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Abstract

Background

In highly resource-limited settings, many clinics lack same-day microbiological testing for

active tuberculosis (TB). In these contexts, risk of pretreatment loss to follow-up is high, and

a simple, easy-to-use clinical risk score could be useful.

Methods and findings

We analyzed data from adults tested for TB with Xpert MTB/RIF across 28 primary health

clinics in rural South Africa (between July 2016 and January 2018). We used least absolute

shrinkage and selection operator regression to identify characteristics associated with

Xpert-confirmed TB and converted coefficients into a simple score. We assessed discrimi-

nation using receiver operating characteristic (ROC) curves, calibration using Cox linear

logistic regression, and clinical utility using decision curves. We validated the score exter-

nally in a population of adults tested for TB across 4 primary health clinics in urban Uganda

(between May 2018 and December 2019). Model development was repeated de novo with

the Ugandan population to compare clinical scores. The South African and Ugandan cohorts

included 701 and 106 individuals who tested positive for TB, respectively, and 686 and 281

randomly selected individuals who tested negative. Compared to the Ugandan cohort, the

South African cohort was older (41% versus 19% aged 45 years or older), had similar break-

down of biological sex (48% versus 50% female), and had higher HIV prevalence (45% ver-

sus 34%). The final prediction model, scored from 0 to 10, included 6 characteristics: age,

sex, HIV (2 points), diabetes, number of classical TB symptoms (cough, fever, weight loss,
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and night sweats; 1 point each), and >14-day symptom duration. Discrimination was moder-

ate in the derivation (c-statistic = 0.82, 95% CI = 0.81 to 0.82) and validation (c-statistic =

0.75, 95% CI = 0.69 to 0.80) populations. A patient with 10% pretest probability of TB would

have a posttest probability of 4% with a score of 3/10 versus 43% with a score of 7/10. The

de novo Ugandan model contained similar characteristics and performed equally well. Our

study may be subject to spectrum bias as we only included a random sample of people with-

out TB from each cohort. This score is only meant to guide management while awaiting

microbiological results, not intended as a community-based triage test (i.e., to identify indi-

viduals who should receive further testing).

Conclusions

In this study, we observed that a simple clinical risk score reasonably distinguished individu-

als with and without TB among those submitting sputum for diagnosis. Subject to prospec-

tive validation, this score might be useful in settings with constrained diagnostic resources

where concern for pretreatment loss to follow-up is high.

Author summary

Why was this study done?

• In high-burden settings, up to 40% of patients with confirmed tuberculosis (TB) are lost

to follow-up between the time they initially present for diagnosis and the time treatment

can be initiated.

• A simple clinical prediction rule for initiation of empiric treatment could therefore be

very helpful, but existing prediction rules for TB have been designed for use in specific

contexts (e.g., HIV clinics and contact investigation), require data and/or infrastructure

(e.g., radiography) that are unlikely to be available in highly resource-limited settings, or

have been constructed in a format that is difficult to implement for busy midlevel clini-

cians with little time or access to computers.

What did the researchers do and find?

• We developed a simple clinical risk score for diagnosis of TB among adults presenting

to primary health clinics in rural South Africa and validated the score in urban Uganda.

• This score (ranging from 1 to 10) is easy to calculate by hand and requires only informa-

tion readily accessible to clinicians in highly resource-limited settings.

• This score adds clinical utility at cutoffs that likely reflect the risk–benefit ratio of mak-

ing a TB diagnosis when same-day microbiological testing is unavailable.

What do these findings mean?

• If prospectively validated in other populations, this clinical risk score could improve the

process of empiric TB diagnosis in peripheral health settings where access to same-day

microbiological testing is lacking and the risk of loss to follow-up is high.
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• This clinical risk score might be used for patients at high risk to initiate a short-term

empirical course of 4-drug TB treatment on the same day of their clinic visit until their

microbiological test results are available.

Introduction

The World Health Organization (WHO) estimates that 10.0 million new tuberculosis (TB)

cases and 1.4 million deaths occurred in 2018, making TB the leading single-agent cause of

infectious mortality worldwide [1] Pretreatment loss to follow-up is a major contributor to TB

morbidity and transmission: an estimated 13% to 18% of people diagnosed with TB in high-

burden settings are lost to follow-up before starting treatment [2]. Rapid treatment of TB is dif-

ficult in settings where access to on-site diagnostic testing, radiography, and specialist staff is

limited. Empirical (or clinical) TB diagnosis—in other words, diagnosis made without micro-

biological confirmation—is therefore an important consideration in these settings where the

risk of loss to follow-up is high. However, empirical diagnosis is not standardized, may not be

routinely made by midlevel clinicians who frequently staff such clinics, and does not correlate

well with microbiological results—often leading to inappropriate therapy [3,4]. Simple tools to

improve the process of empirical TB diagnosis in severely resource-constrained settings could

therefore substantially reduce Mycobacterium tuberculosis transmission and TB mortality.

Molecular tests for TB, including Xpert MTB/RIF (Xpert; Cepheid, Sunnyvale, California,

United States of America) and Xpert Ultra, have improved TB diagnosis but remain unavail-

able in many peripheral clinics, despite the availability of newer single-module systems such as

Xpert Omni and Xpert Edge [5–7]. Even where available, results from molecular tests are often

not received by the treating clinician on the same day. Most randomized trials of Xpert on clin-

ical outcomes have been conducted in settings where same-day testing and ancillary diagnostic

procedures (e.g., chest X-ray) were readily available [7–9]. However, a very common clinical

scenario is one in which a patient with presumptive TB is unlikely to receive same-day radio-

logical or microbiological test results and is at high risk of loss to follow-up if treatment is not

initiated immediately [8,10,11]. In such settings, a simple clinical score that could rapidly iden-

tify high-risk patients for consideration of anti-TB treatment would be exceedingly helpful.

