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A Bayesian test for Hardy–Weinberg equilibrium of biallelic
X-chromosomal markers

X Puig1, J Ginebra1 and J Graffelman1,2

The X chromosome is a relatively large chromosome, harboring a lot of genetic information. Much of the statistical analysis of
X-chromosomal information is complicated by the fact that males only have one copy. Recently, frequentist statistical tests for
Hardy–Weinberg equilibrium have been proposed specifically for dealing with markers on the X chromosome. Bayesian test
procedures for Hardy–Weinberg equilibrium for the autosomes have been described, but Bayesian work on the X chromosome in
this context is lacking. This paper gives the first Bayesian approach for testing Hardy–Weinberg equilibrium with biallelic
markers at the X chromosome. Marginal and joint posterior distributions for the inbreeding coefficient in females and the male to
female allele frequency ratio are computed, and used for statistical inference. The paper gives a detailed account of the
proposed Bayesian test, and illustrates it with data from the 1000 Genomes project. In that implementation, a novel approach to
tackle multiple testing from a Bayesian perspective through posterior predictive checks is used.
Heredity (2017) 119, 226–236; doi:10.1038/hdy.2017.30; published online 5 July 2017

INTRODUCTION

The number of genetic markers identified for the human genome has
increased tremendously over the past decades. The 1000 Genomes
project currently include more than 88 million genetic variants (The
1000 Genomes Project Consortium, 2015). Most of the variants reside
on the autosomes, which are ordered according to their size. The X
chromosome is a large chromosome with a size of about 155 Mb, and
is almost as large as chromosome 7 (Hein et al., 2005), and estimated
to contain about 5% of the genes in the human genome (Wise et al.,
2013). Currently, ~ 3.5 million variants on the X chromosome have
been reported. Much of the statistical analysis of the X-chromosomal
data is complicated by the fact that males have only one copy, whereas
females have two. The pseudo-autosomal regions (Graves et al., 1998)
of the X chromosome behave as autosomes, and for these regions
autosomal statistical methodology applies.
A simple way to deal with X-chromosomal data is to ignore males,

and apply usual autosomal procedures to females only. This is what
often has been done in studies of Hardy–Weinberg (HW) equilibrium,
linkage disequilibrium, genetic association studies (Wise et al., 2013)
and others. The HW law is a well-known elementary genetic principle
typically explained in detail in genetic textbooks (Crow and Kimura,
1970; Li, 1976; Hartl, 1980; Hamilton, 2009). For a biallelic marker
with alleles A and B with relative frequencies p and q, the law states
that the genotype frequencies AA, AB and BB will reach the stable
proportion (p2, 2pq, q2) in one generation of random mating. From
this point on, genotype and allele frequencies will remain unaltered
through time, as long as disturbing forces like differential mortality,
migration and others remain absent.
The dynamics of X-chromosomal markers is quite different. If male

and female allele frequencies initially differ then it will take more than

one generation before equilibrium is achieved. Because A males inherit
their A allele from their mother, the male A allele frequency always
equals the female A allele frequency of the previous generation.
Because females inherit one allele from each parent, the female A allele
frequency is the mean of the male and female A allele frequency of the
previous generation. This ‘lagging and averaging’ continues till the
difference between male and female allele frequencies becomes
vanishingly small. At that point, the female genotype frequencies will
have stabilized as well, reaching the HW proportions. In each
generation, the absolute difference between male and female allele
frequencies is halved. If Dt represents the absolute difference in male
and female allele frequency in generation t then we have Dt= (1/2)tD1,
with D1 the initial generation. In a worst case scenario with D1= 1, it
will take eight generations in total before the difference drops below
0.01. Figure 1 illustrates the faster attainment of HW equilibrium for
smaller values of D1.
Statistical tests for HW equilibrium should reflect the special

characteristics of the X chromosome. In recent work, Graffelman
and Weir (2016) have proposed χ2, exact and permutation tests for
HW equilibrium for markers at the X chromosome that take both
males and females into account. You et al. (2015) have developed a
likelihood ratio test for X-chromosomal markers that also uses males
and females. These frequentist procedures jointly test HW proportions
for females and equality of allele frequencies in males and females.
There is a considerable number of contributions to the Bayesian

testing for HW equilibrium of autosomal markers, starting with
Pereira and Rogatko (1984) and Lindley (1988), and including
Shoemaker et al. (1998), Ayres and Balding (1998) and Wakefield
(2009, 2010). Bayesian methods have also been used to deal with
variants of unknown location, and classify them as autosomal or
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X-chromosomal under the assumption of HW equilibrium (Gautier,
2014). For testing autsomal variants for HW equilibrium, Ayres and
Balding (1998) proposed a markov chain monte carlo method to
obtain the posterior distributions of inbreeding coefficients for
markers with multiple alleles. Shoemaker et al. (1998) obtained
explicit expressions for the joint posteriors of various disequilibrium
coefficients and allele frequencies in the biallelic case. Wakefield
(2010) advocates the use of the Bayes factor in Bayesian inference
on HW equilibrium and addresses Bayesian testing in a genome-wide
context. However, all these Bayesian studies address autosomal
markers, and to date Bayesian procedures for X-chromosomal markers
have apparently not been developed. This paper therefore first
proposes Bayesian methods for a HW analysis of X-chromosomal
markers that take both males and females into account, by using an
extra parameter allowing for different allele frequencies in the sexes.
We concentrate on the most commonly used single nucleotide
polymorphisms (SNPs) and consider markers with multiple alleles,
such as micro-satellites, beyond the scope of the current paper.
The structure of the paper is as follows. In the ‘Background and

notation’ section, we provide some background and establish notation.
In the ‘Bayesian tests for X-chromosomal markers’ section, we develop
a Bayesian approach to the problem of testing X-chromosomal
markers for HW equilibrium, and we assess the method through
simulation. The ‘Examples’ section illustrates the use of the Bayesian
approach with empirical data taken from the Japanese population of
the 1000 Genomes project (The 1000 Genomes Project Consortium,
2010), both for single SNPs as well as sets of multiple X-chromosomal
SNPs. The approach adopted in that implementation to deal with
multiple testing through posterior predictive checks is novel. A
discussion section completes the paper.

