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A polygenic methylation prediction model
associated with response to chemotherapy
in epithelial ovarian cancer
Lanbo Zhao,1,3 Sijia Ma,1,3 Linconghua Wang,2,3 Yiran Wang,1 Xue Feng,1 Dongxin Liang,1 Lu Han,1 Min Li,2

and Qiling Li1

1Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China; 2Hunan Provincial Key Lab on

Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, Hunan, China
To identify potential aberrantly differentially methylated genes
(DMGs) correlated with chemotherapy response (CR) and estab-
lish a polygenicmethylation predictionmodel of CR in epithelial
ovarian cancer (EOC), we accessed 177 (47 chemo-sensitive and
130 chemo-resistant) samples corresponding to three DNA-
methylation microarray datasets from the Gene Expression
Omnibus and 306 (290 chemo-sensitive and 16 chemo-resistant)
samples from The Cancer Genome Atlas (TCGA) database.
DMGs associated with chemotherapy sensitivity and chemo-
therapy resistance were identified by several packages of R soft-
ware. Pathway enrichment and protein-protein interaction
(PPI) network analyses were constructed byMetascape software.
The key genes containing mRNA expressions associated with
methylation levels were validated from the expression dataset
by the GEO2R platform. The determination of the prognostic
significance of key genes was performed by the Kaplan-Meier
plotter database. Thekey genes-basedpolygenicmethylationpre-
diction model was established by binary logistic regression.
Among accessed 483 samples, 457 (182 hypermethylated and
275 hypomethylated) DMGs correlated with chemo resistance.
Twenty-nine hub genes were identified and further validated.
Three genes, anterior gradient 2 (AGR2), heat shock-related
70-kDa protein 2 (HSPA2), and acetyltransferase 2 (ACAT2),
showed a significantly negative correlationbetween theirmethyl-
ation levels and mRNA expressions, which also corresponded to
prognostic significance. A polygenic methylation prediction
model (0.5253 cutoff value) was established and validated with
0.659 sensitivity and 0.911 specificity.
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INTRODUCTION
Epithelial ovarian cancer (EOC) is themost common lethal gynecologic
malignancy, and the most fatal cancer in the female reproductive sys-
tem, with a 5-year survival rate of only 39%.1–3 Late diagnosis and
chemoresistance could account for its therapeutic failure andhighmor-
tality.4 Currently, the standard treatment for patients with EOC is
optimal cytoreductive surgery combined with platinum-based chemo-
therapy.5,6 Nevertheless, although most patients initially respond to
chemotherapy with complete or partial remission, approximately
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80% of patients develop chemotherapy resistance, and up to 75% of pa-
tients eventually relapse within less than 2 years.7–9 Acquired resistance
to chemotherapeutic drugs is amajor barrier to the treatment of EOC. It
is significant to find biomarkers that can effectively and accurately pre-
dict responses to chemotherapy.However, until now, there are no avail-
able effective biomarkers to predict the effects of chemotherapy
in patients with EOC.10

Epigenetic mechanisms have been proven to play a critical role in
chemotherapy resistance of ovarian cancer.11 Particularly, it has been
demonstrated that abnormal DNAmethylation—one of themost com-
mon and crucial epigenetic modifications—may affect the sensitivity of
tumor cells to antitumor drugs by robustly modulating the expression
of genes associated with chemotherapy response and serve as a poten-
tial biomarker to predict response to chemotherapeutic strategies.12–14

In the past few years, several studies have confirmed the relationship
between gene hypermethylation and chemo resistance. The effect of
gene methylation may depend on the location and level of gene
methylation. Cacan15 and Tomar et al.16 separately discovered that
gene RGS2 is hypermethylated in chemo-resistant ovarian cancer
cells, and gene FAM83A and MYO18B are hypermethylated in pa-
tients with no response to chemotherapy. Tian et al.17 first provided
the evidence that due to hypermethylation of the upstream region,
loss of expression of gene hMSH2 could play a vital role in the mech-
anism of platinum resistance in patients with EOC. Glasspool et al.18

have illustrated that after using cytidine 5-azacytidine to successfully
eliminate the methylation status of gene MLH1, silencing of MLH1
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Table 1. Patient characteristics from TCGA and GEO database

Variables Chemo-sensitive group Chemo-resistant group p value

Number 337 277

Age (years)

