression level of E-cadherin and
upregulate the expression of N-cadherin. Therefore, CLDN3may be
involved in regulation of the EMT to promote metastasis in ovarian
cancer (47). Exploration of the value of urinary exosomal proteins
during early diagnosis of PCa is of great importance for subsequent
clinical use, owing to the ease of obtaining urine samples. Results
from differential protein analysis between healthy men and PCa
patients revealed that 246 proteins were differentially expressed, 221
of which were significantly upregulated in exosomes of PCa patients
(86). Taken together, these findings suggest that exosomal proteins
may have potential as diagnostic and therapeutic markers in PCa.
Frontiers in Oncology | www.frontiersin.org 3
PCaDEPr in Tissues
Apart from plasma and urine exosomal proteins from PCa patients,
exosomal proteins from PCa tissues have also been extensively
studied (Table 4). For example, results from mass spectrometry
analysis revealed that PCa tissue exosomal protein types are mainly
involved in vesicle transport and composition (Annexin A5,
Annexin A3), biotransformation enzymes (such as Glutathione
synthetase, and D-3-phosphoglycerate dehydrogenase),
cytoskeletal molecules (Syntenin-1) and other related proteins.
Moreover, previous studies have confirmed that these proteins
play a role in tumor initiation and progression. Tang et al.
demonstrated that Annexin A5 could activate the PI3K/Akt/
mTOR signaling pathway to regulate the EMT process and
matrix metalloproteinase (MMP) expression thereby significantly
promoting proliferation, migration and invasion of renal cancer
cells both in vitro and in vivo (145). Kennedy et al. reported that
Glutathione plays a role as an intracellular antioxidant in cancer, a
where it regulates reactive oxygen species (ROS)-mediated signaling
pathways, including NF-kB and MAPK/ERK, to maintain tumor
survival and induce tumorigenesis (128). ROS, which are closely
related to Glutathione, were found to regulate Cav-1 expression in
human lung cancer H460 cells, thereby modulating their migration
and invasion. However, different ROS exert different effects in
tumors. Superoxide anion and hydrogen peroxide were found to
significantly downregulate Cav-1 expression and inhibit both cell
migration and invasion, while hydroxyl radicals reportedly
upregulated Cav-1 expression and also promoted cell migration
and invasion (163). With regards to chemoresistance, Iwamoto et al.
reported that Syntenin-1 was upregulated in rectal cancer (CRC)
tumor tissues, while its downregulation mediated a significant
downregulation of prostaglandin E2 receptor (PTGER2). On the
FIGURE 1 | Profile of the basic structure of exosomes.
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other hand, silencing PTGER2 decreased chemoresistance of cancer
stem cells to oxaliplatin. Taken together, these results indicated that
Syntenin-1 may promote chemoresistance in cancer cells (147).
PCADEPR IN TUMOR CELL INITIATION
AND PROLIFERATION

The basic understanding of tumorigenesis is uncontrolled cell
proliferation or uncontrolled apoptosis. In addition to changes in
tumor cells, changes also occur in the tumor microenvironment,
Frontiers in Oncology | www.frontiersin.org 4
including variations in structure and function of stromal cells
such as fibroblasts, lymphocytes, epithelial cells, and matrix
molecules, like growth factors and cytokines. Previous studies
have shown that PCaDEPr can induce tumor cell initiation and
proliferation processes by regulating metabolic, apoptotic, and
TME pathways.

Inhibition of Apoptosis Induces Cell
Tumorigenesis
Apoptosis is an orderly and coordinated process of cell death that
occurs under physiological and pathological conditions. In
FIGURE 2 | Potential mechanisms of action of exosomal proteins in prostate cancer.
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cancer, dying cells do not receive apoptotic signals, due to an
imbalance between cell division and cell death, a phenomenon
that causes normal cells to tumorize. Apoptosis can induce
development of cancer cells through intrinsic and extrinsic
pathways, which involve action of many proteins that regulate
apoptosis and these proteins are also present in prostate cancer-
derived exosomes. For example, Sepiapterin reductase (SPR), an
important regulator of tetrahydrobiopterin (BH4) biosynthesis,
has been shown to be a promoter of various tumors. Zhang et al.
found that ROS-mediated apoptosis could be induced by
knocking down SPR expression to inhibit progression of breast
cancer cells (100). Similarly, Basu et al. found a strong
association between S100 Calcium Binding Protein P (S100P)
expression and prostate tumorigenesis, with S100P expression
mediating basal apoptosis and impeding camptothecin-induced
apoptosis. Moreover, silencing of S100P significantly inhibited
growth of 22Rv1 cells, while overexpressing S100P in PC3 cells
resulted in increased proliferation of tumor cells (164). In
addition, other exosomal proteins interact with apoptosis-
related proteins to induce tumorigenesis. Ingo et al. found that
ornithine decarboxylase (ODC) and Sepiapterin reductase (SPR)
proteins interacted to elevate ODC activity, thereby inhibiting
apoptosis and inducing neuroblastoma cell genesis (165).
Frontiers in Oncology | www.frontiersin.org 5
Exosomal protein phosphatase and tensin homolog (PTEN)
was shown to negatively regulate expression of the cyclin-
dependent kinase (CDK) inhibitor p27 (KIP1), thereby
inhibiting apoptosis (166). Previous studies have shown that
S100 calcium-binding protein A6 (S100A6) interacts with p53 to
affect oligomerization and activity of p53, thereby reducing its
ability to promote apoptosis (167, 168). Moreover, tumor cells
can also induce cancer by secreting exosomes to eliminate
proteins that initiate apoptosis. Diederick et al. showed that
cancer cells can remove PDCD6IP, a protein involved in
programmed cell death, by exosome secretion to inhibit
apoptosis, explained by high PDCD6IP abundance in PCa-
derived exosomes and low abundance in autologous tumor
cells this possibility (6). Collectively, these studies indicate that
exosomal proteins can induce tumorigenesis and proliferation by
inhibiting the apoptotic process both directly and indirectly.

Involvement in Substance Metabolism and
Oxidative Stress
Alteration of pathways regulating cellular substance metabolism
is more common in cancer, compared to normal tissue cells. In
fact, alterations in normal cellular substance metabolism have
been implicated in convergence of cells to a tumor state. Previous
FIGURE 3 | The potential role of PCaDEPrs in cancer. Exosomes originating from the tumor cell play a crucial role in tumor development. During tumor initiation,
they mediate apoptosis, lipid metabolism, TME, and tumorigenic signaling, and also interfere with the cell cycle to induce cancer development. During tumor survival
and progression, they regulate remodeling the tumor microenvironment, hormonal regulation and metabolic alterations, as well as lysosomal function and distribution,
and inhibition of cancer cell apoptosis. During tumor metastasis, PCaDEPrs can contribute to EMT transformation, trigger microenvironment alteration, and
establishment of a pre-metastatic ecological niche. Finally, they can also regulate tumor resistance to chemotherapeutic agents.
June 2022 | Volume 12 | Article 873296
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studies have shown that alterations in tumor metabolism include
glycolysis, lipid hydrolysis, increased nutrient utilization, and
increased production of biosynthetic intermediates required for
cell growth and proliferation. Liu et al. found that Fatty acid
synthase (FASN) protein was upregulated in exosomes derived
from Vertebral-Cancer of the Prostate (VCaP) cells. Additional
studies have demonstrated that FASN catalyzes formation of
long-chain fatty acids from acetyl coenzyme A, malonyl
coenzyme A and NADPH, to promote proliferation of VCaP
cells, and that inhibition of FASN effectively and selectively kills
cancer cells (166). Qin et al. demonstrated that ADP-ribosylation
factor-like 8b (Arl8b) Arl8b depletion reduced the ability of PCa
cells to establish subcutaneous xenografts in mice. Under a low
nutrient environment, Arl8b maintained efficient metabolism in
PCa cells thereby allowing them maintain their excessive
proliferative capacity by promoting lipid hydrolysis. Metabolic
defects in the proliferation of cells with low Arl8b expression
inhibit tumor growth initiation in vivo. The phenomenon may be
attributed to the fact that Arl8b depletion impairs intracellular
neutral lipid hydrolysis, thereby shifting the metabolic profile to
an abnormal lipogenic phenotype, which subsequently impairs
glucose utilization and limits the propensity for cytokinesis
(169). In addition, Webber et al. demonstrated that the
exosomal protein TGFb1 secreted by cancer-associated
fibroblasts enhanced proliferation of PCa cells under both
Frontiers in Oncology | www.frontiersin.org 6
hypoxic and low nutrient environments by inhibiting
mitochondrial oxidative phosphorylation and elevating
anaerobic glycolysis (170).