BACKGROUND AND NOTATION

We consider a biallelic genetic polymorphism on the X chromosome
with alleles A and B having allele frequencies pAm and pBm in males and
pAf and pBf in females, with pAm+ pBm=pAf+pBf=1. There are five
genotypes consisting of hemizygous males, with genotypes A and B, and
diploid females, with genotypes AA, AB and BB. We denote the observed
genotype counts in males by nAm and nBm, and in females by nAAf, nABf
and nBBf. The total sample size is n=nm+nf, where nm=nAm+nBm is

the total number of males, and where nf=nAAf+ nABf+ nBBf is the total
number of females.
The male A genotype (or allele) count, nAm, is assumed to follow a

Binomial(nm, pAm) distribution, and the vector of female genotype
counts, (nAAf, nABf, nBBf), is assumed to follow a Multinomial(nf, (pAAf,
pABf, pBBf)) distribution, where pAAf+ pABf+ pBBf= 1.

Equilibrium in X-chromosomal markers
For X-chromosomal markers, it can take more generations to achieve
equilibrium, depending on the initial difference in allele frequency
between the sexes (Crow and Kimura, 1970). In fact, under
disequilibrium, allele and genotype frequencies for the X chromosome
will always be changing from generation to generation. All the
frequencies considered next correspond to the current generation.
HW equilibrium holds for the SNPs of the X chromosome if and

only if:

1. There is equality of male and female allele frequencies, pAm= pAf,
2. The female genotype counts, (nAAf, nABf, nBBf), are

multinomially distributed with HW proportions
ðpAAf ¼ p2Af ; pABf ¼ 2pAf pBf ; pBBf ¼ p2Bf Þ, where pBf= 1− pAf.

When both these conditions hold in one generation then, under
random mating, the allele frequencies in males and the genotype
frequencies in females are constant from one generation to the next
(see, for example, Li (1976) and Zheng et al. (2007)). In the case of
X-chromosomal markers, disequilibrium can be present under three
different scenarios.
In the first scenario, pAm= pAf holds, but the female genotype

proportions fail to match the HW proportions, a case which is
typically parametrized in terms of a female inbreeding coefficient, f,
such that:

pAAf ¼ p2Af þ pAf pBf f ; ð2:1Þ

pABf ¼ 2pAf pBf 1� fð Þ; ð2:2Þ

pBBf ¼ p2Bf þ pAf pBf f : ð2:3Þ
When pAm= pAf, a value of f= 0 corresponds to HW equilibrium, a

positive f indicates a lack of female heterozygotes, and a negative f
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Figure 1 Evolution of allele frequencies over time as a function of the initial difference (D) in allele frequency between males and females. The dotted
horizontal line represents the overall A allele frequency. Initial male (pAm) and female (pAf) allele frequencies are (1, 0) and (2/3, 1/3).
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indicates an excess of female heterozygotes. Hence, for studying this
first kind of disequilibrium on the X chromosome, we will use this
female inbreeding coefficient, f, as a measure of the deviation of female
genotype frequencies from HW proportions in the current generation,
which can be posed as:

f ¼ pAAf � p2Af
pAf pBf

: ð2:4Þ

Note that the value of f can range between −MAF/(1−MAF) and 1,
where MAF=min(pAf, 1− pAf). Under this first disequilibrium sce-
nario and random mating, one will have HW equilibrium in the next
generation, like for autosomal markers.
Under a second disequilibrium scenario, female genotype prob-

abilities satisfy HW proportions and therefore f= 0, but the allele
frequencies between males and females are different and therefore
condition 1 does not hold, in which case we use as a measure for
disequilibrium the ratio of male to female allele frequencies,

d ¼ pAm
pAf

: ð2:5Þ

Under this second disequilibrium scenario, with da1, allele
frequencies of males and genotype frequencies of females converge
to equilibrium only when the number of generations goes to infinity;
even though in this setting in the current generation f is 0, in the
previous and in the following generations f is different from 0.
Under a third disequilibrium scenario, X-chromosomal markers

might not be in equilibrium because both fa0 as well as da1.

Models for equilibrium and for disequilibrium
In practice one will face either the HW equilibrium scenario, or one of
three disequilibrium scenarios, which leads to the choice between four
models. Under HW equilibrium, female genotype counts have the
Multinomialðnf ; ðpAAf ¼ p2Af ; pABf ¼ 2pAf pBf ; pBBf ¼ p2Bf ÞÞ distribu-
tion, while the male A allele count follows a Binomial(nm, pAm)
distribution with pAm= pAf. In this case, the value of pAf determines
the value of all the remaining probabilities. The model under HW
equilibrium will be labeled as Model 0, (M0).
In the first disequilibrium scenario described above, fa0 and d= 1,

and female genotype counts have the Multinomial(nf, (pAAf , pABf ,
pBBf)) distribution, while male A genotype counts follow the Binomial
(nm, pAm) distribution with:

pAm ¼ pAf ¼
2pAAf þ pABf

2
: ð2:6Þ

In this case the value of (pAAf , pABf) determines the value of all the
remaining probabilities. The model for this disequilibrium scenario is
labeled as Model 1, (M1).
In the second disequilibrium scenario described in the