Mean 58.4 59
0.692

Range 26�87 43�77

Stage

I 1 218

0.675

II 14 1

III 252 25

IV 40 2

Not available 30 31

Grade

G1 1 218

0.751

G2 46 1

G3 253 24

G4 0 1

Not available 37 33
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was found to be closely related to platinum-based chemotherapy
resistance in ovarian cancer cell lines. Other similar studies have
also found that epigenetic silencing of SFRP5 may activate proto-on-
cogenes in theWnt pathway, leading to progression of ovarian cancer
and chemotherapy resistance.19

Although compared with hypermethylation, hypomethylation of
ovarian cancer-related genes has been studied insufficiently, more
attention has been paid in recent years. A study on the gene MAL
has shown that MAL is highly expressed at the transcriptional level
in platinum-resistant ovarian cancer cell lines, and the overexpression
of MAL caused by promoter hypomethylation is correlated with poor
prognosis in ovarian cancer.20 Similarly, methylation-induced inacti-
vation of the gene FANCF in ovarian cancer cell lines was followed by
an increasing sensitivity to platinum.21 Therefore, the detection of
abnormal DNA methylation alterations is a promising tool for the
prediction of chemotherapy response.

However, no DNA methylation gene was identified to have the high
sensitivity and specificity to accurately represent the chemotherapy
response of ovarian cancer. One reason may be that previous studies
have mostly paid attention to one or a few candidate genes, which
could not reflect the most significant feature of drug resistance. To
successfully identify satisfactory biomarkers to predict responses to
chemotherapy, big data analysis by comprehensive bioinformatics
must be combined to select key genes and establish effective polygenic
methylation prediction models.

The aim of our study is to explore specific DNAmethylation genes as
biomarkers and establish a polygenic methylation prediction model
to effectively predict patients’ responses to chemotherapy. Gene
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Expression Omnibus (GEO)22 datasets and The Cancer Genome
Atlas (TCGA) database were combined to identify chemotherapy
response-related differentially methylated genes (DMGs) of EOC,
including hypermethylated and hypomethylated genes. Next, main
hub genes were detected by investigating the Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and
protein-protein interaction (PPI) network analysis using Metascape
software. Then, key genes were obtained through expression data
analysis and prognostic validation. At last, through comprehensive
analysis, an optimal key genes-based polygenic methylation predic-
tion model was established to effectively predict individual respon-
siveness to chemotherapy in EOC.

RESULTS
Patient characteristics

The data from 483 samples with serous EOC were extracted from
GEO and TCGA. The clinical characteristics of the discovery cohort
are shown in Table 1. There were a total of 337 chemo-sensitive pa-
tients and 146 chemo-resistant patients. No significant difference
was found in the age (p = 0.692), stage (p = 0.675), and grade (p =
0.751) between the two groups.

Datasets and sample selection

In accordance with the inclusion and exclusion criteria, 178 samples
(corresponding to three datasets) from three GEO datasets and 306
samples of EOC from TCGA database were accessed. After removing
1 poor quality sample, 177 samples from GEO and 306 samples from
TCGA were further analyzed.

Group assignments

In our study, a total of 483 samples, including 337 chemo-sensitive
ovarian cancer samples and 146 chemo-resistant ovarian cancer sam-
ples, were analyzed, which were comprised of 177 samples from GEO
datasets (47 chemo-sensitive samples and 130 chemo-resistant sam-
ples) and 306 samples from TCGA (290 chemo-sensitive samples
and 16 chemo-resistant samples). We defined these two data clusters
from GEO and TCGA database as follows (Figure S1):

Cluster 1: From GEO datasets (Illumina HumanMethylation450
BeadChip), mainly according to the citations from PubMed, sam-
ples were categorized into two groups: chemo-sensitive group (n =
47) and chemo-resistant group (n = 131), which was defined as
cluster 1.

Cluster 2: From TCGA database, DNAmethylation data from 626
patients were obtained (n = 10 using the Illumina HumanMethy-
lation450 BeadChip and n = 616 using the Illumina HumanMe-
thylation27 BeadChip). All patients underwent surgical treatment
followed by platinum-based chemotherapy. After excluding pa-
tients whose clinical information of the response to the first ther-
apy was not available, we divided the patients (n = 306) into two
groups: a chemo-sensitive group (n = 290) and a chemo-resistant
group (n = 16) according to the period after initial treatment. Due
to the large number of differences between these two groups, the
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direct comparison may not be statistically significant. Because it
has been demonstrated that some same probes exist in both 27k
and 450k BeadChip, those probes in the 450k BeadChip from
the GEO datasets (specifically, from the chemo-resistant group
in GEO) that correspond to the same probes in the 27k BeadChip
were extracted and added to the chemo-resistant group in TCGA.
There were a total of 130 samples from the GEO chemo-resistant
group that were added to TCGA chemo-resistant group. Finally,
cluster 2 was defined as follows: chemo-sensitive group (n =
290) cases (all from TCGA) and chemo-resistant group (n =
146) cases (16 from TCGA, 130 from GEO).