Most existing models for predicting active TB require equipment or infrastructure (e.g.,

radiology, laboratory testing, and calculations requiring a computer or smartphone) that is

generally unavailable in clinical settings that also lack same-day microbiological testing for TB

[12–15]. Thus, there exists a need for a prediction score that is simple enough to write on

paper and calculate rapidly by hand. We aimed to develop such a simple score for predicting

active TB, requiring only information likely to be accessible to clinicians in such resource-lim-

ited settings. To ensure that this score could be widely applicable across sub-Saharan Africa,

we developed the score in 1 epidemiological context (rural South Africa) and validated it in a

very different one (urban Uganda).

Methods

Study setting and population

We derived our clinical score using data from the Kharitode study, a cluster-randomized con-

trolled trial of TB contact investigation strategies (household and incentive-based contact

investigation) against facility-based screening (the standard of care) across 56 primary care

clinics in 1 rural and 1 semi-urban district of Limpopo Province, South Africa [16]. Limpopo
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Province has a low population density (46.1 people per km2 in 2016) [17], high TB incidence

(301 per 100,000/year in 2015), and high adult HIV prevalence (17%) [18]. The median house-

hold income in this study population was approximately $150 per month [19].

For the current analysis, we included participants above 15 years of age who presented with TB

symptoms at the 28 primary health clinics randomized to facility-based (i.e., passive) screening

between July 2016 and January 2018. According to standard practice in South Africa, all clinic

attendees were screened for TB symptoms, and symptomatic individuals were referred for Xpert

testing. Among the symptomatic individuals, those who provided informed consent were inter-

viewed about demographic and clinical details and provided follow-up contact information [16].

Our definition of active TB was based on an Xpert–positive sputum specimen. Xpert has imper-

fect sensitivity for pulmonary TB (estimated 88%) but high specificity (98%), such that the positive

predictive value of Xpert is expected to be high [20]. Data were collected on all consenting Xpert–

positive cases and a random sample of Xpert–negative individuals designed to be representative

of the entire Xpert–negative population. Individuals who did not have an interpretable Xpert

result or were treated for TB despite a negative Xpert result (<1%) were excluded from analysis.

Model specification and score generation

This study is reported as per the Transparent Reporting of a multivariable prediction model

for Individual Prognosis Or Diagnosis (TRIPOD) guideline developing, validating, or updat-

ing a prediction model (S1 Checklist). We considered variables for inclusion in our model that

met the following criteria: (1) existing evidence of association with TB disease (i.e., excluding

variables measured for reasons other than TB risk); (2) measured in the Kharitode trial with lit-

tle (<10%) missingness; and (3) likely to be available to clinicians in highly resource-limited

settings. Continuous predictors were either categorized based on a priori selection of cutoffs

that fell near the midpoint of the observed range (e.g., 2-week duration of symptoms) or han-

dled as ordinal variables (e.g., number of current TB symptoms). We applied multiple imputa-

tion with chained equations [21,22] to impute missing data, using the R package “mice.” We

then conducted 10-fold cross-validation and fit a multivariable least absolute shrinkage and

selection operator (lasso) regression model, using the R package “glmnet” [23,24]. Our goal

was to create a simple scoring system that could be used rapidly by clinicians in settings of low

infrastructure without sacrificing predictive accuracy. To this end, we generated a point scor-

ing system by assigning points to each variable by first identifying clusters of coefficients in the

multivariable lasso regression model (i.e., variables that each had roughly equal associations

with the outcome of interest), then taking the median of those clustered coefficients, dividing

all coefficients by that median value, then rounding to the nearest integer. This process enabled

us to remove variables that were only weakly associated with the outcome (i.e., coefficients less

than half the median value of the majority of predictors) and to generate a score based entirely

on integer values. Use of the mean, rather than median, value did not change our results.

Points were summed to generate the final risk score. The final risk score was then fitted to a

logistic regression taking TB status (Xpert result) as the outcome. The predictive accuracy of

this simplified risk score was compared against that of a full logistic regression model using

actual coefficient values (S4 and S5 Figs, S3 Table). We performed a secondary analysis in

which all missing values were assigned the most common value (single imputation) to reflect

likely clinical use of the score in the field (S4 Table, S8 Fig).

External validation

We validated the model by assessing its performance in a population of individuals tested for

active pulmonary TB in outpatient clinics in densely populated parishes of Kampala, the
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capital city of Uganda. The estimated population density in our study site is 23,000 people per

km2. Among the adult study population, self-reported median household income was $91, the

prevalence of pulmonary TB was estimated between 420 and 940 per 100,000 population, and

the prevalence of HIV was estimated 18%. We enrolled patients with presumptive TB present-

ing at 4 healthcare facilities in Kampala, Uganda between May 22, 2018 and December 31,

2019. This external validation population consisted of adults (�15 years) who tested positive

for TB on Xpert and a random selection of adults who presented with TB symptoms on the

same day as the case but tested negative on Xpert and were not treated for active TB. Cases and

non-cases were not matched on any other variable. Missing data were found in only 1 individ-

ual who was removed from the analysis. We repeated the same model development process de

novo with the bootstrap sample of Ugandan population using a split internal validation

approach to assess the degree of difference between the clinical score system as developed in

South Africa and the score as developed in Uganda. The de novo analysis was then also vali-

dated in the South African population (S5 and S6 Tables, S11 and S12 Figs). All analyses were

conducted using R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria).

An important aspect of the derivation and validation populations is that a random selection

of all non-cases (rather than a full cohort) was enrolled in each study. In South Africa, labora-

tory registers were used to randomly select 1 Xpert–negative patient for every Xpert–positive

patient enrolled; in Uganda, clinical registers of patients with presumptive TB were used to

select 2 Xpert–negative patients per Xpert–positive patient. In both studies, controls were

matched to cases based only on facility and date range of presentation. Thus, to mitigate

against spectrum bias, we performed sensitivity analyses of all outcomes in simulated cohorts

where the data from non-cases were replicated to provide prespecified levels of TB prevalence

(5%, 10%, and 20%) among people being tested.