‘Equilibrium in X-Chromosomal markers’ section, the inbreeding
coefficient for females, f, is equal to 0, but d is not equal to 1. In
that case, female genotype counts have the Multi-
nomialðnf ; ðpAAf ¼ p2Af ; pABf ¼ 2pAf pBf ; pBBf ¼ p2Bf ÞÞ distribution,
while the male A genotype count follows the Binomial(nm, pAm)
distribution with probability pAm functionally unrelated to pAf. In
this case, the value of (pAf , pAm) determines the value of all the
remaining probabilities. The model for this second disequilibrium
scenario is labeled as Model 2, (M2).
In the third and last disequilibrium scenario, fa0 and da1. In that

case, female genotype counts are multinomial with unrestricted
probabilities, as in Model 1, while the male A genotype count is
binomially distributed with probability pAm, as in Model 2. In this

case, the parameter space is the largest possible, and the model is
labeled as Model 3, (M3), or the saturated model.

BAYESIAN TESTS FOR X-CHROMOSOMAL MARKERS

In the frequentist approach to testing for HW equilibrium for
X-chromosomal markers presented in Graffelman and Weir (2016),
one chooses between HW equilibrium, (that is, Model 0), and
disequilibrium, (that is, Models 1, 2 and 3), but it does not allow
one to distinguish between the three different disequilibrium scenar-
ios. In the frequentist approach, additional statistical tests for equality
of allele frequencies and/or HW proportions in females would be
needed to finally pinpoint the scenario.
Instead, in the Bayesian setting it is more natural to test for HW

equilibrium by choosing one scenario among the four alternative
scenarios described above, which is equivalent to selecting one model
among M0, M1, M2 and M3. That is done by choosing a prior
distribution for the parameters of the models that captures what one
knows about them before observing the data, and a prior distribution
on the model space, and then computing the posterior probability of
each one of the four models (scenarios). Then, one selects the model
(scenario) with largest posterior probability.

Choice of a prior distribution
Different parametrizations allow for different ways of capturing what
one knows about the parameters of the model in terms of a prior
distribution for them. Here we will adopt the parametrization of
Models 0, 1, 2 and 3 in terms of male and female genotype
frequencies, because that allows for a choice of priors that leads to
simple expressions for the posterior probabilities of the four models
considered, and because they are the most convenient ones when one
has little information.
Under the HW equilibrium scenario, leading to Model 0, male and

female allele frequencies, pAm and pAf, are equal, and they will be
assumed to be Beta(b1,0, b2,0) distributed, where the second subindex,
0, refers to M0. Under this scenario, this prior distribution univocally
determines the prior distribution of all female genotype frequencies.
Under the first disequilibrium scenario, leading to Model 1, the

female genotype frequencies, (pAAf, pABf, pBBf), are assumed to be
Dirichlet(a1,1,f, a2,1,f, a3,1,f) distributed, where the second subindex, 1,
refers to M1. The distribution of the female genotype frequencies
determines the distribution of the female and male allele frequencies.
Under the second disequilibrium scenario, leading to Model 2, male

and female allele frequencies are assumed to be independently
distributed as a Beta(b1,2,m, b2,2,m) and Beta(b1,2,f, b2,2,f), respectively,
and that determines the distribution of the female genotype frequen-
cies. Finally, under the last disequilibrium scenario, leading to Model 3,
female genotype frequencies are assumed to be Dirichlet(a1,3,f, a2,3,f,
a3,3,f) distributed, independent of the male allele frequency, which is
assumed to be Beta(b1,3,m, b2,3,m) distributed.
Depending on the values chosen for (a1,i,f, a2,i,f , a3,i,f), the

Dirichlet(a1 , i , f , a2 , i , f, a3 , i , f) distribution will be more or less
informative, and it will capture different information about female
genotype frequencies. In particular, its expected value is
ða1;i;f ; a2;i;f ; a3;i;f Þ=ð

P3
j¼1 aj;i;f Þ, and one can choose the aj,i,f’s to

reflect the fact that one expects some genotypes to have larger
probabilities than others. Also, the larger

P3
j¼1 aj;i;f , the smaller the

variances of the components of the Dirichlet random variable, and the
more informative that prior distribution. When one is not willing to
use subjective information about the female genotype frequencies,
Berger et al. (2015) recommend using a Dirichlet with
a1 ,i , f= a2 , i , f= a3 , i , f= 1/3, which is also recommended by Bernardo
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and Tomazella (2010) as a good approximation to a prior distribution
tailored for a reference analysis of HW equilibrium. We will use this
reference prior, which is like assuming an effective sample size of only
one to start with (see, for example, Morita et al. (2008)). Given that
the actual sample sizes in our setting will typically be a lot larger than
that, the impact of this prior on the posterior distribution for female
genotype frequencies will be negligible.
An analogous argument can be made for choosing the parameters

of the Beta(b1,i, b2,i) to model the prior information about allele
frequencies. In that case, in the absence of subjective information one
often chooses Beta(b1,i, b2,i) with b1,i= b2,i= 1/2, which corresponds to
a relatively uninformative prior that assumes an effective sample size
of only one to start with. Moreover, this prior captures the fact that
low MAF markers are more frequent.
An alternative way of eliciting prior information under Models 1

and 3 is to choose a specific distribution for the inbreeding coefficient,
f, and for the female allele frequency, pAf, instead of resorting to the
Dirichlet distribution for the genotype frequencies. However, this
complicates the computation of the posterior probabilities, and it does
not make much difference when carrying out a reference analysis that
uses little prior information. The inbreeding coefficient is related to
the female genotype frequencies through:

f ¼
pAAf � pAAf þ 1

2pABf

� �2
pAAf þ 1

2pABf

� �
1� pAAf � 1

2pABf

� �; ð3:1Þ

and one can explore the prior distribution of f that is induced by
assuming a Dirichlet distribution on (pAAf , pABf , pBBf). When one does
that for our reference choice, with a1 , i , f= a2 , i , f= a3 , i , f= 1/3, one
finds that the prior distribution for f is not symmetric on its support.
That prior is in fact trimodal, with two modes at the two extremes of
the range of values taken by f, and a third mode at 0, which are
features that one considers desirable for a reference prior for a
parameter such as f, with finite range and a null hypothesis at 0.
Furthermore, under our choice of parameters for the Dirichlet prior,
one can check through Monte-Carlo simulation that the probability
that f is larger than 0 is 0.548.
Instead, when one assumes a Dirichlet(a1 , i , f , a2 , i , f , a3 , i , f)

distribution with a1 , i , f= a2 , i , f= a3 , i , f= 1 as the prior distribution
for the female genotype frequencies, which corresponds to assuming a
uniform distribution on them, one finds that the prior distribution for
f concentrates on values larger than 0, with a prior probability that f is
larger than 0 equal to 0.667. The problem of this upward bias
introduced when using a uniform distribution has already been
reported by Foll and Gaggiotti (2008). Another shortcoming of
assuming a uniform prior for (pAAf , pABf , pBBf) is that the prior
induced on the female allele probability through pAf= (2pAAf+ pABf)/2
becomes strongly unimodal with mode at 0.5. Instead, our choice of
a1 , i , f= a2 , i , f= a3 , i , f= 1/3 leads to a prior distribution for pAf that is a
lot closer to the Beta(0.5, 0.5) that is assumed for pAm.
Note though that either one of these two choices of values for

(a1 , i , f , a2 ,i , f , a3 , i , f) leads to posterior distributions that are very
similar, because they are both a lot less informative than the data that
one typically obtains in these settings.
Alternative ways of choosing prior distributions for HW equili-

brium under the usual autosomal data can be found in Lindley (1988),
Shoemaker et al. (1998), Consonni et al. (2008) and Wakefield (2010).
All their proposals could be adapted to our X-chromosomal marker
setting, but if one chose these priors to have a small effective sample
size, they would make a small difference at a considerable extra

computational cost, because they do not lead to closed form
expressions for the posterior probabilities described next.

Bayesian model selection
The Bayesian way to select a model is through the posterior probability
of each model, P(Mi | y), which is the probability that the Mi model is
the one generating the data, y= (nAAf, nABf, nBBf, nAm, nBm), assessed
after the data has been observed. It can be computed by using Bayes
theorem:

P Mijyð Þ ¼ P Mið ÞP yjMið ÞP3
j¼0 P Mj

� �
P yjMj

� �; for i ¼ 0; 1; 2; 3; ð3:2Þ

where P(Mi) is the prior probability assigned to Mi (that is, the
probability that this model is correct, assessed before the data are
available), and where P(y |Mi) is the marginal likelihood of Mi. If all
models were considered equally likely a priori, the way it will be
assumed in the ‘Examples’ section, the larger P(y |Mi), the more
attractive Mi will be.
Most often, computing P(y |Mi) exactly is too complicated, and the

marginal likelihoods need to be estimated through the markov chain
monte carlo simulations used to update the model. In our Binomial/
Multinomial setting with Beta/Dirichlet priors though, there are closed
form expressions for P(y |Mi), which allow one to either compute
these marginal likelihoods exactly, in the case of Models 0, 2 and 3, or
to evaluate them numerically in the case of Model 1. The expressions
for the marginal likelihoods, P(y |Mi), under our choice of prior
distribution can be found in the Appendix 1; they allow one to
compute the posterior probabilities on the model space, P(Mi | y),
exactly through equation (3.2).
To assess the strength of evidence in favor or against a given model,

Mi, one sometimes resorts to the corresponding Bayes factor, BFi,
which is the ratio of the posterior odds and the prior odds for that
model. When all four models are considered equally likely a priori,
BFi= 3P(Mi | y)/(1−P(Mi | y)). One usually considers that a log10(BFi)
that takes a value between 0.5 and 1 indicates that the strength of
evidence in favor of Mi is substantial, when its value is between 1 and
1.5 it is strong, when it is between 1.5 and 2 it is very strong, and when
it is larger than 2 it considers the evidence in favor ofMi to be decisive.

Simulation assessment of the Bayesian test
To assess the performance of this Bayesian test for HW equilibrium,
here it is used under a very wide set of known scenarios through an
extensive simulation study. In particular, the test is tried on SNPs from
populations with inbreeding coefficients, f, taking values in its whole
range, and with a ratio of male to female allele frequencies, d, ranging
between 0.5 and 2. In total, we have considered 625 different pairs of
values for (f, d), and for each pair we have checked the performance of
the test on populations with pAf= 0.2 and 0.4 assuming samples with
nf= nm= 500 and with nf= nm= 2000.
For each one of the set of 2500 values of (f, d, pAf , nf) considered we

have simulated 1000 independent SNPs with sample size n= nf+nm
from a population with the corresponding values of (f, d, pAf), and we
have computed P(Mi | y) for i= 0,1,2,3 and for each one of the
samples.
Figure 2 presents the contour plots for the average of all the values

of P(Mi | y) obtained, as a function of (f, d) for the four combinations
of (pAf , nf) considered. This average estimates the expected value of
P(Mi | y) for each given (f, d, pAf , nf). As desirable, the expected value
of P(Mi | y) peaks on the region of the (f, d) space where the
corresponding Mi model holds true. One also observes that the larger
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the sample size n, and/or the larger pAf, the more peaked the expected
value of P(Mi | y) is as a function of (f, d), and hence the better does
this Bayesian test work.