Data preprocessing

For cluster 1 from three GEO datasets, there were a total of 485,512
probes on the Illumina HumanMethylation450 BeadChip download.
The minfi package of R software was used for data quality control
with the following steps: one poor quality sample was excluded for
p value cutoff (>0.05). Then, after normalization, 320 probes with a
p value greater than 0.01 in at least 50% of samples, 11,346 probes
on the X or Y chromosome, 23,343 probes containing SNPs, and
20,569 cross-reactive probes were excluded. Next, after using the
sva package of R software and the combat function to batch effect,
429,934 probes (corresponding to 9,387 genes) were retained and
further analyzed from the original 485,512 probes. The limma pack-
age of R software was chosen to perform the probes-level differential
methylation analysis. Probes with adjusted p value <0.01 and beta
value >0.2 or <�0.2 were used to identify significant differentially
methylated probes (DMPs). At last, 38 probes (corresponding to 25
genes) were differentially methylated (Figure S1A).

For cluster 2 from the combination of GEO and TCGA, after quality
control and probes affected by SNP and on X and Y chromosomes
were removed, data were merged with the probes containing null
values, and there were a total of 20,410 shared probes corresponding
to 15,000 genes in the 450k and 27k BeadChip. Finally, with the use of
the limma package of R software, 404 probes (corresponding to 432
genes) were differentially methylated (Figure S1B).

Detection of DMGs

The methylation differences between the chemo-sensitive group and
the chemo-resistant group with the combination of cluster 1 and clus-
ter 2 were mainly analyzed. After normalization and quality control,
429,934 probes (corresponding to 9,388 genes) in cluster 1 and 20,410
probes (corresponding to 15,000 genes) in cluster 2 were retained and
further analyzed. With the use of the criteria of adjusted p value <0.01
and beta value >0.2 or <�0.2, 38 DMPs corresponding to 25 genes in
cluster 1 and 404 DMPs corresponding to 432 genes in cluster 2 were
identified. Among these, a total of 457 DMGs, 182 genes (40%), were
significantly hypermethylated, and 275 genes (60%) were significantly
hypomethylated in chemo-sensitive groups versus chemo-resistant
groups.

With these DMGs, their regional distribution in the gene context,
CpG-island (CGI) neighborhood, and chromosome was investigated,
respectively. First, the methylation level distribution of probes located
in six gene-based regions (TSS1500, TSS200, 50 UTR, first exon, gene
body, and 30 UTR) and six CGI-based regions (CGIs, south and north
shores, south and north shelves, and OpenSea) was identified. Among
the 182 hypermethylated genes, 23% genes’ methylation sites were
located in body and 50 UTR, separately; 22% were located in the 1st

exon; 19% were located in TSS1500; and 10% and 3% were located
in TSS200 and 30 UTR, respectively (Figure 1A). Referring to the
six CGI-based regions, 47% of hypermethylated genes were located
in OpenSea, and 22% were in island; the remaining was no less
than 31% (Figure 1B). Among the 275 hypomethylated genes, 38%
were located in TSS1500; 20% were in 50 UTR; 16% were in body;
and 15%, 10%, and 1% were in the 1st exon, TSS200, and 30 UTR,
respectively (Figure 1C). Referring to the six CGI-based regions,
46% were in OpenSea, 20% and 18% were in north shore and south
shore, 12% were in island, and the remaining was no less than 5%
(Figure 1D). Then, the distribution of probes located in the chromo-
some is shown in Figures 1E and 1F, respectively, among hyperme-
thylated and hypomethylated genes. Several original missing data
about chromosomal location were complemented by searching on
the University of California, Santa Cruz (UCSC), Genome Browser
on Human Feb. 2009 (GRCh37/hg19) Assembly. There were signifi-
cant differences found in the gene context, CGI neighborhood, and
chromosome of regional distribution between hypermethylated and
hypomethylated genes (p = 0.01, 0.000, and 0.009).

Pathway enrichment and PPI network analyses

To explore the biological functions of the 457 DMGs, GO, KEGG
pathway enrichment, and PPI network analyses were performed by
Metascape.