Model calibration, discrimination, and clinical utility

We assessed agreement between model-based risk predictions and observed TB status (calibra-

tion) using the Cox linear logistic regression in the validation population [21,25]. This regres-

sion technique compares observed TB status (positive versus negative) to the log odds of

predicted TB risk, assuming a linear relationship. The intercept of this regression can therefore

be interpreted as the overall degree of under- or overestimation of risk, while the slope can be

interpreted as evaluating whether the accuracy of risk prediction is different, comparing those

with low predicted risk to those with high predicted risk. The intercept of the fitted regression

model was modified to reflect the different sampling fraction in each population [26,27]. Dis-

crimination was evaluated using receiver operating characteristic (ROC) curve analysis and

calculation of the c-statistic (area under the ROC curve). We conducted decision curve analysis

to help weigh the relative benefits of treating patients with true active TB against the harms of

treating patients with Xpert–negative results using different cutoffs of the clinical score

[28,29]. For both predictive accuracy and decision curve analyses, we weighted data from

Xpert–negative individuals in Uganda to represent a scenario of 10% underlying TB preva-

lence. Finally, to provide a clinically relevant decision tool, we used the sensitivity and specific-

ity of the model to estimate the probability of TB for individuals with each possible risk score

(1 to 10) assuming pretest probabilities (i.e., prevalence of TB in the underlying population

being tested) of 5%, 10%, and 20%.

Analysis plan

This analysis, which relied on the availability of overlapping data from 2 independent studies,

was not laid out in a prospective protocol. Data to inform the score were determined a priori
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based on available variables deemed to be measurable in a highly resource-constrained setting,

and the score was developed based on consensus assessment of lasso regression coefficients

(i.e., how to combine those coefficients into a simple numerical score), prior to performing the

validation. The variables contributing to the score (and the score itself) remain the same as

those made in a priori decisions, but numerous supporting analyses were performed or modi-

fied in response to comments made in peer review. These revisions included a modified assess-

ment of calibration (use of Cox linear logistic regression with modification of the intercept to

reflect sampling fractions), use of multiple imputation for missing data, inclusion of decision

curve analysis, and performance of multiple sensitivity analyses (including simulated cohorts

to evaluate different underlying TB prevalence, use of restricted cubic splines to model age,

and restriction to patients with chronic cough only). Data sufficient to replicate all analyses are

available at https://doi.org/10.7281/T1/W2AG3A, and model code is available at https://

github.com/ybaik10/clinicalriskscore.

Ethics statement

The Kharitode study was approved by the University of the Witwatersrand’s Human Research

Ethics Committee and the Limpopo Provincial Government Department of Health. The exter-

nal validation study was approved by the Institutional Review Board (IRB) of the Makerere

University College of Health Sciences. Both studies were approved by the IRB of the Johns

Hopkins Bloomberg School of Public Health through an Authorization Agreement with the

local IRBs. All study participants provided written informed consent. Parental consent (with

participant assent) was obtained for participants between 15 and 18 years of age.

Results

A total of 1,387 adults with symptoms of active TB were included in the South African deriva-

tion cohort: 701 individuals with Xpert-confirmed TB and 686 individuals who presented to

the same clinics were tested for TB with Xpert but tested negative and were not started on TB

treatment (Fig 1). The Ugandan external validation population included 106 Xpert–positive

and 281 Xpert–negative adults. Participants with TB were more likely to report classic TB

symptoms (other than cough) and had a longer duration of symptoms (median 4 weeks versus

2 weeks) compared to people with negative Xpert results in both populations (Table 1). Six of

the predictors—male sex, age between 25 and 44 years, HIV positivity (based on clinical

Fig 1. Flow chart of the South African and Ugandan study population. Left panel shows the flow chart of the South

African study population. Laboratory registers were used to randomly select 1 Xpert–negative patient for every Xpert–

positive patient enrolled. After excluding those who did not report any TB symptoms, the final ratio between Xpert–

positive TB cases (n = 701) and Xpert–negative individuals (n = 686) became 1.02:1. Right panel shows the flow chart

of the Ugandan study population. Clinical registers of patients with presumptive TB were used to select 2 Xpert–

negative patients per Xpert–positive patient. The final ratio of Xpert–positive TB cases (n = 106) to Xpert–negative

individuals (n = 281) was 0.38:1. In both studies, controls were matched to cases based only on facility and date range

of clinical presentation. TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1003420.g001
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Table 1. Characteristics of model derivation (South Africa) and external validation (Uganda) populations.

South African derivation population,

N (%)

Ugandan external validation population,

N (%)

Xpert–positive,

701 (51)

Xpert–negative,

686 (49)

Xpert–positive,

106 (27)

Xpert–negative,

281 (73)

Age category, years

15–24 84 (12) 119 (17) 20 (19) 66 (24)

25–34 166 (24) 118 (17) 42 (40) 87 (31)

35–44 202 (29) 133 (19) 30 (28) 69 (25)

45–54 147 (21) 154 (22) 14 (13) 39 (14)

�55 102 (14) 162 (24) 0 (0) 20 (7)

Sex

Female 275 (39) 389 (57) 38 (36) 161 (57)

Male 426 (61) 297 (43) 68 (64) 120 (43)

HIV status

HIV–negative or unknowna 281 (40) 484 (71) 68 (64) 188 (67)

HIV–positive, on antiretroviral therapy 322 (46) 166 (24) 26 (25) 89 (32)

HIV–positive, not on antiretroviral therapy 48 (7) 14 (2) 12 (11) 4 (1)

HIV–positive, unknown antiretroviral

therapy

50 (7) 22 (3) 0 (0) 0 (0)

Presence of classical TB symptoms

Cough 608 (87) 653 (95) 105 (99) 279 (99)

Fever 305 (44) 165 (24) 47 (44) 67 (24)

Weight loss 431 (62) 94 (14) 76 (72) 95 (34)

Night sweats 414 (59) 160 (23) 42 (40) 45 (16)

Total number of classical TB symptoms

1 174 (25) 420 (60) 20 (19) 136 (48)

2 163 (23) 173 (25) 32 (30) 96 (34)

3 198 (28) 66 (9) 30 (28) 38 (14)

4 166 (24) 27 (4) 24 (23) 11 (4)

Duration of TB symptomsb

�2 weeks 206 (31) 378 (55) 10 (9) 113 (40)

>2 weeks 464 (69) 283 (41) 96 (91) 168 (60)

Any other non-TB symptomsc 440 (63) 301 (44) 62 (59) 111 (40)