EXAMPLES

To present applications of the Bayesian approach to testing for HW
equilibrium advocated in this paper, we analyze individual markers
(see the ‘Test on four individual SNPs’ section) and groups of markers
(see the ‘Simultaneous analysis of multiple X-chromosomal SNPs’
section) of the Japanese population of the 1000 Genomes project,
consisting of nm= 56 males and nf= 48 females. We also explain how
one can take into account the multiple testing effect through posterior
predictive checks when assessing the HW equilibrium hypothesis
based on the simultaneous analysis of a large number of SNPs (see the
‘Multiple testing and the assessment of HW equilibrium’ section).

Test on four individual SNPs
In order to compare the Bayesian test proposed here for HW
equilibrium at biallelic genetic markers on the X chromosome with

the tests proposed in the context of a frequentist approach, we report
the posterior probabilities of the four possible scenarios together with
the P-values of the exact tests for four example SNPs in Table 1. Exact
tests were performed with and without the data on males using the
methods proposed by Graffelman and Weir (2016). The posterior
probabilities are computed through equation (3.2), assuming equal
prior probabilities for the four models, and hence P(Mi)= 1/4, and
using the expressions for the marginal likelihoods, P(y |Mi) in the
Appendix 1 with aj,i,f= 1/3 for the Dirichlet prior and bj,i= 1/2 for the
Beta priors. Given that each one of these priors corresponds to an
effective sample size of only one and data involves a sample size of
n= 104, the role played by the prior distribution is negligible. Sample
sizes will most often be larger than in this example, and hence in
practice the choice of a prior will most often be even less relevant.
The first marker in Table 1, rs13440889, has a posterior probability

of 0.748 of being in HW equilibrium, and hence one rejects the three
disequilibrium scenarios, with posterior probabilities of 0.126 or
smaller. The corresponding Bayes factor indicates that the evidence
in favor of being in HW equilibrium here is substantial. This is
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Figure 2 Contour plots for the expected value of P(Mi | y) for i=0,1,2,3 as a function of (f, d), for pAf=0.2 and 0.4 and for nf=nm=500 and 2000. The
contour levels in all panels are set at 0.1, 0.5 and 0.9.
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consistent with the non-significant exact test for HWE (P= 0.954).
The second marker in Table 1 has a posterior probability of only 0.072
of being in HW equilibrium, but it has instead a posterior probability
of 0.803 of being in the first disequilibrium scenario, with d= 1 and
fa0, and hence one settles with M1 for that marker. Here the Bayes
factor indicates that the evidence in favor of M1 is strong. In this case,
choosing M1 is in agreement with the frequentist exact test rejecting
HW proportions in females (P= 0.004).
For the third marker in Table 1, HW equilibrium is also rejected,

because it has a posterior probability of only 0.092, and one settles
with the second disequilibrium scenario, with da1 and with f= 0.
Note that in this case, the frequentist tests do reject HWE overall, but
do not reject HW proportions for females (P= 0.760). For the last
marker in Table 1, the most probable scenario is clearly the third
disequilibrium scenario, with da1 and fa0. Here BF3 indicates that
the evidence in favor of M3 is decisive. The frequentist tests reject
equilibrium (Po0.0005), but the difference in allele frequencies goes
unnoticed.
In Figure 3, one has the set of marginal posterior distributions for

the marker in the second row in Table 1, SNP rs2301322. These
marginal posteriors are computed assuming the full Model 3, in the
way described in Appendix 2. The first row presents the marginal
posterior for female genotype frequencies, the second row presents the
marginal posterior for male and female allele frequencies and for their
ratio, while the third row presents the marginal posterior for the
inbreeding coefficient as well as the joint posterior for allele
frequencies and for (f, d).
Figure 3 also presents 90% highest posterior density (hpd) credible

intervals/regions for all these parameter values or pairs of parameter
values. The marginal posterior for f in Figure 3, for example, places
almost all its probability mass away from f= 0, with the 90% hpd
posterior credible interval being (0.199, 0.683). Instead, the marginal
posterior for d places d= 1 well inside its 90% hpd posterior credible
interval, which is (0.853, 1.172). The results clearly show that females
are out of HW proportions, but that equality of male and female allele
frequencies is a tenable supposition.
Note that different from confidence regions, Bayesian credible

regions are statements about the probability that the actual parameter
value for that given SNP falls in a given region, and not the probability
that the region captures the true parameter value under repeated use
of these regions on different samples.

Figure 4 presents the marginal posterior distributions for (f, d)
for the four SNPs in Table 1, together with its 90% hpd posterior
credible region. The fact that, for example, for the SNP rs13440889,
the (0, 1) point falls well inside the 90% posterior credible region
is a clear indication that in that case HW equilibrium holds. In the
other three examples, the (0, 1) point falls outside the corresponding
90% credible region in three different ways, which are representative
of the three different reasons through which equilibrium might be
broken.