After calculating enrichment factors and accumulative hypergeomet-
ric p values, a subset of representative statistically enriched pathways
(both GO and KEGG) were clustered and converted into a network
layout based on Kappa-statistical similarities (Figure 2A). A specific
pathway term was represented by a circle node, of which the number
of input genes that fall into that term was in proportion to the size and
of which cluster identity was represented by a specific color. Terms
with a similarity score more than 0.3 were linked by an edge (the
similar score was represented by the edge’s thickness). The network
was visualized by Cytoscape (v.3.1.2).

In GO Biological Processes, a total of 254 pathways were found. Ac-
cording to ranking these enrichment pathways by �log10(P), the top
10 pathways were the following: cellular defense response, positive
regulation of apoptotic signaling pathway, response to extracellular
stimulus, microglial cell-mediated cytotoxicity, cell-substrate adhe-
sion, myeloid leukocyte activation, metal ion homeostasis, negative
regulation of immune system process, neuron cellular homeostasis,
and hindlimb morphogenesis. The heatmap of the top 10 GO path-
ways is shown in Figure 2B.

In KEGG, there were a total of five pathways enriched as follows: cyto-
kine-cytokine receptor interaction, Staphylococcus aureus infection,
Molecular Therapy: Oncolytics Vol. 20 March 2021 547
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Figure 1. Regional distribution in the gene context, CpG-island neighborhood, and chromosome between hypermethylated and hypomethylated genes

(A) The proportion of hypermethylated and hypomethylated genes among all 457 differentially methylated genes. (B) Regional distribution in the gene context of 182

differentially hypermethylated genes. (C) Regional distribution in the CpG-island neighborhood of 182 differentially hypermethylated genes. (D) Regional distribution in the

gene context of 275 differentially hypomethylated genes. (E) Regional distribution in the CpG-island neighborhood of 275 differentially hypomethylated genes. (F) Regional

distribution in the chromosome of 182 differentially hypermethylated genes.
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cell adhesion molecules (CAMs), calcium signaling pathway, and
amphetamine addiction (p = 0.005, 0.004, 0.006, 0.007, and 0.008,
respectively) (Table 2).

The MCODE algorithm in ClusterViz was then applied to identify
neighborhoods where proteins were densely connected. Each
MCODE network was assigned to a unique color (Figure 2C).
MCODE 1, which had the most densely connected proteins, was
composed of a nucleobase-containing small molecule metabolic pro-
cess, ribonucleotide triphosphate metabolic process, and small mole-
cule biosynthetic process. The biological interpretations about PPI
network and MCODE components are in Table S1.

After comprehensively analyzing the gene data from pathway enrich-
ment, and PPI network analysis combined with detailed gene studies
manually searched in PubMed about the correlation between specific
genes and cancer, 29 hub genes were selected for further validation.
(Detailed selection process is shown in Figure S2.) Of these, we identi-
fied 10 genes whose beta value was the top 10 among 457 DMGs be-
tween the chemo-sensitive and chemo-resistant groups (DNMBP/
NCAPH2/BLNK/TTYH1/ECEL1/NDST4/HAMP/anterior gradient 2
[AGR2]/TRAF3IP3/GBGT1); 8 genes belonging to the MCODE 1,
which had the most densely connected proteins (heat shock-related
70-kDa protein 2 [HSPA2]/HIST1H2BK/PFKM/ARF4/acetyltransfer-
ase 2 [ACAT2]/PABPC3/ALDH1A3/EEF1B2); 5 genes belonging to
548 Molecular Therapy: Oncolytics Vol. 20 March 2021
the Staphylococcus aureus infection pathway in KEGG (C2/CFB/
HLA-DOB/ITGAL/ITGAM); and 6 genes belonging to the cellular de-
fense response pathway in GO, which was the top 1 pathway in
�log10(P) (ADORA2A/CD5L/CXCR2/LBP/LSP1/ZNF148). (Detailed
gene information is shown in Table 3.)

The validation of hub gene expression levels

With the consideration of the relationship between abnormal DNA
methylation and gene expression, we validated the selected hub genes
with the expression data from GEO: GSM15372 (GEO expression
profiling by array). According to the referring study, which provided
the difference of gene expression between chemo-sensitive and
chemo-resistant ovarian cancer cell lines,21 ten samples in the study
corresponding with the two groups above were defined, and the
GEO2R platformwas used to obtain the differentially expressed genes
(DEGs) with the standard of log, fold change (FC) >1 or <�1, p <0.05.