Oxidative stress, a series of adaptive responses caused by an
imbalance between ROS and the body’s antioxidant system, plays
a key role in cancer development and progression. Previous
studies have shown that by interfering with the normal redox
state of cells, oxidative stress causes generation of peroxides and
free radicals that subsequently damage cellular proteins, lipids
and DNA, thereby causing tumor development. For example,
ROS can either initiate or stimulate tumorigenesis and support
the transformation and proliferation of cancer cells. Over-
proliferation of tumor cells is often accompanied by high ROS
production, and thrives under such oxidative load conditions. At
the same time, tumor cells can optimize the ROS-driven cell
proliferation process by increasing their antioxidant capacity, to
avoid the ROS threshold that triggers senescence, apoptosis and
iron-induced cell death (171). Previous studies have shown that
some proteins in exosomes can influence ROS expression during
oxidative stress in cells, thereby affecting the tumor initiation
process. For example, Qin et al. reported that ectopic expression
of six transmembrane epithelial antigen of prostate 4 (STEAP4)
in PCa cells significantly increased tumor cell proliferation and
colony formation, suggesting that STEAP4 may be playing a role
in tumor growth. This phenomenon may be explained by the fact
TABLE 1 | Exosomal protein derived from prostate cancer cell line.

protein Prostate cancer source Role in tumors references

PDCD6IP, FASN, XPO1, ENO1 PNT2C2, RWPE-1, PC346C,
and VCaP

Inhibition of apoptosis Involved in lipid metabolism and oncogenic signaling pathways (6, 12–15)

ITGA3, ITGB1 LNCaP and PC3 Activate oncogenic signaling pathway. (2, 16, 17)
p-glycoprotein docetaxel-resistant PC3、

PC3
Chemotherapy resistance (2, 18)

Ets-1 PC3 and DU145 Enhance osteoblast differentiation (2, 19)
Integrin beta4, vinculin taxane-resistant PC3 Interacts with proteins to promote tumor metastasis (20, 21)
ANXA2, CLSTN1, FLNC,
FOLH1, GDF15

PC3, DU145, VCaP, LNCaP,
C4-2, and RWPE-1

Involved in fat metabolism, cell proliferation, migration and drug resistance, remodeling
of cytoskeleton, Angiogenesis, oncogenic signaling pathways

(22–26)

CD9, CD82 LNCaP and PC3 Inhibit the movement of tumor cells, chemoresistance (27, 28)
CML28 DU145, LNCaP Activate immunity (28, 29)
Integrin alphavbeta6 PC3, DU145, C4-2B,

RWPE-1
Activating MMP2 promotes the autonomous osteolysis process of cells (30)

Trop-2 PC3 Activate the metastasis signaling pathway FAK (31)
CD61, CD81, HSP90, HSP70,
Annexin II

PC3, LNCaP cellular activation、cell motility、tumor cell metastasis、Metabolic reprogramming,
mediating immune microenvironment, tumor resistance

(32–38)

TGF-beta PC stem cells Proliferation, apoptosis, differentiation, epithelial -mesenchymal transition (EMT)
and migration

(38, 39)

Rab1a, Rab1b, Rab11a C4-2B Tumor reprogramming of patient-derived adipose stem cells promotes
tumor proliferation

(40)

CD276 DU145, 22Rv1, and LNCaP Acts as a T cell inhibitor to promote tumor proliferation and invasion (41)
d-catenin PC3 Interacts with E-cadherin to inhibit tumor migration (42, 43)
LDHA VCaP, LNCaP, C4-2B Cell metabolism (22, 44)
CLU, FN1, KRT8, LAMA5,
NPM1, PRDX1, TFRC

DU145, PC3 cells Regulate cell death and intercellular signaling (22)

PKM2 LNCaP, DU145, and PC3 Promote the expression of CXCL12 in stromal cells (45)
Claudin 3 DU145 Increase cell motility and survival by activating MMP -2/Suppression of EMT (46, 47)
MDR-1、MDR-3、Endophilin-
A2 、PABP4、PACSIN2

U145 Tax-Res Chemotherapy resistance (48)

Caveolin-1 PC3 suppresses tumor formation through the inhibition of the unfolded protein response (49)
CD147 、CD44 U145 Tax-Res Activation of PI3K and MAPK pathways mediate tumor me -tastasis and

chemotherapy resistance
(50, 51)

ACTN4 DU145 Promote the movement and proliferation of tumor cells (52, 53)
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that high STEAP4 expression not only downregulates IRS-1,
PI3K and AKT phosphorylation but also impairs insulin-
mediated GLUT4 translocation, thereby resulting in ROS-
associated mitochondrial dysfunction (169). In another study,
silencing of STEAP4 significantly inhibited growth of mouse PCa
xenografts in a mouse model. Furthermore, STEAP4 expression
was found to mediate elevation of ROS levels probably by
increasing levels of ferrous iron in cells after using it as a redox
intermediate (electron donor) to generate free radicals. In
addition, STEAP4 expression reportedly depleted production
of NADPH (172), an inhibitor of ROS production, thereby
resulting elevated ROS production. Notably, persistently high
ROS levels were found to promote cancer development, owing to
is oncogenic nature (113).