Simultaneous analysis of multiple X-chromosomal SNPs
In this section, we illustrate the Bayesian approach to testing for
HW equilibrium of X-chromosomal markers by carrying out the
Bayesian test based on the simultaneous analysis of a large set of
SNPs selected from the Japanese population of the 1000 Genome
project. The 1000 Genomes project provides genotype information for
~ 3.5 million variants on the X chromosome. SNPs without rs
identifier, SNPs in the pseudo-autosomal regions and SNPs with
missing values were excluded. X-chromosomal SNPs were linkage
disequilibrium pruned with Plink (Purcell et al., 2007) using the
independent pairwise option with a sliding window of 50 SNPs and a
threshold of R2=0.50 using Plink instruction plink--bfile
JPTChrX--indep-pairwise 50 5 0.50--ld-xchr 1.
The SNPs with small MAF have not been filtered out. This leaves a
sample of 162225 SNPs from the whole X chromosome, that is the one
that will be used in this subsection.
Figure 5 presents the model with the largest posterior probability for

each one of these SNPs, presented in the order in which these SNPs
appear on the X chromosome. The white band without SNPs between
58.1 MB and 63.0 Mb corresponds to the centromere. The presence of
consecutive sequences of markers being systematically classified to the
same disequilibrium scenario, or to one of the three disequilibrium
scenarios, might be an indication of quality control problems in the
SNP measurements, or might arise if the PAR region is erroneously
included in the analysis. Too few SNPs being classified as being in HW
equilibrium would also be an indication of either a problem in the
measurements or of the fact that the population under scrutiny is
actually in disequilibrium.
Model 0, representing HW equilibrium, is the one with the largest

posterior probability in 95.27% of all the 162225 SNPs considered,
Model 1 is the one with the largest probability in 1.89% of the cases,
Model 2 is the one with the largest probability in 2.13% of the cases

Table 1 Genotype counts, posterior probabilities and the base 10 logarithm of the BF of the four scenarios (M0: HW equilibrium,M1: fa0,M2:

da1, M3: (fa0 and da1)) and exact P-values for the all-individual and for the females-only test, for four SNPs from a sample of the Japanese

population study with nm=56 and nf=48

SNP Genotypes Posterior probabilities and BF P-values

nAAf nABf nBBf nAm nBm

P(M0 | y)

log10BF0

P(M1 | y)

log10BF1

P(M2 | y)

log10BF2

P(M3 | y)

log10BF3 All Female

rs13440889 26 19 3 43 13 0.748

0.949

0.126

−0.363

0.107

−0.442

0.019

−1.246

0.954 1.000

rs2301322 33 9 6 44 12 0.072

−0.632

0.803

1.087

0.010

−1.535

0.115

−0.408

0.009 0.004

rs2356583 6 25 17 35 21 0.092

−0.516

0.016

−1.300

0.744

0.941

0.147

−0.286

0.015 0.760

rs201728945 3 45 0 44 12 0.000

−10.696

0.001

−2.741

0.000

−9.353

0.999

3.695

0.000 0.000
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and Model 3 is the one with the largest probability in 0.71% of the
cases. It is known that for SNPs with low MAF, which are abundant in
this set of 162225 SNPs, power to detect disequilibrium is low. When
one filters out the SNPs with MAFo0.05, one is left with only 52008
SNPs, and the proportion classified as being in equilibrium falls down
to 89.08%.
The next subsection illustrates how one can assess whether the

overall proportions obtained for all 162225 SNPs are compatible with
the HW equilibrium model, M0, holding true, in a way that takes into
account the multiple testing effect involved.

Multiple testing and the assessment of HW equilibrium
Carrying out the test for HW equilibrium based on the simul-
taneous analysis of multiple SNPs involves dealing with the
multiple testing effect, which requires one to account for the
experiment-wise error rate. In the Bayesian context, one approach
to that problem is through the use of the false discovery rate and
q-values, as described in Storey (2002, 2003), Muller et al.

(2006), de Villemereuil et al. (2014) and de Villemereuil and
Gaggiotti (2015).
Instead of using the false discovery rate, here a novel approach to

address multiple testing in the Bayesian setting is used. The alternative
method uses posterior predictive checks to assess whether the
proportion of SNPs in the sample of 162225 of the previous section
classified to each one of the four different scenarios is consistent with
the proportions that would be obtained if the HW equilibrium was
actually in place for the population. To estimate the proportions
classified under each scenario in a population of SNPs actually in HW
equilibrium, simulation from the posterior predictive distribution
under M0 is used. For a description of the use of posterior predictive
checks as a tool to validate models in general, see Chapter 6 of Gelman
et al. (2014) or Puig and Ginebra (2014).
To do this simulation exercise, one needs to resort to a sample of

SNPs that is smaller than the one used in the previous section, because
we need to assume approximate independence between SNPs and
because, at this point, the simulation exercise that would need to be
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Figure 3 Marginal posterior distributions and 90% hpd posterior credible region of female genotype frequencies, of male and female allele frequencies, of
the ratio of male to female allele frequencies and of the inbreeding coefficient, and marginal joint posterior distributions of (pAf,pAm) and of (f, d), all for SNP
rs2301322 in Table 1, under the saturated Model.
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done with the larger set of SNPs would take too long. That is why
a random subsample of only 1622 SNPs is obtained from the
162225 SNPs used in the previous section to carry out the posterior
predictive checks.

It turns that for the subsample with only 1% of all the SNPs
previously used, Model 0 is the one with the largest posterior
probability in 95.25% of the SNPs, Model 1 is the one with the
largest probability in 2.03% of the cases, Model 2 is the one with the
largest probability in 2.03% of the cases and Model 3 is the one with
the largest probability in 0.68% of the cases. The second panel in
Figure 5 presents the model with the largest probability for each one of
these 1622 SNPs.
To assess whether these observed proportions of SNPs being

classified as following each one of the models are compatible with
the assumption that HW equilibrium is in place, we estimate the
posterior predictive distribution and the posterior predictive credible
intervals for these four proportions, assuming that the HW equili-
brium holds and that the SNPs are independent. This last assumption
will be satisfied due to the way in which the smaller subset of only
1622 SNPs was selected from the whole set of SNPs of the X
chromosome.
The posterior predictive distribution can be estimated by repeatedly

simulating 1622× 5 tables of ‘data like the one from the Japanese
study’ used to test for HW equilibrium, by using the posterior
predictive distribution of the data under Model 0. For each one of
the simulated tables, one then classifies the 1622 simulated SNPs to
one of the four scenarios, based on their P(Mi | y) and finds the
proportion of SNPs classified into each scenario.
Each one of the tables can be simulated from the posterior

predictive distribution by:
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Figure 4 Marginal joint posterior distributions and 90% hpd posterior credible region for (f, d) for the four SNPs considered in Table 1, under the
saturated Model.