Three keys genes, AGR2, HSPA2, and ACAT2, were validated to
intuitively have a negative correlation between DNA methylation
levels and RNA expressions among the sensitive and resistant
groups. The histogram of RNA expressions from GEO2R and the
boxplot of DNA methylation levels from the aforementioned bio-
informatical analysis about AGR2, HSPA2, and ACAT2 are shown
in Figures 3A, 3B, 3D, 3E, 3G, and 3H, respectively. In the
chemo-resistant group, the RNA expression and DNA methylation



Figure 2. Enrichment pathway and PPI network analysis by Metascape

(A) Enriched ontology clusters colored by cluster ID. (B) Heatmap of top 10 GO pathways. (C) PPI MCODE components.
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levels of gene AGR2 were lower and higher compared with the
chemo-sensitive group, which was in accordance with the worse
prognosis. Genes HSPA2 and ACAT2 showed a similar tendency,
in which the RNA expression and DNA methylation levels of genes
HSPA2 and ACAT2 were higher and lower in the chemo-resistant
group with worse prognosis.

The prognostic significance of validated key genes

To estimate the prognostic significance of abnormally expressed
AGR2, HSPA2, and ACAT2, the survival time (including progres-
sion-free survival [PFS] and post-progression survival [PPS]) and
gene-expression levels were acquired from the Kaplan-Meier plotter
website (Figures 3C, 3F, and 3I, respectively). The analysis results
showed that the high expression level of AGR2 and lower level of
HSPA2 and ACAT2 were related to longer PFS and PPS, which
was consistent with the resistant status.

Establishment and validation of the polygenic methylation

prediction model

Based on methylation data from these three validated key genes from
473 samples from GEO and TCGA, a polygenic methylation predic-
tion model was established to effectively predict patients’ responses to
chemotherapy. Because of the independent variables of the three
genes’ DNA methylation levels, which were continuous variables,
and the dependent variable of response to chemotherapy (i.e., chemo
sensitive or chemo resistant), which is a binary or dichotomous var-
iable, the binary logistic regression (LR) model was appropriate and
was chosen to establish the model. To validate the accuracy and effi-
ciency of the model, we randomly divided the samples into training
set (n = 146) and validation set (n = 337). Next, the forward: LR
method in binary LR was selected to help screen for independent vari-
ables that had a significant impact on the dependent variable. Three
models and corresponding detailed information, including correct
rate, area under the curve (AUC), 95% confidence interval (CI), cutoff
value, sensitivity, and specificity among the training set and validation
set, are shown in Table 4. The receiver operating characteristic23

curves of the three models with training set and validation set are
shown in Figures 4A and 4B, respectively. The third model, which
included all three key genes as independent variables, had the largest
AUC of 0.84 and the highest correction prediction rate of 82.1%,
which suggested its high accuracy in prediction performance. The
cutoff value of the third model was 0.5253 with 0.659 sensitivity
and 0.911 specificity.

Model 1 : log itðPÞ = 15:594 � AGR2� 3:387

Model 2 : log itðPÞ = 12:619 � AGR2� 6:023 � ACAT2� 1:713

Model 3 : log itðPÞ = 15:011 � AGR2+ 5:983 �HPSA2� 5:797

� ACAT2� 4:219

Therefore, it was obvious that the third model was the most appro-
priate polygenic methylation prediction model to predict responses
to chemotherapy with high accuracy and efficiency.
Molecular Therapy: Oncolytics Vol. 20 March 2021 549
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Table 2. KEGG enrichment pathway

GO Description log(P) Hits

hsa04060 cytokine-cytokine receptor interaction �2.34116

TNFRSF17|EGF|
IL3|CXCR2|OSM|
PRLR|CX3CL1|GDF5|
CCL26|IL20RA|
CCL28|ACKR3

hsa05150 Staphylococcus aureus infection �2.43601 CFB|C2|HLA-DOB|ITGAL|ITGAM

hsa04514 cell adhesion molecules (CAMs) �2.25605
CD6|HLA-DOB|ITGAL|
ITGAM|SPN|CLDN16|CLDN15|NLGN2

hsa04020 calcium signaling pathway �2.16711
ADORA2A|ATP2B2|CCKAR|
GNA15|GNAS|P2RX1|PPP3R2|PPIF|LTB4R2

hsa05031 amphetamine addiction �2.07771 GNAS|PPP1CC|PPP3R2|CREB5|GRIN3A
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DISCUSSION
It has been suggested that the alterations of DNAmethylation-induced
expression of various drug response-related genes and pathways may
take part in the development of chemotherapy resistance in EOC.17