Activation of TME Regulatory and
Tumorigenic Signaling Pathways
The tumor microenvironment refers to the surrounding
microenvironment where tumor cells exist, including surrounding
blood vessels, immune cells, fibroblasts, bone marrow-derived
inflammatory cells, adipose stem cells and various signaling
molecules and the extracellular matrix (ECM). During early stages
of cancer development, tumor cells appropriately regulate the
microenvironment. For example, various microenvironmental
changes, such as adjustment of the ECM, immune response,
stromal stem cell transformation and induction of angiogenesis,
can be triggered during tumor initiation (173). Recent studies have
Frontiers in Oncology | www.frontiersin.org 7
shown that PCaDEPr may promote production of tumor cells
through this pathway. Zakaria et al. found that the PCa cell
microenvironment disrupts adipose-derived stem cells in PCa
patients to induce tumor transformation, but unlike normal stem
cells, the use of PCa cell-conditioned medium effectively triggers
conversion of adipose-derived stem cells into prostate-like tumor
lesions in vivo. Furthermore, exosomal proteins, namely Rab1a,
Rab1b, and Rab11a, in PCa were found to recapitulate the
formation of prostate tumorigenic mimics generated by adipose-
derived stem cells triggered by PCa cell conditioned medium. In
fact, the use of PCa cell-derived conditioned medium (CM) or
exosomes was found to effectively trigger adipose stem cells to
undergo genetic instability, mesenchymal-to-epithelial
transformation (MET), and oncogenic transformation, thereby
inducing PCa in vivo. This may be explained by the fact that
exosomes deliver oncogenic factors, such as Rab proteins (Rab1a,
Rab1b, and Rab11a) translocated to pASCs to inhibit large tumor
suppressor kinase 2 (LATS2) and programmed downregulation of
cell death protein 4 (PDCD4), thereby promoting tumor growth
(40). In the tumor vascular microenvironment, Dominique et al.
showed that HSP27 interacted with CD283, thereby inducing NF-
kB activation, which subsequently led to vascular endothelial
growth factor (VEGF)-mediated angiogenesis in the tumor
microenvironment (174).

In addition, PCaDEPrs have also been shown to induce
tumorigenesis by modulating alterations in tumorigenic signaling
pathways. For example, flotillins that are also present in tumor-
TABLE 2 | Exosomal proteins in the blood of prostate cancer patients.

protein Role in tumors references

NEU3 Immunosuppressive (2, 54, 55)
p-glycoprotein Chemotherapy resistance (18)
CYP17A1、CYP17 Activate AR (56)
HSP72 Activate immunity (57)
Survivin Inhibit apoptosis (58, 59)
CML28 Promote cell proliferation (28, 29)
avb3 integrin Participate in cell migration (60)
Claudin 3 Tumor metastasis (61)
DNA Helicase Homolog PIF1 suppresses Apoptosis (62)
Four and a Half LIM Domain 3 Protein interaction (63)
Glutathione S Transferase Omega 2 Participate in cell metabolism (64)
Maternal Embryonic Leucine Zipper Kinase Chemotherapy resistance (65)
Iroquois Homeobox Protein 5 Promote cell proliferation (66)
Leucine Rich Zipper Containing 4 Enhance cell migration (67)
Minichromosome Maintenance complex Component 5 Enhance cell migration (68)
Mitochondrial Tumor Suppressor 1 Isoform 4 Increase cell proliferation and invasion (69)
Nasopharyngeal epithelium Specific Protein Interfering oncogenes (70)
Ubiquitin-like with PHD and ring finger domains Interfering oncogenes (71)
Trinucleotide repeat containing 6B Isoform 3 Promote cell proliferation (72)
Apolipoprotein E (isoform E2) Protein interaction (73, 74)
C3a anaphylatoxin des Arginine Inhibit T cell toxicity (74, 75)
Complement C1q subcomponent Promote angiogenesis、Promote immune suppression (74, 76)
Complement C1r subcomponent Inhibit apoptosis、Promote angiogenesis (74, 77)
D-dimer Promote angiogenesis (74, 78)
Fibrinogen Changes in the tumor microenvironment (74, 79)
Fibrinogen gamma chain Interaction with FGF-2 promotes cancer growth (74, 79)
Fibronectin Interacts with proteins to promote tumor progression or inhibit tumor survival (74, 80)
Properdin Activate the complement system to inhibit tumor survival (74, 81)
von Willebrand factor mediate multiple cell–cell interactions (74, 82)
PTEN Tumor suppression (83)
ACTN4 Promote the movement and proliferation of tumor cells (52, 53)
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derived exosomes. Jang et al. showed that palmitoylation of Flot-1
could regulate proliferation of PCa cells by activating the IGF-1R
signaling pathway. Moreover, palmitoylation (S-palmitoylation)
modification of Flot-1 was found to regulate intracellular
signaling proteins p53, STAT1 (signal transducer and activator of
transcription 1) and IkBa (nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, alpha), thereby inducing
oncogenic effects (175). Furthermore, Takahashi-Niki et al. found
that Parkinson disease protein 7 (DJ-1) binds to Topors/p53BP3
(176), both in vitro and in vivo, thereby releasing the
monoglycosylated form of p53 and helping to restore the
transcriptional activity of p53. Recent research evidence showed
that DJ-1 directly binds to Sirtuin1 (Sirt1), to stimulate Sirt1
deacetylase activity. Furthermore, DJ-1 downregulated the
Frontiers in Oncology | www.frontiersin.org 8
transcriptional activity of sirt1-suppressed sirt1 target p53 (177).
Taken together, these results indicated that p53 is closely associated
with DJ-1, suggesting presence of a finely regulated circuit between
both proteins during tumorigenesis and apoptosis. Previous studies
have also shown that major facilitator superfamily domain
containing 12 (MFSD12), which is highly expressed in melanoma,
induces proliferation of melanoma cells via the PI3K- AKT
signaling pathway (102).

Interference With the Cell Cycle
Continued unregulated growth of cancer cells is a fundamental
abnormality during cancer development and progression. In fact,
the first step in the process, tumor initiation, is believed to be the
basis for initiation of abnormal proliferation of individual cells.
TABLE 3 | Exosomal protein in urine of prostate cancer patients.

protein (86) Role in tumors references

PPP2CA Reverse EMT transformation to inhibit prostate tumor growth and metastasis (87)
Rab-35 Induced EMT、intracellular signaling、apico-basal polarity、cytokinesis and cell migration Promote the differentiation

and proliferation of tumor cells
(88)

S100-A6 S100A6 interacts with annexin 2 promotes cancer cell motility (89)
P2X purinoceptor 4 Induction of immunosuppression and angiogenesis, Activate anti-tumor response (90)
Galectin-3 These include inhibition of apoptosis, promotion of cell growth, and regulation of TCR signal transduction, promotes

angiogenesis
(91–94)

flotillin-2 Molecules involved in signal transduction, adhesion, and extracellular matrix remodeling (95)
Calmodulin The interaction of CaM and AR promotes the proliferation of LNCaP cells (96)
3-hydroxybutyrate
dehydrogenase type 2

Induce apoptosis (97)

Thioredoxin domain-containing
protein 17

Induces autophagy to promote chemotherapy resistance (98)

Sepiapterin reductase Regulate FoxO3a、Bim signal to promote tumor progression、Induce ROS-mediated apoptosis and inhibit tumor cell
proliferation

(99, 100)

Melanophilin Accelerate EMT to promote tumor metastasis (101)
MFSD12 Promote G1 phase (102)
LIMP-2(Lysosome membrane
protein 2)

Transport lysosome (103)

Glucosamine-6-phosphate
isomerase 1

Promote metabolism and inhibit apoptosis (104)

GDP-mannose 4.6 dehydratase Regulate TRAIL-induced apoptosis and increase NK cell-mediated tumor surveillance (105)
Claudin-3 Increase cell motility and survival by activating MMP-2/Suppression of EMT (46, 47)
Claudin-2 Epithelial-mesenchymal transition (EMT), tumor initiation, and chemotherapy resistance (61)
Claudin-10 Transforming growth factor-b (TGF-b)- or WNT/b-catenin-induced EMT affects the progress of OC (106)
Tetraspanin-6 Regulate EGFR-dependent signaling (107)
Proton myo-inositol cotransporter Regulate Hif-1a to promote tumor cell hypoxia (108)
ADP-ribosylation factor-like
protein 8B