Self-reported comorbidities

Diabetes mellitusb 25 (4) 21 (3) 1 (1) 2 (1)

Obstructive pulmonary diseaseb 15 (2) 21 (3) 1 (1) 7 (3)

Previous TB diagnosis (self-report)b 128 (18) 86 (13) 24 (23) 32 (11)

Educationb

High school or less 511 (73) 478 (70) 35 (33) 96 (34)

Any post-high school education 186 (27) 200 (29) 71 (67) 185 (66)

Smoking historyb

Never 416 (59) 478 (70) 67 (63) 225 (80)

Ever 283 (40) 200 (29) 39 (37) 56 (20)

Occupationb

Regularly employed 128 (18) 148 (22) 58 (55%) 148 (53%)

Irregular work, student, or housewife 110 (16) 206 (30) 31 (29%) 89 (32%)

Unemployed or retired 458 (66) 322 (48) 17 (16%) 44 (16%)

(Continued)
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registers or self-reported answers), the number of WHO TB symptoms (cough, fever, and

night sweats within the past few days from the day of clinic visit and weight loss of more than

5 kg or enough to make clothes loose) currently experiencing [16], any TB symptoms duration

of over 2 weeks, and self-reported history of diabetes—had sufficiently strong associations to

be included in the simple clinical score, which ranged from 1 to 10 (Table 2). Fig 1 illustrates

the use of this score in settings of different pretest probability (TB prevalence among people

Table 1. (Continued)

South African derivation population,

N (%)

Ugandan external validation population,

N (%)

Xpert–positive,

701 (51)

Xpert–negative,

686 (49)

Xpert–positive,

106 (27)

Xpert–negative,

281 (73)

Incomeb,d 1,820 (1,140–3,200)

ZAR

2,125 (1,140–3,500)

ZAR

375,000 (200,000–600,000)

Shilling

340,000 (200,000–600,000)

Shilling

HIV, human immunodeficiency virus; TB, tuberculosis.
aA total of 11% of patients whose HIV status was unknown or unreported were included in South African study population.
bMissing rate is 4% for duration of TB symptoms; 2% for diabetes and obstructive pulmonary diseases; 1% for education, previous TB, smoking, and occupation; and

43% for income in South Africa.
cIncludes chest pain, pain elsewhere, skin symptoms, genitourinary symptoms, gastrointestinal symptoms, and “any other symptom” by self-report.
d1 ZAR, South African currency = US$0.06; 1 Shilling, Ugandan currency = US$0.0003.

https://doi.org/10.1371/journal.pmed.1003420.t001

Table 2. Association of key variables with Xpert-confirmed pulmonary TB.

Unadjusted odds ratioa (95% CI) Adjusted odds ratiob (95% CI) p-value Lasso regression coefficient Scorec

Age category, years

15–24 1.17 (0.81, 1.7) 1.65 (1.03, 2.65) 0.04 0.39

25–34 2.3 (1.64, 3.23) 2.66 (1.72, 4.11) <0.001 0.92 1

35–44 2.52 (1.81, 3.5) 1.77 (1.15, 2.73) 0.01 0.51 1

45–54 1.6 (1.15, 2.24) 1.28 (0.84, 1.97) 0.25 0.21

�55 Reference Reference Reference

Sex

Female Reference Reference Reference

Male 2.03 (1.64, 2.51) 2.90 (2.07, 4.05) <0.001 0.93 1

HIV status

HIV–negative or unknown Reference Reference Reference

HIV–positive 3.63 (2.91, 4.53) 3.55 (2.65, 4.75) <0.001 1.22 2

HIV/antiretroviral therapy status

HIV–negative or unknown Reference - -

HIV–positive, on antiretroviral therapy 3.38 (2.66, 4.28) - -

HIV–positive, not on antiretroviral therapyd 6.02 (3.26, 11.11) - -

Classical TB symptoms - -

Cough 0.33 (0.22, 0.5) - -

Fever 2.44 (1.94, 3.07) - -

Weight loss 10.08 (7.73, 13.14) - -

Night sweats 4.74 (3.76, 5.98) - -

Total number of classical TB symptoms

1 Reference Reference Reference 1 (0)

2 2.27 (1.72, 3.00) 1.92 (1.40, 2.64) <0.001 0.69 2 (1)

(Continued)
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being tested). In settings where the pretest probability is 10%, a patient with a risk score of 3

would have a predicted TB risk of 4%, whereas a person with a risk score of 7 would have a pre-

dicted risk of 43% (Fig 2). Optimal cutoffs for clinical use were at score of 4 (sensitivity = 0.85,

specificity = 0.63) or 5 (sensitivity = 0.69, specificity = 0.80), out of 10 (Fig 3).

In the model derivation and external validation population, the median risk score among

people with TB was 5 (interquartile range [IQR] 4 to 6), compared to 3 (IQR 2 to 4) and 4

(IQR = 3 to 5), respectively, in people without TB. Model calibration was acceptable in the con-

text of a very simple score (intercept = −0.25 [95% CI: −0.50, 0.01] and slope = 0.76 [95% CI:

0.65, 0.96]). (Fig 4A) The simplified risk score demonstrated moderate discrimination in the

derivation and external validation population, with a c-statistic of 0.82 (95% CI 0.81 to 0.82)

and 0.75 (95% CI 0.69 to 0.80), respectively. This was comparable to the discrimination of the

full model using regression coefficients (c-statistic 0.83, 95% CI 0.82 to 0.83 in the derivation

population and 0.77, 95% CI 0.71 to 0.82 in the validation population) (Figs 4B and S4). Esti-

mated TB prevalence and mode of imputing missing data did not influence model discrimina-

tion (S8 Fig).

Decision curve analysis suggested that use of the clinical score to inform empiric treatment

decisions offered a positive net benefit (compared to a treat-all or treat-none strategy) when

the ratio of benefit of a true-positive diagnosis to cost of a false-positive diagnosis ranged from

4:1 to 50:1 (Fig 5).