In the present study, we used a series of bioinformatical methods to
screen the most likely chemotherapy response-related DMGs in EOC.
With the data combination between GEO and TCGA, 457 genes (cor-
responding to 182 hypermethylated genes and 275 hypomethylated
genes) were identified. Metascape software was chosen to analyze the
pathway enrichment (GO and KEGG) and PPI network among the
genes to find dense connections among these genes. After comprehen-
sive analysis, 29 hub genes were identified to be further validated. By the
combination of expression data fromGEO and prognostic information
from a survival curve, three key genes (AGR2, HSPA2, and ACAT2)
were validated to have a negative correlation betweenDNAmethylation
levels andRNA expressions, and their RNA expressions among the sen-
sitive and resistant groups had corresponding prognoses.

Based on these three genes’ methylation levels, three prediction
models were established and validated by binary LR with the forward:
LR method. AUC, sensitivity, and specificity were calculated to verify
the accuracy of models, respectively. The most optimal prediction was
confirmed by the highest AUC.

AGR2 belongs to a family of chaperone-like proteins, namely, protein
disulfide isomerase (PDI), which are micro-environmentally regula-
tory proteins that can catalyze the formation, reduction, or isomeri-
zation of disulfide bonds in their network. These enzymatic reactions
promote the maturation of proteins into bioactive conformations in
the endoplasmic reticulum (ER).24,25 Recently, it has been demon-
strated that downregulation of AGR2 was associated with progression
and chemotherapy resistance in ovarian cancer.23 HSPA2 is a mem-
ber of the heat shock protein 70 family,26 and ACAT2 belongs to lipid
metabolism enzymes.27 Although, at present, there has been no
research available illustrating the relation among gene HSPA2,
ACAT2, and drug resistance in ovarian cancer, it has been shown
that HSPA2 is associated with tumor progression, and overexpression
of HSPA2 was proven to correlate with tumor angiogenesis and poor
prognosis in pancreatic carcinoma.27 Furthermore, ACAT2 plays a
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pivotal role in the prognosis of clear cell renal cell carcinoma.28 These
studies indirectly validated our bioinformatical results.

Finally, an optimal polygenic methylation prediction model was es-
tablished in our study. There are few previous studies focusing on es-
tablishing a prediction model to predict chemotherapy responses in
ovarian cancer. In 2016, Gonzalez Bosquet et al.29 were the first to
construct prediction models to predict chemotherapy response by
applying multiple different modeling methods. But, compared with
our results, although Gonzalez Bosquet et al.29 applied nine statistical
methods to perform the model, the highest AUC among those nine
models was only 0.73, which was lower than any model in our study.
Apart from using only AUC and 95% CI to measure the performance
of prediction models, we also calculated sensitivity and specificity be-
tween the training set and validation set. Through detecting methyl-
ation levels of specific sites in these three genes and obtaining the pre-
diction value, these models could not only be used to predict patients’
response to chemotherapy before treatment, which could guide the
clinician to choose effective drug therapy, but also could be used dur-
ing the treatment as effect biomarkers to monitor patients’ responses
and reflect the transition of acquired drug resistance in a timely way.

Admittedly, limited by the current data information of tumor data-
bases, which have few available samples concentrating specifically
on the drug sensitivity and resistance of ovarian cancer, we only
have 483 samples analyzed and only refer to the level of gene methyl-
ation and RNA expression with different samples. To validate and
improve our models in the future, more sequencing data are urgently
needed. Since EOC is a kind of very heterogeneity cancers, to discover
the whole landscape of chemotherapy resistance, the use of DNA
methylation and RNA expression only is largely insufficient; multi-
omics sequencing, including whole genome sequencing, transcrip-
tome sequencing, epigenetic sequencing, proteome sequencing, and
metabolome sequencing, must be combined and detected on the
same sample to eliminate the heterogeneity and establish multi-
omics prediction models.