Figure 5 Model with the largest posterior probability, and hence the largest
BF, for the SNPs selected from the Japanese population, presented in the
position where they are placed on the X chromosome. The first panel
corresponds to the sample of 162225 SNPs used in the ‘Simultaneous
analysis of multiple X-chromosomal SNPs’ section, and the second one to
the 1622 SNPs used in the ‘Multiple testing and the assessment of HW
equilibrium’ section. The lower PAR zone is between 60001 and 2699520,
and the upper PAR zone between 154931044 and 155260560; no SNPs
in these zones were included in the analysis.
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(1) Simulating 1622 values for pAf, one value of each row of the
table, using its posterior distribution under Model 0 which, assuming
Beta(b1,0, b2,0) to be the prior, is:

p pAf jy
� �

BBeta b1;0 þ nAm þ 2nAAf þ nABf ; b2;0 þ nBm þ 2nBBf þ nABf
� �

;

ð4:1Þ

which is also the posterior for pAm because under M0, pAm= pAf.

(2) For each value of pAm one simulates the nAm for that row
from a Binomial(nm, pAm), one computes nBm= nm− nAm, and one
simulates (nAAf, nABf, nBBf) for that row from a
Multinomialðnf ; ðp2Af ; 2pAf ð1� pAf Þ; ð1� pAf Þ2ÞÞ.

(3) For each row of each table one computes P(Mi | y) for i= 0,1,2,3,
and for each simulated table one obtains the proportions of SNPs
classified as following each one of the four Mi’s based on the largest
P(Mi | y) for that row.

By repeating this exercise as many times as tables of data one
intends to simulate, one obtains the posterior predictive distribution
for the proportions of SNPs being classified as Mi for i= 0,1,2,3,
conditioned on the HW equilibrium model,M0, being the correct one.
The rows of the new tables are simulated to be independent, which is a
realistic assumption when one is analyzing a subset of approximately
independent SNPs the way it is done here.
We have carried out this simulation exercise for the subset of 1622

SNPs selected from the Japanese population study by simulating 1000
tables from its posterior predictive distribution. It turns that if the HW
equilibrium is in place, the 90% central posterior predictive credible
interval for the proportion of SNPs classified as following M0 because
their P(M0 | y) is the largest is (94.6, 96.4), the 90% credible interval
for the proportion of SNPs classified as following M1 because P(M1 | y)
is the largest is (1.4, 2.3), the one for the proportion of SNPs classified
as following M2 is (1.8, 3.0) and the one for the proportion of SNPs
classified as following M3 is (0.1, 0.5).
Note that the proportion of SNPs being classified into each one of

these four models for the subset of markers from the Japanese
population Genome project, which are 95.25, 2.03, 2.03 and 0.68% for
M0, M1, M2 and M3, fall either well within these four posterior
predictive credible intervals, or very close to it in the case of M3. The
fact that the observed percentages fall within the posterior predictive
intervals generated under the HWE assumption, suggests that the
X-chromosomal markers without missing values of the LD-pruned
database are in equilibrium, with only a slight excess of markers in
scenario M3. By using posterior predictive checks involving all 1622
SNPs at once, instead of doing it one SNP at a time, one already takes
into account the experiment-wise error rate, and one does not have to
correct for the fact that one carries out multiple tests.
When one does the same exercise on data from populations that are

not in HW equilibrium, the proportion of SNPs that are classified as
following M0 falls, and some of the other three proportions increase,
and they would fall outside of the posterior predictive intervals for
these four proportions obtained assuming that the HW equilibrium
model was in place. Given that the sample size here is a lot larger than
the effective sample size assumed by the priors, carrying out a
sensitivity analysis that considers alternative priors of similar effective
sample size leads to results which are almost identical to the ones
reported here.

DISCUSSION

We have developed a Bayesian method for inference on HW
equilibrium for biallelic markers at the X chromosome. Disequili-
brium at the X chromosome may be due to a difference in allele
frequencies between the sexes, or to females not corresponding to HW
proportions or both these factors simultaneously. By computing the
posterior probability for each scenario, geneticists can immediately
infer the most likely scenario. A similar approach can also be used for
the Bayesian analysis of autosomal variants.
The X-chromosomal exact test chooses between HW equilibrium,

(that is, Model 0), and disequilibrium, (that is, Models 1, 2 and 3). In
order to precisely determine the disequilibrium scenario with a
frequentist approach, several statistical tests are necessary: an exact
test with and without males and eventually an exact test for equality of
male and female allele frequencies. Instead, by assigning a posterior
probability to each one of the four scenarios, with the four
probabilities adding up to one, our Bayesian approach provides a
simple way of selecting the most probable scenario in the light of
the data.
One of the advantages of the Bayesian approach to HW equilibrium

testing of X-chromosomal markers is that, on top of yielding posterior
probabilities for each one of the four scenarios, it also provides the
posterior distribution of the parameters of interest. In Appendix 2, one
can find details on that distribution.
Among all the marginal posterior distributions, the one for (f, d) is

particularly useful because it helps one assess the degree of departure
from HW equilibrium beyond computing the corresponding four
posterior probabilities.
For our Bayesian analysis, we have found it convenient to

parametrize disequilibrium by using the inbreeding coefficient and
the ratio of male to female allele frequencies, using a Dirichlet prior on
the genotype frequencies. Alternatively, other disequilibrium measures
with priors specified directly on the disequilibrium measures might
also be considered.
One side contribution of this manuscript is the suggestion to use

posterior predictive checks to deal with multiple testing in the
Bayesian framework, as described in the previous section.
From a computational point of view, the χ2-test for HWE of