Lysosomal transport (109)

Synaptotagmin-like protein 4 Chemotherapy resistance (110)
Protein S100-P Chemotherapy resistance (86, 111)
Protein DJ-1 Inhibit PTEN tumor suppressor (112)
Metalloreductase STEAP4 Involved in the metabolism of cell iron and copper (113)
ATP6V0C Enhance the function of V-ATPase to promote the migration and invasion of cancer cells (114)
Ras-related protein Rab-7a Prevent HGF-induced lysosomal trafficking, cathepsin B secretion and cell invasion (115)
Ras-related protein Rab-3D Induces cytoskeleton remodeling, enhances cancer cell movement, induces EMT, regulates Hsp90a secretion and

promotes tumor cell invasion
(116)

Ras-related protein Rab-3B Inhibit apoptosis and maintain cancer cell survival (117)
Ras-related protein Rab-2A Activate Erk signal to promote breast cancer stem cells and tumorigenesis (118)
Plastin-2 Regulate integrin-mediated tumor cell adhesion (119)
Ragulator complex protein
LAMTOR1

Affect lysosomal localization (120)

ADIRF Induce PPARG expression to promote adipocyte differentiation (121)
PSA, PSMA Related to angiogenesis (2, 122)
d-catenin Interacts with E-cadherin to inhibit tumor migration (42, 43)
ITGA3, ITGB1 Activate oncogenic signaling pathway (16)
Transmembrane Protein 256 Induce tumor formation (123)
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Subsequent cell proliferation causes growth of clonally derived
tumor cell populations. Numerous studies have identified a
number of proteins that regulate proliferation of the cell cycle,
to subsequently trigger tumorigenesis. For example, one study
showed that estrogen stimulates the proliferative cycle of
endometrial cells, while exposure to excess estrogen
significantly increases the risk of endometrial cancer in women
(178). PCaDE also contains similar proteins that interfere with
cell cycle processes, to promote tumor cell development. For
instance, Bosch et al. demonstrated that Ca2+ and calmodulin
(CaM) play a key role in proliferation and viability of a variety of
cells, including PCa. This phenomenon may be attributed to the
fact that CaM interacts with various proteins that regulate the
cell cycle, including p21Cip1, D1-Cdk4 and CaM kinase II, to
control their activities and nuclear localization, thereby
influencing proliferation of tumor cells (179). Moreover, cell
cycle protein A in LNCaP cellular extracts was found to directly
or indirectly bind to CaM, indicating that its expression is
sensitive to the inhibitory effect of the anti-CaM drug W-7.
Notably, this indicates that CaM regulates expression of cell cycle
Frontiers in Oncology | www.frontiersin.org 9
protein A in PCa cells to induce over-proliferation of LNCaP
cells (96). In addition, previous studies have shown that
expression of MFSD12, a novel suppressor gene in lung cancer,
and its protein, can control cell cycle distribution, matrix
attachment and cell motility, thereby regulating tumor growth
and development. MFSD12 was significantly upregulated in
melanoma tissues, with interreference in its expression in
A2058 and M14 melanoma cells found to significantly
suppress tumor cell proliferation. Results from flow cytometry
analysis confirmed that silencing MFSD12 expression mediated
increase and decrease in the proportion of cells in the G1and S
phases, respectively, suggesting that MFSD12-induced
proliferation is associated with promotion of the G1 phase (102).
PCADEPR IN CANCER SURVIVAL AND
PROGRESSION

Evasion of death is imperative to cancer cells’ persistence and
their subsequent progression. Several tumor survival proteins are
TABLE 4 | Exosomal proteins in prostate cancer tissue.

protein (127) Role in tumors references

Glutathione synthetase Inhibit oxidative stress, tumor progression and chemotherapy resistance (128)
D-3-phosphoglycerate
dehydrogenase

Up-regulation of cancer-promoting genes, regulation of metabolism, chemotherapy resistance (129)

Cytosol aminopeptidase Affects MHC class I mediated antigen presentation (130)
Alpha-enolase Protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy (131)
Keratin, type I cytoskeletal 10 Inhibit cell cycle progression (132)
Actin, cytoplasmic 1 Causes cytoskeletal changes to promote tumor progression (133)
Isocitrate dehydrogenase 1 (NADP+),
soluble

Control lipid metabolism and inhibit apoptosis (134)

Alcohol dehydrogenase [NADP+] Activate the carcinogenic effects of acetaldehyde (135)
Sorbitol dehydrogenase Inhibit cell hypoxia (136)
F-Actin-capping protein subunit
alpha-1

Remodeling the cytoskeleton inhibits EMT, thereby inhibiting cancer migration and invasion (137)

N(G), N(G)-Dimethylarginine
dimethylaminohydrolase 1

Inhibit angiogenesis (138)

Annexin A1 Induces apoptosis, activates immunity, mediates cancer pathways, and protein interactions (139–143)
14-3-3 Protein sigma Induces cell cycle arrest and apoptosis of cancer cells, affects transcription factors and cell signal transduction in

cancer cells, and resists oxidative stress
(144)

Annexin A5 Annexin A5 can activate the PI3K/Akt/mTOR signaling pathway to promote epithelial-mesenchymal transition (EMT)
and the expression of MMP2 and MMP9

(145)

Annexin A3 Participate in cell signal transduction and promote tumor development (146)
Syntenin-1 Regulating PTGER2 expression enhances CSC amplification, oxaliplatin chemoresistance and migration (147)
Heat-shock protein beta-1 Inhibit cell apoptosis in various malignant tumors, up-regulate the expression of MMP-9, promote the invasion of

breast cancer cells, and increase VEGF) to induce angiogenesis
(148–151)

Peroxiredoxin-6 Regulate the expression of uPAR, Ets-1, MMP-9, RhoC and TIMP-2 to increase the invasion and metastasis of
breast cancer

(152)

Triosephosphate isomerase Regulate glycolysis and metabolism, as an oncogene (153)
Phosphatidylethanolamine-binding
protein 1

Inhibit most of the kinase functions in the signal cascade, metastasis inhibitors, participate in cell proliferation, inhibit
metastasis, and promote apoptosis

(154)

Semenogelin-1 Activate androgen receptor (155)
Superoxide dismutase [Cu-Zn] Inhibit the oxidative stress response of cells (156)
Ubiquitin-conjugating enzyme E2 N Involved in DNA repair, cell cycle progression, cell apoptosis and carcinogenic signals (157)
Prolactin-inducible protein Enhance anti-tumor immunity and promote tumor metastasis (158)
Protein S100-A9 Regulate tumor immune microenvironment (159)
Histidine triad nucleotide-binding
protein 1

Inhibition of oncogene transcriptional control pathways (160)

Acyl-CoA-binding protein Maintain fatty acid oxidation to induce tumorigenesis (161)
Protein S100-A11 Regulate cell cycle, promote cell proliferatio n, migration, invasion and EMT, activate Wnt, b-catenin signaling

pathway to induce cancer
(162)
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present in the tumor survival microenvironment, where they
play a key role in regulatory processes including apoptosis (180),
metabolism (181), immune escape, nutrient transport, hypoxic
environment and drug resistance, that promote tumor cell
survival. Proteins related to apoptosis and also present in PCa
exosomes, such as Bcl-2, inhibitor of apoptosis (IAP) and heat
shock protein (HSP) and proteins related to cell metabolism,
such as glucose transporter 1 (GLUT1) and Ras, etc. Considered
a family of survivin proteins of tumor cells (180). Abnormal
expression of these proteins is associated with a series of
biological regulatory processes that promote cancer cell
survival, proliferation, and treatment resistance (181). In
addition, cancer cells employ progression as a means for
tumors to maintain survival, thus tumor survival is closely
associated with progress ion. Tumor progression is
characterized by rapid changes in the tumor phenotype, a
phenomenon that has made tumors to become more
aggressive. Exosomal proteins are thought to play various roles
in progression of various tumor types, including remodeling of
the tumor microenvironment, promoting epithel ial
mesenchymal transition (EMT), angiogenesis induction,
promoting migration, invasion and immune escape of cancer
cells, as well as regulating the corresponding signaling
pathways (182).