Our study has established an optimal polygenic methylation predic-
tion model, based on three key genes—AGR2, HSPA2, and



Table 3. The characteristics of 29 hub genes

P_to_T gene P_to_T adj. p val P_to_T logFC Gene context CpG-island neighborhood Chromosome

C2 1.48E�38 �0.214045444 30 UTR OpenSea chr6

CFB 1.48E�38 �0.214045444 TSS1500 OpenSea chr6

HLA-DOB 2.19E�17 �0.219949192 body OpenSea chr6

ITGAL 2.54E�31 0.20677909 1st exon N_shore chr16

ITGAM 1.21E�24 0.215777262 body OpenSea chr16

DNMBP 6.83E�138 0.445191907 50 UTR OpenSea chr10

NCAPH2 6.10E�165 �0.440596603 1st exon; 50 UTR island chr22

BLNK 9.59E�67 �0.365733256 1st exon OpenSea chr10

TTYH1 1.60E�80 �0.352957924 TSS1500 N_shore chr19

ECEL1 5.65E�60 0.344504731 TSS1500 island chr2

NDST4 1.35E�54 �0.344206777 TSS1500 OpenSea chr4

HAMP 9.92E�43 0.33090596 1st exon; 50 UTR S_shelf chr19

AGR2 1.97E�64 �0.326537378 50 UTR; 1st exon OpenSea chr7

TRAF3IP3 2.29E�93 0.325696324 TSS200 OpenSea chr1

GBGT1 1.80E�34 0.324487248 50 UTR island chr9

HSPA2 3.91E�51 0.291132114 1st exon island chr14

HIST1H2BK 9.99E�21 0.232543124 30 UTR N_shore chr6

PFKM 2.85E�22 �0.21989798 50 UTR; 1st exon; body OpenSea chr12

ARF4 2.05E�112 �0.215217182 TSS1500 S_shore chr3

ACAT2 5.02E�31 0.233758973 TSS1500 island chr6

PABPC3 1.43E�14 0.200421216 TSS1500 island chr13

ALDH1A3 1.13E�51 0.299991937 body island chr15

EEF1B2 6.45E�91 0.219721961 body S_shore chr2

ADORA2A 4.77E�32 �0.212979809 50 UTR OpenSea chr22

CD5L 1.54E�24 �0.236469294 TSS200 OpenSea chr1

CXCR2 1.49E�27 0.204648037 TSS200; 50 UTR OpenSea chr2

LBP 6.70E�62 0.204763054 body OpenSea chr20

LSP1 7.87E�38 0.234401803 50 UTR;1st exon OpenSea chr11

ZNF148 1.50E�149 �0.298332627 50 UTR island chr3

adj. p val, adjusted p value; N, north; S, south.
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ACAT2—to predict patients’ response to chemotherapy and help
clinicians choose effective drug therapy before and during
treatment.

MATERIALS AND METHODS
Source of microarray data

GEO methylation datasets and TCGA genomic data, including DNA
methylation and clinical information, which contain the periods from
initial therapy to recurrence, were downloaded, normalized, formatted,
and organized for the analysis, according to the precepts of the data-
sharing agreements from GEO and TCGA. The methylation data
from GEO and TCGA are open ended and publicly available, mainly
comprised of Illumina Infinium Human DNA Methylation 450k and
27k arrays separately (Illumina, San Diego, CA, USA).
Search strategy and selection criteria

All ovarian cancer datasets and samples with clinical and methyl-
ation information from GEO and TCGA were screened, filtered,
and selected by hand. The inclusion criteria were as follows: (1)
samples were ovarian cancer tissues from patients with EOC; (2)
data were comprised of DNA methylation arrays from Illumina Hu-
manMethylation450 or 27 BeadChip; and (3) complete follow-up
information was included to clearly estimate patients’ responses to
chemotherapy. The exclusion criteria were as follows: (1) samples
were from cell lines or patient-derived xenograft (PDX); (2) data
were not from methylation profiling or not from Illumina Human-
Methylation450 or 27 BeadChip; (3) data were non-primary down-
loaded data; and (4) samples were primary resistant, refractory, or
using demethylation drugs.
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Figure 3. The DNA methylation levels, RNA expressions, and survival curves among three key genes

(A) RNA expression levels between the sensitive and resistant group about gene AGR2. (B) DNA methylation levels between the sensitive and resistant group about gene

AGR2. (C) Survival curves based on gene expression level and survival time (PFS) about gene AGR2. (D) RNA expression levels between the sensitive and resistant group

about gene HSPA2. (E) DNAmethylation levels between the sensitive and resistant group about gene HSPA2. (F) Survival curves based on gene expression level and survival

time (PFS) about gene HSPA2. (G) RNA expression levels between the sensitive and resistant group about gene ACAT2. (H) DNAmethylation levels between the sensitive and

resistant group about gene ACAT2. (I) Survival curves based on gene expression level and survival time (PPS) about gene ACAT2.
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Group assignments