Table 2. (Continued)

Unadjusted odds ratioa (95% CI) Adjusted odds ratiob (95% CI) p-value Lasso regression coefficient Scorec

3 7.24 (5.21, 10.07) 5.38 (3.70, 7.83) <0.001 1.70 3 (2)

4 14.84 (9.52, 23.12) 10.00 (6.08, 16.46) <0.001 2.31 4 (3)

Duration of TB symptoms

�2 weeks Reference Reference Reference

>2 weeks 3.02 (2.41, 3.79) 2.41 (1.83, 3.16) <0.001 0.85 1

Any other non-TB symptomse 2.16 (1.74, 2.68) 1.35 (1.03, 1.77) 0.03 0

Self-reported comorbidities

Diabetes mellitus 1.11 (0.62, 1.99) 2.02 (0.92, 4.42) 0.08 0.76 1

Obstructive pulmonary disease 0.69 (0.35, 1.35) - -

Previous TB diagnosis (self-report) 1.49 (1.11, 2.00) 1.18 (0.81, 1.71) 0.39 0.13

Educationf

High school or less Reference - -

Any post-high school education 0.86 (0.68, 1.08) - -

Smoking history

Never Reference Reference Reference

Ever 1.61 (1.29, 2.01) 0.78 (0.55, 1.11) 0.16 −0.23 0

95% CI, 95% confidence interval; HIV, human immunodeficiency virus; lasso, least absolute shrinkage and selection operator; TB, tuberculosis.
aEstimated from univariate logistic regression.
bEstimated from the multivariable logistic regression, adjusting for all other variables with a population prevalence of at least 10% and a statistically significant

association with TB on univariate regression. Individual TB symptoms were removed in favor of total number of symptoms based on an a priori decision.
cTo transform the coefficients to simple relative points, each point in this simple clinical score is estimated by dividing the corresponding lasso coefficient by the median

value of coefficients (0.9, taking 1 coefficient closer to clustered values when a variable has more than 2 categories) and rounding to the nearest integer. One point was

added to the score for number of TB symptoms to increase usability, as all participants had at least 1 symptom.
dThis category includes HIV–positive with unknown antiretroviral therapy status.
eParticipants were asked about chest pain, pain elsewhere, skin symptoms, genitourinary symptoms, gastrointestinal symptoms, and “any other symptom.”
fOccupation and median household income were also explored as indicators of socioeconomic status but excluded based on uncertain applicability in the clinical setting.

https://doi.org/10.1371/journal.pmed.1003420.t002
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The de novo model developed in the Ugandan population included a total of 9 points, of

which 8 appeared in the primary model developed in the South African population (age, sex,

HIV status, the number of WHO TB symptoms [1–4], and duration of symptoms) and 2 did

not (antiretroviral therapy (ART) and cough observed during the interview). These 2 variables

either were not collected (observed cough) or were rare (HIV not on ART) in the rural South

African cohort. The c-statistic of this model in the internal validation population in Uganda

was 0.81 (95% CI = 0.79 to 0.83) and was 0.78 (95% CI = 0.77 to 0.79) in the external validation

population in South Africa (S5 and S6 Tables, S11 and S12 Figs).

After replicating non-cases in simulated cohorts, the sensitivity analyses showed no mate-

rial change in discrimination; calibration was acceptable when the external validation popula-

tion was modified in this fashion to match the prevalence of TB in the derivation population

(see below), and estimates of clinical utility are provided across a range of underlying TB prev-

alence estimates to enhance transportability across settings. All estimates of variance, however,

reflect only the primary data available (without replication of the Xpert–negative population).

Discussion

This analysis of 2 different clinical populations in sub-Saharan Africa illustrates the successful

development and validation of a clinical risk score for predicting the presence of active TB in

Fig 2. A simple clinical risk score for empiric diagnosis of active TB. Shown is a 1-page, easy-to-use tool for use in clinical settings where same-

day microbiological testing for pulmonary TB is unavailable and risk of loss to follow-up is high. For illustrative purposes, we have chosen cutoffs

of 10% and 40% risk of TB as potential clinical decision points, based on natural breaks in predictive probability and on intuition that TB

treatment is unlikely to be started empirically for patients with less than a 1 in 10 chance of having TB. Other cutoffs could be selected based on

local resources and probabilities of loss to follow-up if untreated. TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1003420.g002
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primary health clinics where same-day microbiological testing may be unavailable. This score

is easy to calculate by hand and relies only on data that are readily available in the clinical set-

ting. Despite its simplicity, the clinical risk score showed reasonable predictive accuracy,

including in an external validation population. Use of this score was estimated to add clinical

utility for patients in whom the benefits of an immediate diagnosis were similar or somewhat

greater than the risks of false-positive diagnosis. De novo construction of a similar tool in the

validation population yielded remarkably similar results, further suggesting that this clinical

tool might be transportable across sub-Saharan African primary care settings. We have con-

structed a corresponding 1-page clinical tool that can be easily implemented in such settings.

This clinical tool could reduce losses to follow-up (and corresponding transmission and mor-

tality) by facilitating immediate initiation of treatment among patients who have a high clinical

probability of having TB. Before recommending wide use, however, this tool must first be vali-

dated in other populations, and a strategy of using such a score to inform empiric treatment

decisions must be evaluated in terms of its implementation and impact on patient outcomes

(e.g., pretreatment loss to follow-up, treatment success, and mortality) in field settings.