Remodeling the Tumor Microenvironment
Immune escape is an important aspect in tumor survival, as
tumor cells can only proliferate, migrate and invade tissues if
they escape killing by immune cells, such as phagocytes, T cells,
and NK cells. The exosomal proteins, which are secreted by
cancer cells support immune escape to promote tumor cell
survival. For instance, exosomal proteins support immune cell
migration (such as neutrophils, macrophages and regulatory T
cells) to secondary sites, suppress immune responses to tumors
by inhibiting the efficacies of antigen-presenting cells, such as
dendritic cells. They can also impair immune functions of T and
NK cells by activating apoptosis (183, 184). Moriwaki et al.
demonstrates that tumor cells lacking GDP-mannose-4,6-
dehydratase (GMDS) can evade NK cell-mediated tumor
immune surveillance by acquiring resistance to tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-induced
apoptosis (105). Aled et al. found that TGF-b-positive
exosomes downregulated natural-killer group 2, member D
(NKG2D) expressions in NK and CD8+ T cells, which in turn
impaired immune effector functions (185). TGF-b-rich exosome
inhibits lymphocyte responses to IL-2, thereby altering the tumor
microenvironment to promote immune escape functions of
tumor cells (186). In addition, documented those expressions
of some purinergic receptors directly or indirectly inhibit T cells
and NK cells effects, thereby suppressing immune responses to
primary tumors. For instance, oncogenic exosomes with elevated
CD39 and CD73 levels can promote adenosine production,
thereby enhancing regulatory T cell and myeloid cell
prol i ferat ion to suppress immune functions (187).
Interestingly, exsomeal proteins have also been shown to
promote tumor progression by activating tumor-associated
immune cells. Wang et al. found that LAMP 2a contributes to
Frontiers in Oncology | www.frontiersin.org 10
tumor progression by degrading PRDX1 (peroxiredoxin 1) and
CRTC1 (CREB-regulated transcriptional coactivator 1), which
enhances tumor-associated macrophage activation (188). These
studies confirm that cancer-derived exosomal proteins can
mediate the escape of tumor cells from immune surveillance to
promote their survivability.

In addition to regulation of immune microenvironments,
exosomal proteins are involved in construction of other tumor
microenvironments to maintain tumor survival. For example,
tumor cell over proliferation leads to the development of hypoxic
environments, therefore, the ability to regulate tumor cell tolerance
to hypoxic environments is necessary for tumor cell survival, and
some proteins in exosome can play this function. Hypoxia-inducible
factor-1a (HIF-1a), a master transcription factor, is stable under
hypoxic conditions. It regulates the expressions of several target
genes and enhances the adaptability of tumor cells to hypoxia (189).
Zhong et al. found that under hypoxic conditions, DJ-1 is involved
in regulation of HIF-1a transcriptional activities, promoting PCa
adaptation to hypoxic environments (190). Inflammatory
microenvironments can also affect tumor survival and
progression. For instance, DJ-1 is involved in creation of
inflammatory tumor microenvironments. In their study, Chien
et al. found elevated levels of IL-1b in cultured macrophages from
DJ-1 DJ-1 Knockdown mice and DJ-1 knockdown mice (191). It
was also confirmed that the inflammatory microenvironment
generated by DJ-1 dysregulation sustained melanoma survival at
the point of lung metastasis. Another study found that adipose-
derived stem cells (ADSCs) induced by exosomal proteins exhibited
typical characteristics of tumor-associated myofibroblasts, and
could induce the phenotype and function of myofibroblasts in
ADSCs by activating intracellular signaling pathways. Increased
expression of smooth muscle actin (a-SMA) and tumor-promoting
factors such as the stromal cell-derived factor 1 (SDF-1) and TGF-b.
These outcomes are associated with increased expressions of TGF-b
receptors I and II in exosomes (189). Therefore, exosomal proteins
contribute to the generation of tumor-associated myofibroblasts in
the tumor stroma to construct an extracellular matrix environment
suitable for tumor survival.
Hormone Receptor Regulation and
Metabolic Reprogramming
Although the emergence of castration-resistant PCa poses
difficulties for androgen deprivation therapy (ADT), androgen
depletion and hormonal regulation have been the mainstay of
advanced disease treatment since the landmark discovery of
Huggins and Hodges (192). The PCaDEPr that are associated
with hormone receptor regulation, including adhesion spot
protein (VCL), play an important role in cancer progression.
Kawakami et al. reported that the VCL, through which integrins
associate with the actin cytoskeleton, promotes paclitaxel
resistance-associated PCa invasion. They found that VCL levels
were highest in CRPC, negative or very low in BPH and non-
CRPC, and confirmed that VCL overexpressions promotes PCa
progression by altering androgen receptor (AR) levels (21).
Iwamoto et al. found that Syntenin-1 levels are positively
correlated with prostaglandin E2 receptor (PTGER2) levels and
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promotes rectal cancer cell progression (147). In addition to
regulation of hormone receptors, these proteins mediate
hormone levels, thereby activating hormone receptors.
Abiraterone acetate (CYP17A1), an integrase involved in
adrenal steroid conversion and de novo synthesis of androgens,
is involved in CRPC production. Attard et al. used an inhibitor of
CYP17A1 synthesis to treat 21 desmoresistant PCa patients.
They reported a decrease in serum androstenedione,
dehydroepiandrosterone (DHEA) and testosterone levels in
vivo, and in CRPC patients. The antifungal drug, ketoconazole,
is similar to CYP17A1 inhibitors and suppresses testosterone
synthesis (193). Therefore, CYP17A1 promotes androgen
expressions, which have a significant role in AR activation.
Therefore, PCaDEPr mediated regulation of hormone
receptors may be one of the pathways in cancer progression.