According to the clinical information and follow-up data downloaded
from GEO and TCGA databases, samples were divided into two
groups: a chemo-sensitive group and a chemo-resistant group. The
chemo-sensitive group was defined as those with no evidence of dis-
ease progression within 6 months after the completion of front-line
treatment.22 The chemo-resistant group was those who had a recur-
rence within 6 months after treatment completion, having previously
demonstrated sensitivity to earlier lines of chemotherapy.22,30–32

Data processing

DNA methylation data with beta values were downloaded from the
GEO and TCGA data portals, extracted, loaded, and normalized to
extract significantly DMPs. The differential DNA methylation of
genes was calculated based on beta values.33

Pathway enrichment and PPI network analyses

To further characterize the molecular characteristics of DMGs, GO
Biological Processes and KEGG Pathway enrichment and PPI
552 Molecular Therapy: Oncolytics Vol. 20 March 2021
network analysis were performed by Metascape software: http://
metascape.org/gp/index.html#/main/step1,34 and ClusterViz.35

Hub genes were identified by comprehensively considering the re-
sults from beta values, pathway enrichment, and PPI network
analysis.

Validation of the expression of hub genes and correlation

between methylation levels and mRNA expressions

RNA expression levels from the gene expression dataset (GEO:
GSE15372) were extracted. The GEO2R platform was used to
detect DEGs between chemo-sensitive and chemo-resistant sam-
ples among the hub genes. The key genes were identified by the
negative correlation between methylation levels and mRNA
expressions.

Prognostic analysis of key genes

The PFS or PPS curves of each key gene were drawn using the Kaplan-
Meier plotter platform: http://kmplot.com/analysis/index.php.36 The
hazard ratio (HR), 95% CI, and log rank p value were evaluated.

http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1
http://kmplot.com/analysis/index.php


Table 4. The detailed information of three prediction models between training set and validation set

Binary logistic regression (LR)

Training set Validation set

Cox & Snell R square Correct rate AUC 95% CI Cutoff Sensitivity Specificity AUC 95% CI Sensitivity Specificity

Forward_LR�step 1 0.2 73.80% 0.79 0.715�0.865 0.2241 0.818 0.663 0.838 0.790�0.887 0.922 0.441

Forward_LR�step 2 0.262 79.30% 0.82 0.730�0.901 0.3121 0.818 0.743 0.853 0.805�0.901 0.912 0.53

Forward_LR�step 3 0.291 82.10% 0.84 0.762�0.918 0.5253 0.659 0.911 0.852 0.804�0.900 0.873 0.667
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Establishment and validation of polygenic methylation

prediction model

The polygenic methylation prediction model was established to effec-
tively predict an EOC patient’s response to chemotherapy. The
dependent variable that was classified into sensitive (negative) and
resistant (positive) groups was a binary or dichotomous variable.
Since the binary regression models are built to predict the function
of binary- or dichotomous-dependent variables as predictive vari-
ables, they are applicable methods for predicting the likelihood of a
positive or negative diagnosis. Sensitivity, specificity, AUC, and
95% CI were calculated to measure the performance of the prediction
model. The binary LR model is as follows:

log itðPÞ = b0 + b1x1 +.+ bpxp:

The p value is the probability that y is equal to 1.

P =
exp

�
b0 + b1x1 +.+ bpxp

�

1+ exp
�
b0 + b1x1 +.+ bpxp

�

Statistical analysis

After normalization, all methylation data were analyzed by R 3.1.2
software: https://www.r-project.org/.37 Quality control and DMPs
were identified by Bioconductor minfi and limma packages of R soft-
ware, respectively. In accordance with the platform annotation file, the
DMPs were annotated into corresponding DMGs. The Benjamini-
Hochberg false-discovery rate (FDR) method of adjusted p value of
each gene was calculated. The DMGs were screened out as adjusted
p value less than 0.01 and beta value either greater than 0.2 (termed
differentially hypermethylated gene) or less than�0.2 (termed differ-
entially hypomethylated gene). The parameters for the DEGs were set
with |log2FC| >1 and adjusted p <0.05. The statistical analysis was per-
formed using SPSS v.22.0 software (SPSS, Chicago, IL, USA). The
comparisons between two groups were performed with the Student’s
t test, chi-square test, and Mann-Whitney rank test. p <0.05 was
considered statistically significant.
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