A major potential benefit of this clinical TB score is its reliance on characteristics—namely

younger age, male sex, number of TB symptoms (and duration >2 weeks), and HIV status—

that are (1) easy to measure; (2) known to be associated with TB; and (3) confirmed to enhance

predictive accuracy in 2 very different clinical populations. Our risk score formally combines

Fig 3. Accuracy of a simple clinical risk score for active pulmonary TB. This figure shows the sensitivity (solid

black), specificity (dashed black), positive predictive values (red), and negative predictive values (blue) of a simple

clinical risk score for pulmonary TB in the derivation South African cohort, at different cutoffs for a positive test. The

positive and negative predictive values are estimated assuming a prevalence of TB among symptomatic individuals

presenting for care (i.e., pretest probability) of 5% (dotted lines), 10% (dashed lines), and 20% (solid lines). The score

ranges from a minimum of 1 to 10; see Fig 2. Due to the small sample size of individuals with scores higher than 8, we

combined scores equal to or higher than 8 into 1 category. Accuracy and predictive values are calculated relative to

Xpert MTB/RIF as a gold standard. TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1003420.g003
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these characteristics in a way that would be easy to calculate in the clinical setting and also easy

to incorporate into policy. Regarding age, young adults may not experience higher absolute TB

risk compared to older adults. Our data rather may reflect that alternative diagnoses (e.g.,

chronic obstructive pulmonary diseases and cancer) are less likely in younger patients who are

seeking care for severe illness. Self-reported diabetes status contributed to the clinical score but

may be slightly more difficult to standardize. Furthermore, the prevalence of diabetes and obe-

sity is higher in South Africa than in other sub-Saharan African countries [30] and may not

contribute substantially to predictive accuracy in those settings; as evidence of this, self-

reported diabetes did not appear in the de novo model developed from the Ugandan

population.

It is helpful that a simple clinical score performed nearly as well as a model using full regres-

sion coefficients, that imputation of the most common value (as might be done in the field)

performed equally well as multiple imputation, and that predictive accuracy was not substan-

tially degraded in external validation. Also reassuring is that the scores developed de novo in 2

separate populations converged on the majority of characteristics included. While these results

imply the potential transportability of this clinical TB score to other populations (especially

other populations seeking primary care for TB symptoms in sub-Saharan Africa), further

Fig 4. Calibration and discrimination of a simple clinical score for diagnosis of active TB in sub-Saharan Africa. Panel A shows model calibration using Cox linear

logistic regression in the external validation (Ugandan) population. An intercept of 0 and slope of 1 is consistent with good calibration. In this plot, the red line

represents perfect calibration, the black line corresponds to calibration of the simple clinical score, the dotted blue line corresponds to a smoothed (Loess) calibration,

and the gray region corresponds to the 95% confidence band of the Loess calibration. The black line falling below the red line indicates that the simple score mildly

overestimates the probability of TB in the validation population. Calibration curves were generated after adjusting for the different sampling fraction of TB in the

derivation and validation populations, as described in the text. Panel B shows the ROC curve—a measure of discrimination—in the South African derivation (black line)

and Ugandan external validation (red line) cohorts. Due to the small sample size of individuals with scores over 8, we combined scores equal to or higher than 8 into 1

category. The number on each dot represents the risk score at which sensitivity and specificity are estimated. For example, at a score of 4, specificity and sensitivity are

0.63 and 0.85, respectively, in the derivation population and 0.47 and 0.88, respectively, in the validation population. The reported c-statistics did not differ with

adjustment of the sampling fractions to a population with 10% estimated prevalence. ROC, receiver operating characteristic; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1003420.g004
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studies are required to confirm such generalizability before incorporating this score into wide-

spread practice.

The value of this clinical score for active TB must be interpreted in light of its intended use.

This score is only meant to guide management while awaiting microbiological (e.g., Xpert)

results, not intended as a community-based triage test (i.e., to identify individuals who should

receive further testing). Thus, while the score does not meet minimum WHO target product

profile criteria for a community-based TB triage test (90% sensitivity and 70% specificity) [31],

its value should be assessed not on its use as a triage test, but rather on the basis of its potential

clinical utility in patients for whom a microbiological test is indicated but may not reliably or

rapidly return. For example, in settings (e.g., high-income countries and most cities in middle-

income countries) where microbiological results are likely to be consistently and rapidly avail-

able, a clinical prediction rule may not add substantively to the existing standard of care. If

implemented in clinical settings, it is possible that this score could be misused (i.e., to forego

microbiological testing in high-risk patients); any implementation plan would need to be

accompanied by strong instructions and perhaps incentives to prevent such misuse.

However, in highly resource-constrained settings where Xpert results may not consistently

return, this clinical score may help guide management. Many such settings employ midlevel

clinicians and utilize highly standardized approaches to care. If a patient presents with TB

Fig 5. Clinical utility of a simple clinical score for diagnosis of active TB in sub-Saharan Africa. A decision curve

analysis compares the standardized net benefit of different treatment strategies. The standardized net benefit was

estimated as total benefit (treating true TB) minus total harm (treating false-positive TB), standardized to a maximum

benefit of 1, assuming a population with 10% underlying prevalence of TB. The standardized net benefit was examined

under different considerations of the relative benefit of a true-positive diagnosis versus the risk of a false-positive

diagnosis (x-axis). This x-axis or threshold probability corresponds to the posttest probability given a TB prevalence of

10% among people being tested (i.e., as shown in Fig 2) at which the harms and benefits of empiric TB treatment are

considered to be equivalent (i.e., the number of people without TB started on empiric treatment (false-positives) that

would be tolerated to start empiric treatment on 1 additional person with TB (true-positive). The black numbers on

top of the x-axis are the scores that correspond to each of the posttest probabilities. A treatment strategy with the

highest net benefit at the particular threshold probability has the highest clinical value. The decision curve is based on

the external validation population, with 95% confidence bands shown as dotted lines. Areas on the x-axis where the

lower bound of the 95% CI is higher than the “treatment for all” line (i.e., threshold probability> 6%) offers a

statistically significant benefit over treating all individuals. Areas on the x-axis where the lower bound of the 95% CI

does not cross 0 (i.e., threshold probability� 23%) illustrate settings in which use of the clinical risk score offers a

statistically significant benefit relative to no empirical treatment. Numbers corresponding vertical dotted lines denote

the threshold probabilities where the lower 95% confidence limit of “treatment based on clinical risk score” line is

higher than the expected net benefit of treatment for all (blue line) or no empiric treatment (black line). These

threshold probabilities (6%, 23%) include a threshold for treatment of a risk score of�4 (9% probability of TB) or�5

(17% probability of TB). Use of the clinical risk score would therefore offer higher net benefit than alternative

treatment strategies (e.g., treatment for all or treatment for none) if the benefit of empirically treating someone with

TB is deemed to be 3.3 to 15.7 times greater than the harm of empirically treating someone without TB. CI, confidence

interval; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1003420.g005
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symptoms, for example, a sputum specimen will typically be collected, but treatment for TB

will generally be deferred until the corresponding results return. In this context, pretreatment

loss to follow-up is common [2]. If initiation of empirical TB treatment could reduce long

waiting times, repeated visits, and delays in receiving results [2], it might facilitate immediate

initiation of treatment (with the aim of reducing losses to follow-up) for high-risk patients.