Metabolic processes are crucial for cell survival, especially tumor
cells. The exosomal proteins have the ability to regulate substance
metabolism-related proteins to induce metabolic reprogramming
and provide energy as well as biosynthetic pathways to tumor cells.
For example, glucose transporter protein 1 (GLUT1) regulates
cellular glucose uptake and responds to suppressed
intracytoplasmic glucose levels. Cheng et al. found that Rab25
(member RAS oncogene family) regulates GLUT1 transport to cell
surfaces to enhance glucose uptake and ultimately increases glycogen
reserves as well as ATP levels in ovarian cancer cells (194). Even
though dysregulated glucose metabolism is important for metabolic
reprogramming in tumor cells, metabolic reprogramming in tumor
cells also involves lipid storage andmobilization.Walther et al. found
that Rab GTPases regulates GLUT (glucose transporter protein)
transport and lipid droplet (LD) formation during glucose and lipid
metabolism in cancer cells. Lipid droplets (LD) have a role in
intracellular lipid storage and maintenance of intracellular levels of
free lipids and energy homeostasis (195). Wu et al. reported that
Rab8a regulates lipid droplet fusion and cancer cell growth in
hepatocellular carcinoma (196), thereby maintaining hepatocellular
carcinoma cell survival.

Regulation of Lysosomal Functions
and Distribution
Lysosomes are important components of the endosomal system.
They are involved in various biological processes, including
macromolecular degradation, antigen presentation, intracellular
pathogen destruction, plasma membrane repair, exosomesrelease,
cell adhesion/migration, and apoptosis. Functional states and spatial
distributions of lysosomes are closely associated with cancer cell
proliferation, energy metabolism, invasion and metastasis, as well as
immune escape. Invasiveness of radiation-surviving cancer cells is
associated with altered lysosomal exocytosis induced by activation
of Arl8b present in prostate cancer-derived exosomes. Ping-Hsiu
Wu et al. found that after radiation, Arl8b, a small GTPase that
regulates lysosomal transport, increased its binding to its effector-
SifA and kinesin-interacting protein (SKIP) through the regulation
of the BORC (Biogenesis of lysosome-related organelles complex)
subunit. Knockdown of Arl8b or the BORC subunit suppressed
lysosomal cytokinesis and invasiveness of radiation-surviving breast
cancer tumor cells. In vivo, suppression of Arl8b levels inhibited
Frontiers in Oncology | www.frontiersin.org 11
radiation-induced invasive tumor growth and distant metastasis
(109). Moreover, Arl8b is also a key regulator of lysosomal
localization (197). The active form of Arl8b is mainly located in
the lysosome, where it regulates lysosomal transport to the cell
periphery (198). The cis-transport of lysosomes from the center of
microtubule tissues to the cell periphery is regulated by the BORC/
Arl8b/SKIP complex (199). Therefore, Arl8b regulates spatial
distribution of lysosomes and protease release through lysosomal
localization, leading to elevated tumor cell invasiveness. In addition,
as a key protein in lysosomal functions, cathepsin D is widely found
in PCa-derived exosomes and is associated with tumor progression.
Yong et al. found that cathepsin D levels are positively correlated
with colorectal cancer malignancy, and that patients with elevated
cathepsin D levels have lower survival rates (200).

Inhibition of Cancer Cell Apoptosis
Homeostatic balance in an organism is maintained by
programmed cell death or apoptosis. In addition to being
associated with tumor survival, apoptosis is also closely
associated late survival of tumor cells. In cancer patients,
tumor cells also undergo their own apoptosis, leading to the
death of cancer cells. However, some biomolecules such as
proteins present in prostate cancer-derived exosomes inhibit
this process to keep tumor cells alive. Hahm et al. reported
that induction of lysosomal-associated membrane protein 2A
(LAMP2A) expression inhibited the apoptotic abilities of
prostate cells, thereby enhancing cancer cell survival. LAMP2A
protein knockdown in PC-3 and 22Rv1 cells significantly
increased the apoptotic rate in both cells, confirming that
LAMP2A is involved in induction and activation of the
apoptotic protein (Bcl-2) (201). Ding et al. documented that
LAMP2A downregulation significantly increased positive
apoptosis-staining of hepatocellular carcinoma cells, while
decreasing Ki-67(a staining for lipid membranes) staining,
confirming that LAMP2A contributes to cancer persistence by
inhibiting apoptosis and promoting cell proliferation (202).
Moreover, in primary breast cancer samples, DJ-1 levels were
negatively correlated with PTEN immunoreactivity and
positively correlated with PKB (Protein kinase B)/Akt
hyperphosphorylation. Co-expressions of DJ-1 and PTEN
completely rescued the apoptotic processes of PTEN-induced
tumor cells (112).

Apoptosis affects tumorigenesis and has an important role in
late tumor progression. Therefore, interference with apoptosis
can promote cancer progression. In vitro and in vivo, elevated
caveolin-1 expressions in metastatic mice and human PCa cells
have been reported, suggesting that inhibition of apoptosis
promotes tumor progression. Overexpressions of caveolin-1 in
LNCaP) or upregulation of Cav-1 in androgen-insensitive
LNCaP clones makes these cells resistant to apoptosis (203). Li
et al. found a significant association between elevated
glucosamine-6-Phosphate Deaminase 1 (GNPDA1) levels and
advanced tumor stage, TNM (the TNM classification of
malignant tumors) stage or grade, and the subsequent
apoptotic staining analysis revealed that elevated GNPDA1
levels inhibited HCC cell apoptosis (104). Therefore, GNPDA1
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promotes hepatocellular carcinoma progression by inhibiting
HCC cell apoptosis.
PCADEPR IN CANCER TRANSFER

Approximately 90% of human cancer-associated deaths are
attributed to metastases (204). One of the hallmarks of
malignancy is a high degree of invasiveness and metastatic
capacity. During development of most cancer types, sooner or
later, the primary tumor mass produces free cells that invade
adjacent tissues and migrate to distant sites, where they establish
new tumor cell colonies. Presumably, the processes involved in
invasion and metastasis are: separation from the primary tumor
mass, reorganization/remodeling of the extracellular matrix, cell
migration, recognition, movement through endothelial cells and
vascular circulation, as well as colonization and proliferation
within the ectopic stroma. The key and initial to all these
processes is an increased ability of cancer cells to move
themselves and escape the control of normal physiological
regulation. Various biomolecules, including proteins, are
involved in regulation of tumor cell invasion and metastasis.
This could be because, proteins can influence the tumor
microenvironment, EMT, target microenvironment, vascular
regeneration, and metastatic signaling pathways to induce
distant tumor cell metastasis.
Establishment of pre-Metastatic
Ecological Niches
Tumor cells require a permissive environment in terms of nutrients,
extracellular matrix and immune cells to successfully metastasize to
distant organs. Therefore, tumor-adapted metastable environments
are particularly important for tumor metastasis, and the process of
constructing these microenvironments involve the establishment of
pre-metastatic ecological niches. Studies on metabolic networks and
seeding mechanisms of cancer cells in specific environments have
revealed that some integrin proteins are involved in establishment of
these ecological niches. During metastasis, tumor cells must acquire
the ability to remodel the extracellular matrix (ECM) to achieve
invasion and metastasis. Some exosomal proteins are involved in
regulation of this process. Bijnsdorp et al. found that Integrin Subunit
Alpha 3 (ITGA3) and Integrin beta-1 (ITGB1)were highly expressed
in urinary esosomes of metastatic PCa patients, and that ITGA3 and
ITGB1, as well as ITGA3 in exosomes, stimulated non-cancerous
epithelial cell migration and invasion. This enables the progression
and distant metastasis of cancer cells (205). Moreover, the
immunosuppressive microenvironment is important in
development of pre-metastatic niches, and some exosomal proteins
in PCa are involved in establishment of immunosuppressive
microenvironments. Allard et al. found that synergistic actions of
two extracellular nucleotidases (CD39 and CD73), constituted the
main source of extracellular adenosine in TME and were jointly
involved in development of immunosuppressive TME, such as
through tumor kinetics to redirect ATP to the immunosuppressive
adenosine-rich tumor microenvironment (206).
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Vascular regeneration of tumor cells enhances the migratory as
well as metastatic capacities of tumor cells, in addition to providing
them with a favorable nutritional environment (207). Some
exosomal proteins promote distant tumor cell metastasis through
this process. Gesierich et al. reported that quadruple transmembrane
protein-8 (Tspan8)-positive exosomes promoted endothelial cell
production and increased the expressions of vascular endothelial
growth factors as well as growth factor receptors in fibroblasts,
thereby promoting angiogenesis in pancreatic and gastric cancers
(208). Chen et al. found that in patients withmetastatic colon cancer,
high serum Galectin-3 levels were associated with elevated serum G-
CSF, IL-6 and sICAM1 levels, which interacts with the vascular
endothelium to increase the expressions of vascular cell adhesion
protein type I (VCAM-1) on endothelial cell surfaces, leading to
increased cancer cell-endothelial adhesion and increased endothelial
cell migration and small vessel formation (209). In addition,
intramembrane cleavage mediated by g-secretase, a large protease
complex consisting of a catalytic subunit (presenilin-1 or presenilin-
2) and auxiliary subunits (Pen-2, Aph1 and nicastrin), is an
important link in the Notch signaling pathway. Zeng et al.
documented that g-secretase affects cancer metastasis after Notch
activation cascade reactions, probably because g-secretase promotes
angiogenesis in solid tumors through Notch signaling (210).