X-chromosomal markers is very fast, and it is feasible to do this for a
complete X chromosome with 3.5 million markers. An exact test is
computationally more demanding due to the presence of factorial
calculations and enumeration of possible outcomes. The Bayesian
procedures outlined in this paper do not require a markov chain
monte carlo implementation as it is usual in most Bayesian applica-
tions these days, and that simplifies the computation a lot. If the
integration required for the computation of the posterior probability
of M1 is carried out efficiently, there should not be any problem in
using the proposed method for a whole X chromosome.
Further computational savings could be attained by using the fact

that many of the 3.5 million markers on the X chromosome are rare
variants with a low minor allele frequency, and therefore the set of
genotype counts will be identical for many SNPs. For markers with
identical counts, the HW tests only have to be computed once.

SOFTWARE

The Bayesian X-chromosomal procedures described in this paper have
been programmed in R (R Core Team, 2017) by Xavi Puig, and are
made available in version 1.5.8 of the Hardy–Weinberg package
(Graffelman, 2015).
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APPENDIX 1

Marginal likelihoods
Here we present the marginal likelihoods, P(y |Mi) for i= 0,…,3, needed to compute the posterior probabilities, P(Mi | y), through equation
(3.2). The priors assumed are the ones described in ‘Choice of a prior distribution’ section, and y= (nAAf , nABf , nBBf , nAm , nBm).
The marginal likelihood under Model 0, under HW equilibrium, is:

P yjM0ð Þ ¼ nf !

nAAf !nABf !nBBf !

nm!

nAm!nBm!

G
P2
j¼1

bj;0

 !

Q2
j¼1

G bj;0
� � 2nABf ´G b1;0 þ 2nAAf þ nABf þ nAm

� �
G b2;0 þ 2nBBf þ nABf þ nBm
� �

G
P2
j¼1

bj;0 þ 2nf þ nm

 ! : ð6:1Þ
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The marginal likelihood under Model 1, with d= 1 and fa0, can be computed through:

P yjM1ð Þ ¼ nf !

nAAf !nABf !nBBf !

nm!

nAm!nBm!

G
X3
j¼1

aj;1;f

 !

Y3
j¼1

G aj;1;f
� � R 10 R 1�pABf

0 p
a1;1;fþnAAf�1
AAf ´ pa2;1;fþnABf�1

ABf 1� pAAf � pABf

� �a3;1;fþnBBf�1 2pAAfþpABf
2

� �nAm

1� 2pAAfþpABf
2

� �nBm
dpAAf dpABf :

ð6:2Þ

The marginal likelihood under Model 2, with da1 and f= 0, is:

P yjM2ð Þ ¼ nf !

nAAf !nABf !nBBf !

nm!

nAm!nBm!

G
X2
j¼1

bj;2;f

 !

Y2
j¼1

G bj;2;f
� �

G
X2
j¼1

bj;2;m

 !

Y2
j¼1

G bj;2;m
� � 2nABf

´
G b1;2;f þ 2nAAf þ nABf
� �

G b2;2;f þ 2nBBf þ nABf
� �

G
X2
j¼1

bj;2;f þ 2nf

 ! G b1;2;m þ nAm
� �

b2;2;m þ nBm
� �

G
X2
j¼1

bj;2;m þ nm

 !
: ð6:3Þ

Finally, the marginal likelihood under the saturated Model 3 is:

P yjM3ð Þ ¼ nf !

nAAf !nABf !nBBf !

nm!

nAm!nBm!

G
X3
j¼1

aj;3;f

 !

Y3
j¼1

G aj;3;f
� �

G
X2
j¼1

bj;3;m

 !

Y2
j¼1

G bj;3;m
� �

´
G a1;3;f þ nAAf
� �

G a2;3;f þ nABf
� �

G a3;3;f þ nBBf
� �

G
X3
j¼1

aj;3;f þ nf

 ! G b1;3;m þ nAm
� �

G b2;3;m þ nBm
� �

G
X2
j¼1

bj;3;m þ nm

 !
: ð6:4Þ

Note that the only model that requires integration is Model 1. However, it can be carried out numerically without any problem because the
integration region is compact, and grid size can be set to be as small as needed for the precision required.

APPENDIX 2

Posterior distribution under Model 3
Under the saturated Model 3, (nAAf , nABf , nBBf) has the Multinomial(nf ,(pAAf , pABf , pBBf)) distribution and nAm has the Binomial(nm , pAm)
distribution. Under the assumption that a priori (pAAf , pABf , pBBf) is Dirichlet(a1 ,3 ,f , a2 ,3 ,f , a3 ,3 ,f), and pAm is Beta(b1 ,3 ,m , b2 ,3 ,m), the posterior
distribution for (pAAf , pABf , pBBf) is:

p pAAf ; pABf ; pBBf jy
� �

¼ Dirichlet a1;3;f þ nAAf ; a2;3;f þ nABf ; a3;3;f þ nBBf
� �

; ð6:5Þ
independent of the posterior distribution for pAm, which is:

p pAmjyð Þ ¼ Beta b1;3;m þ nAm; b2;3;m þ nBm
� �

: ð6:6Þ
The marginal posterior distributions for pAf, f and d follow from the ones for (pAAf , pABf , pBBf) and for pAm, and they can be easily estimated by

simulating large samples of (pAAf , pABf , pBBf), and of (pAm , pBm), and for each value in the sample compute the corresponding value of pAf, of f,
and of d, using equations (2.6),(2.4) and (2.5), respectively.
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