Indeed, many known risk factors exist for pretreatment losses to follow-up, including long

turnaround time and travel times, high patient costs, and perceived stigma [2,32,33]. Clini-

cians might therefore selectively apply this score for patients with high risk of loss to follow-

up. Alternatively, a similar algorithm to predict the risk of pretreatment loss to follow-up

might be useful. Key priorities for future studies are therefore to better prospectively identify

patients at high risk of pretreatment loss to follow-up and to better quantify the risk–benefit

ratio of initiating empiric TB treatment, as functions of TB risk (as described here), clinical

severity, and risk of loss to follow-up [34].

In selecting an appropriate cutoff for intervention on the basis of this clinical score, certain

tradeoffs must be considered. If using a low cutoff of empiric treatment (for example, > score

of 4 in a setting of�10% TB prevalence, yellow cells in Fig 2), the vast majority of individuals

above this cutoff will not have TB. In such a setting, it would be critical to ensure that TB ther-

apy could be de-escalated if microbiological results came back negative and clinical improve-

ment were not consistent with TB (e.g., rapid improvement in a matter of days or no

improvement over weeks). If such practice could be followed, same-day initiation of empiric

TB treatment might improve clinical outcomes and reduce losses to follow-up, as seen with

rapid initiation of ART for HIV [35,36]. Decision curve analysis (Fig 5) suggests that this is the

context in which the score is likely to add greatest value, but future prospective studies would

be necessary to confirm whether better outcomes could actually be achieved using this

approach. If de-escalation of care is thought not to be feasible, an alternative use of this score

would be to initiate empiric TB treatment only for those patients with a very high probability

of TB (for example, 40% probability as defined by the red cells in Fig 2). In this context, future

de-escalation of treatment might be less essential, but as suggested by the decision curve, this

approach might not add substantial value over the current standard of care in which many

such patients will already be treated.

The predictive accuracy of this simple clinical score was compatible with, or even superior

to, previously published prediction models that incorporated criteria including chest X-ray

[12] (c-statistic = 0.70, 0.79), body mass index (BMI) [13,15] (c-statistic = 0.70), hemoglobin

level [14,15] (c-statistic = 0.66), HIV viral load and ART [37] (c-statistic = 0.59, 0.69), CD4+ T

cell count [12,13,37] (c-statistic = 0.70), and Karnofsky score [14] (c-statistic = 0.75). These

measures may not be readily available in highly resource-constrained settings that may lack

even reliable scales and stadiometers. Of note, some prediction rules [12,37] have been explic-

itly designed for use in HIV–positive populations, in whom TB is often more difficult to diag-

nose. As such, the expected performance of these prediction rules might be lower, and they

might be limited in their ability to generalize to HIV–negative populations. Some other predic-

tion rules [38,39] have made in the context of contacts where not many of those experience TB

symptoms. Our aim was to expand on this work by developing a tool that could be readily

employed in peripheral health settings where a large fraction of individuals with TB symptoms

may initially present to care [10], but where resources are extremely limited.

Our study has limitations. First, the South African derivation cohort included only 60% of

all individuals who presented with TB symptoms during the study period. The majority of

non-participants (70%) were not reachable by phone follow-up for collection of additional

data. While the external validation population had much lower refusal rates (3%), these losses

might induce bias in our results. Second, both the development and validation cohorts
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included a random sample of people without TB, rather than evaluating a full cohort—and the

sampling fractions differed between the derivation and validation cohorts. Non-cases were

sampled to be representative of all people presenting with symptoms (i.e., not matched to

cases), and we confirmed all results in simulated cohorts designed to match the underlying

prevalence of TB; these analyses help to mitigate against spectrum bias but cannot remove it

entirely. Third, we recruited people with presumptive pulmonary TB who presented to pri-

mary healthcare facilities. This clinical TB score may therefore not be applicable to such as

active case finding where many people do not have TB symptoms, hospitals where individuals

are acutely ill, or settings for predicting extrapulmonary TB. The utility of this score may also

depend strongly on the underlying population’s access to care—which can affect both symp-

toms on presentation and probability of returning for confirmatory microbiological test results

[2]. Fourth, we omitted some factors that are known to be associated with increased TB risk

(e.g., self-reported weight, clinician’s subjective assessment of underweight status, or recent

contact with a known TB case). These variables were either not measured in our population

(self-reported weight and height and subjective assessment of underweight) or not found to

improve predictive accuracy (recent TB contact). We did measure BMI in Uganda and found

underweight status (BMI < 18.5kg/m2) as an additional score of 2, to improve discrimination;

future studies should consider including these variables where height and weight can be reli-

ably measured and BMI readily calculated. Fifth, the sensitivity of Xpert is imperfect, and

many individuals in both cohorts were treated for TB without a positive Xpert result. By

excluding these individuals from our analyses, our results may be biased in favor of better pre-

dictive accuracy (as these individuals may have higher clinical risk scores but may not have

true underlying TB), may be subject to spectrum bias (as the clinical presentation of Xpert–

positive and Xpert–negative TB cases may differ), and may exclude the very population for

whom the clinical score might be most useful. This bias is likely to be small in the South Afri-

can population because the prevalence of unknown Xpert status or empiric treatment was

<1%. Sixth, this risk score may not be transportable to settings with aging populations, high

prevalence of TB among non-native–born populations, or lower HIV prevalence. Finally,

although the prediction model is simple, calculation of posttest probabilities requires knowl-

edge of pretest probabilities (i.e., the proportion of patients tested with Xpert at a given facility

who test positive); these numbers may not be widely known by treating clinicians.