In conclusion, the establishment of metastatic ecotone, including
immunosuppression and angiogenesis suggests that PCaDEPr is
involved in mediating the establishment of pre-metastatic ecotone
in tumors, thereby inducing cancer metastasis.

Alterations of Microenvironments at the
Target Site
Adaptive regulation of the microenvironment at tumor colonization
sitesprior tometastasis is important for tumorcolonization.Recently,
exosomal proteins have been shown to promote tumor cell
colonization of tissues and organs by modulating the tumor
metastasis target site microenvironments. In addition to alterations
of tumor microenvironments at the target site, there are changes in
bone colonization processes, such as the number and structures of
outcomes and osteoclasts. Prior to the arrival of tumor cells, primary
tumors actively regulate the nutritional, extracellular matrix and
immune environments of distant organs by secreting regulatory
factors, thus producing a permissive and supportive ecological
niche for tumor survival at the metastatic site. In tumor bone cell
metastasis, malignant communication between PCa cells and bone
cells (osteoblasts and osteoclasts) is established. Casimiro et al. found
thatPCacells provideosteoblastswithosteogenic cytokines [e.g. bone
morphogenetic proteins (BMPs), platelet-derived growth factors
(PDGF), endothelin-1 (ET1)] and osteolytic factors [e.g. MMPs
and vascular endothelial growth factor (VEGF)], which enables
these cells to make bone-derived cell growth factors (211). Itoh
et al. identified the ETS Proto-Oncogene 1 (Ets1) protein in PCa-
derived exosomes to be an osteoblast differentiation-related
transcription factor and found it to be a candidate inducer of
osteoblast differentiation (19). A standard exosomal protein study
found that exosome-mediated translocation of pyruvate kinase M2
(PKM2) fromPCa cells into BMSCs promotes PCa bonemetastasis.
Moreover, the PKM2 protein upregulates hypoxia-inducible factor
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1a (HIF-1a) in BMSCs to promote CXCL12 expressions in stromal
cells. Biologically, exosome-mediated PKM2 transport of prostate
tumor origin is a key mediator of PCa bone metastasis (45).

EMT Transformation and Regulation of
Cell Motility
Prior to metastasis, tumor cells are detached from their original sites
through loss of attachment and adhesion capacities and metastasize
to their target sites with blood or lymphatic chemotaxis, eventually
undergoing clonal growth at metastatic sites. Therefore, epithelial-
mesenchymal transition processes of EMT formation are important
in initiation of cancer metastasis. Various molecules, including
exosomal proteins, are involved in EMT transformation in tumor
cells. The loss of E-cadherin is associated with the loss of
intercellular contacts, disruption of the E-cadherin-catenin
complex, abnormal activation of b-catenin signaling as well as
cytoskeletal changes. This is critical for cells to lose their epithelial
polarity and acquire aggressive phenotypes. In primary PCa,
suppressed E-cadherin levels and elevated nucleus b-catenin levels
are strongly associated with metastasis and poor prognostic
outcomes. Zhang et al. observed elevated E-cadherin levels and
suppressed N-cadherin as well as wave protein levels in response to
melanopsin depletion. Silencing of melanopsin was associated with
suppressed total and activated b-catenin levels. In a subsequent
study, it was noted that when melanopsin was downregulated, PCa
cells exhibited decreased proliferation, migration and invasion
abilities (101). In addition to melanopsin, Rab3D induces
epithelial mesenchymal transformation. Tauro et al. found that
Rab3D regulates EMT transformation of tumor cells by activating
the Akt/GSK-3b/Snail signaling pathways (212). In addition,
overexpressing cells with melanopsin-like Rab2A suppresses E-
calmodulin while elevating N-calmodulin, wave protein, and
fibronectin levels, which affects the EMT phenotype (118).

Cell motility is key in cancer invasion and metastasis. The loss of
cell-cell adhesion and enhanced cell-matrix interactions are essential
for enhanced tumor cell motility (213). Four-transmembrane
proteins are associated with various processes, including signal
transduction pathways, cell activation, proliferation, motility,
adhesion, tissue differentiation, angiogenesis, tumor progression,
and metastasis (214, 215)and are present in urinary exosomes of
PCa patients. Even though most tetra-transmembrane proteins are
downregulated in metastatic tumors, the CD151 glycoprotein was
the first member of the tetra-transmembrane protein to be
identified as a metastasis promoter. This shows that the tetra-
transmembrane superfamily protein CD151 promotes cancer
migration and metastasis (216). Detchokul et al. revealed that
CD151 can regulate the redistribution of adhesion components
required for cell migration as well as invasion and the process of
targeted delivery of matrix degrading enzymes, confirming that
CD151 promotes cell motility and tumor invasion (217). Gesierich
et al. found that colocalization of integrin b4 with CD151 activates
PKC to promote integrin internalization, thereby increasing tumor
cell motility (218). Ang et al. found that CD151-transfected LNCaP
cells had greater motility, compared to controls and that PC3 cells
with CD151 knockdown showed reduced motility. However, the
responsible mechanisms have not been elucidated (219). In
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conclusion, CD151 induces distant cancer cell metastasis by
regulating tumor cell motility.

Activation of Metastatic Signaling
Pathways
Tumor-associated exosomal proteins have the ability to mediate
the activation of common signaling pathways to induce tumor
cell metastasis. Hao et al. found that CD44 or CD147 knockdown
downregulated p-Akt and p-Erk levels in PC3 cells and inhibited
the activations of PI3K/Akt and MAPK/Erk signaling pathways.
The administration of drugs that selectively target CD44/CD147
alone or in combination with docetaxel restricted CaP metastasis
(50). Therefore, CD44 and CD147 enhances the metastatic
abilities of CaP cells, possibly by activating PI3K and MAPK
pathways. He et al. found that DJ-1 knockdown markedly
suppressed invasive and migration abilities of pancreatic
cancer cells, inhibited the expressions and activities of uPA
and induced cytoskeletal disruption. These outcomes may have
been because DJ-1 downregulation inhibited SRC and ERK1/2
phosphorylation, which suppressed SRC and ERK signaling
pathways-mediated expressions of uPA (220). Yang et al.
reported that the exosomal protein (Rab3D) was highly
expressed in malignant breast cancer but not in normal tissues
and benign breast tumors. The knockdown of Rab3D
significantly inhibited the migration abilities of breast cancer
cells, which was confirmed to be mediated by Rab3D activations
of AKT/GSK-3b/Snail signaling pathways (116). In addition,
exosoemal proteins are involved in intermediate pathways of
metastatic signaling pathways to induce cancer metastasis.
Boscher et al. found that EGF activations of downstream
integrin signaling pathways in breast cancer adenocarcinoma
epithelial cells induces tumor metastasis dependent on
synergistic actions of Galectin 3 and p-Caveolin-1 (221). Thus,
PCaDEPr activates multiple tumor metastasis signaling
pathways to induce cancer metastasis.
PCADEPR IN CANCER DRUG
RESISTANCE

Tumor cell sensitivity to chemotherapeutic agents is essential for
cancer drug therapy. Many biological factors modulate the sensitivity
as well as resistance of tumors to chemotherapeutic agents (222,
223). In patients with prostate tumors, exosomal proteins have been
shown to be essential for the development of drug resistance. With
increasing administrations of chemotherapeutic drugs, the rates of
tumor drug resistance have been increasing year by year. Therefore,
elucidation of the mechanisms involved in chemotherapeutic
resistance to identify new therapeutic targets is the direction of
today’s oncology research. Previous exosomes studies found that
PCaDEPr regulates tumor sensitivity to drugs through various
pathways. For example, Survivin is expressed in PCa-derived
exosomes and its downregulation sensitizes PCa cells to
chemotherapeutic agents (59). Doxorubicin is a chemotherapeutic
agent that usually becomes ineffective against tumor cells over time
due to chemoresistance. Breast cancer cells lacking LAMP2A exhibit
June 2022 | Volume 12 | Article 873296
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increased sensitivity to this drug (224). In addition, LAMP2-
mediated autophagy in PCa-derived exosomes modulates lung
cancer cell resistance to temozolomide (225). Pedram et al. found
that resistance of DU145 and PC-3 to docetaxel and paclitaxel was
partly due to P-gp expressions and confirmed that P-gp protein
levels in exosomes reflect P-gp levels in PCa cells (226).

In cisplatin-resistant ovarian cancer cells, claudin-4 was
overexpressed 7.2-fold and was one of the most overexpressed
proteins, suggesting that it may be associated with cisplatin
resistance in ovarian cancer. Expressions of claudin, including
claudin-3, -4 and -7, were markedly higher in chemoresistant
ovarian cancer cells than in chemo-sensitive ovarian cancer cells.
Their high expressions were positively correlated with ovarian
cancer resistance to chemotherapy (227). Liu et al. found that
elevated levels of synaptic binding protein-like 4 (SYTL4), a Rab
effector in vesicular transport, are associated with poor prognostic
outcomes in TNBC (triple negative breast cancer, referring to breast
cancer lacking estrogen receptor (ESr or Er), progesterone receptor
(Pr) expression with lack of epidermal growth factor receptor-2
gene (HER) expression), especially in paclitaxel treated TNBC. It
has been postulated that SYTL4 confers resistance to paclitaxel in
triple-negative breast cancer (110).

These findings demonstrate that PCaDEPr plays an
important role in promoting drug resistance in tumor cells.
SUMMARY AND OUTLOOK

With further research on PCaDE, tumor-derived exosomal proteins
have attracted special attention. In this review, we discuss recent
advances in research related to PCaDEPrs from the perspective of
promoting tumorigenesis and progression. The role of these
exosomal proteins present in cells or other tumors is also
highlighted, although this does not mean that they remain such
in specific tumor exosomes. However, because of this, this may
provide researchers who identify differential proteins by routine
protein analysis for subsequent functional validation with new
directions for these exosomal proteins in prostate cancer research.

AlthoughPSA is of great value as a commonly used tumormarker
in the diagnosis and prognosis of prostate cancer, it has undeniable
limitations, especially for the early diagnosis of bone metastatic
prostate cancer. Exosomes may have more potential than PSA for
therapeutic purposes, with a number of publications reporting that
interference with exosome production and expression of exosome-
containing substances will significantly reduce tumor metastasis and
aggressiveness. In addition, important progress has beenmade in the
study of drug-loaded exosomes, modified exosomes, and MSC
exosomes in disease therapy. However, several questions remain to
be addressed in future studies:1. With the study of exosome
proteomics, more and more different kinds of proteins have been
discovered one after another. However, it is not possible to conclude
that the extracted proteins are necessarily present in exosomes
according to the current database, so a more rigorous and extensive
study is still needed to clarify the types of substances contained in
tumor-derived exosomes in order to exclude heterogeneous proteins.
2. Due to the limitations of current extraction techniques, it is difficult
Frontiers in Oncology | www.frontiersin.org 14
to extract exosomes with 100% purity, and exosomes themselves
contain a variety of secretory proteins, so it is difficult to determine the
exact source of secretory proteins in exosomes of somatic fluid origin:
exosomal origin? Body fluids themselves contain? 3. We found that
tumors can release some exosomes rich in protective proteins that can
inhibit cancer progression, so extracting these exosomes for
interfering with tumor progression may be a new avenue for tumor
therapy. 4. A large number of studies have found that some proteins
present in exosomes and with protective effects significantly decrease
with cancer progression. it remains unclear whether the effect of
exosomes derived from primary and bone metastatic PCa on the
establishment of the target microenvironment is persistent or
transient, and further studies of these exosomes are therefore
still necessary.

Bone metastatic prostate cancer and the emergence of CRPC
types pose great difficulties in the treatment of PCa. Recent literature
has demonstrated that tumor-derived exosomal proteins can be
transported to distant metastatic targets, creating “fertile ground” to
promote cancer metastasis. This may offer hope for finding ways to
diagnose and treat bone metastases from prostate cancer.
Furthermore, exploring the role of tumor-derived exosomes in
cancer development may be a way to address these challenges.
The successful treatment of these complex cancers depends on our
full understanding of the single actions or interactions and
mechanisms of action of the various components of exocytosis.
We elucidated on the various functions and possible mechanisms of
exosomeal proteins in PCa body fluids or tissues during tumor
development. The exosomeal proteins can influence tumor
initiation, progression, and drug resistance processes through
various complex mechanisms. Elucidation of the mechanisms
through which biomolecules, such as proteins, act on these
processes will make it possible for us to target these proteins for
cancer treatment. However, the most suitable exosomes molecular
target for the diagnosis and treatment of PCa has yet to be identified,
and the clinical applications of exosomes are associated with some
challenges. For instance, exosomes isolation and extraction methods
are still limited to the laboratory, relatively harsh storage conditions
for exosomes, and medical costs. With rapid advances in exosome-
related technologies and in-depth research on PCaDEPr,
applications of exosomal proteins in the diagnosis and treatment
of PCa will soon be realized.
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