In summary, we have developed a simple clinical TB score to inform empirical treatment

decisions in resource-limited peripheral health settings of sub-Saharan Africa. This score is

easy to calculate, consists only of easily measured variables, and performed well in 2 distinct

populations (rural South Africa and urban Uganda). Use of this score may help to guide clini-

cal management while awaiting results of microbiological testing, especially in highly

resource-constrained settings where Xpert results may not be reliably available, and pretreat-

ment losses to follow-up are high.

Supporting information

S1 Checklist. Transparent reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guideline.
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S1 Fig. Photos of the study sites. Top is the study site in Limpopo Province, South Africa.

Limpopo Province is widely rural and has a low population density (46 people per km2). It has

high TB incidence (301 per 100,000) and high adult HIV prevalence (17%). Two photos in the

bottom are the study site in the capital city, Kampala, Uganda. In our Ugandan study site, the

population density was estimated 23,000 people per km2, TB prevalence was estimated 939 per
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100,000 by GeneXpert Ultra catridge (418 per 100,000 after excluding GeneXpert Ultra trace

positive but culture negative), and HIV prevalence was 18% among adults.

(TIFF)

S2 Fig. A simple clinical risk score for empiric diagnosis of active tuberculosis in other pre-

test TB probability settings. For illustrative purposes, we have chosen cutoffs of 10% and 40%

risk of TB as potential clinical decision points, based on natural breaks in predictive probability

and on intuition that TB treatment is unlikely to be started empirically for patients with less

than a 1 in 10 chance of having TB. Other cutoffs could be selected based on local resources

and probabilities of loss to follow-up if untreated. The utility of this score would markedly

decrease in settings where the pretest TB probability is below 2.5% because the score higher

than 7 is�15% at 2.5% TB setting.

(TIFF)

S3 Fig. Calibration of a clinical risk score using actual regression coefficients rather than a

simple 1 to 10 score. The figure shows model calibration using Cox linear logistic regression

in the external validation (Ugandan) population. An intercept of 0 and slope of 1 is consistent

with good calibration. In this plot, the red line represents perfect calibration, the black line cor-

responds to calibration of the simple clinical score, the dotted blue line corresponds to a

smoothed (Loess) calibration, and the gray region corresponds to the 95% confidence band.

Calibration curves were generated after adjusting for the different sampling fraction of TB in

the derivation and validation populations, as described in the main text.

(TIFF)

S4 Fig. Discrimination of a more detailed clinical risk score using actual regression coeffi-

cients rather than a simple 1 to 10 score, including age modeled as a restricted cubic spline

(RCS). Panel A shows the receiver operating characteristic (ROC) curve—a measure of dis-

crimination—in the South African derivation (black line) and Ugandan external validation

(red line) cohorts. The reported c-statistics did not differ with adjustment of the sampling frac-

tions to a population with 10% estimated prevalence. Panel B investigates the nonlinear rela-

tionship between the probability of Xpert MTB/RIF result and the continuous variable of age.

The R package “Hmisc” was used to plot the estimated restricted cubic splines (RCS; with 5

knots placed at the natural quantiles of age). Arrows on the x-axis show the location of the

knots. Of note, the second knot fell very near the median of our highest-risk category (i.e., age

25 to 44 years). Dots show a plot of nonparametric estimates (or smoothing parameters). The

solid line shows the estimated spline transformation, and the dotted line shows the 95% confi-

dence lines. Panel C compares the ROC curves using the actual regression coefficients; one

with the age modeled as an RCS (solid line) and the other (dotted line) with the age modeled

as categorical by decade (i.e., 15 to 24, 25 to 34, 35 to 44, 45 to 54, and 55+). The discrimination

of the full model with age as a categorical variable was significantly higher than with age mod-

eled as an RCS but was not statistically different from that of the simple 1 to 10 risk score pre-

sented in the main text.

(TIFF)

S5 Fig. Discrimination of the model using each of actual classical TB symptoms as individ-

ual binary variables, instead of the total number of TB symptoms. This receiver operating

characteristic (ROC) curve shows the discrimination of the model using each of actual classical

TB symptoms as individual binary variables, instead of the total number of TB symptoms. The

black curves show the clinical score’s discrimination in the derivation (South African) popula-

tion, and the red curves show the corresponding analysis in the external validation (Ugandan)

population. The number on each dot represents the risk score at which sensitivity and
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specificity are estimated. The discrimination of the model using each symptom individually

was not significantly higher than that of the main simple risk score in which symptoms were

simply counted, shown in Fig 4B.

(TIFF)

S6 Fig. Discrimination of the model within individuals who presented chronic cough

regardless of any other TB symptoms. In South African population, 665 (49%) reported

chronic (>2weeks) cough, 61% of which were Xpert–positive TB cases in South African popu-

lation. In Ugandan population, 262 (68%) reported chronic cough in Ugandan population,

36% of which were Xpert–positive TB cases. This receiver operating characteristic (ROC)

curve shows the discrimination of the model within individuals who presented chronic cough

regardless of any other TB symptoms. The black curves show the clinical score’s discrimina-

tion in the derivation (South African) population, and the red curves show the corresponding

analysis in the external validation (Ugandan) population.

(TIFF)

S7 Fig. Calibration prior to adjustment for different sampling fractions. The clinical risk

score for active tuberculosis (TB) as derived in the South African population is expected to sys-

tematically overestimate the predicted risk of TB in the external validation Ugandan popula-

tion because of the different sampling fractions used. (Specifically, in South Africa,

approximately 1 Xpert-individual was sampled per case, whereas in Uganda, nearly 2.7 Xpert–

negative individuals were sampled per case.) To appropriately evaluate model calibration,

therefore, we adjusted the intercept of the Cox linear–logistic model by multiplying the log

odds ratio of TB in the validation population versus the derivation population. This intercept

is a measure of the difference between the predicted probability and the actual outcome (i.e.,

calibration-in-the-large). Adjusting the intercept (for everyone in the study population) does

not affect the order of predicted risks of individuals, and hence, it does not change the predic-

tive accuracy in terms of discrimination (i.e., c-statistics). Panel A shows model calibration

using Cox linear logistic regression in the external validation (Ugandan) population before

adjusting the intercept, using simple scores as the prediction model. An intercept of 0 and

slope of 1 is consistent with good calibration. In this plot, the red line represents perfect cali-

bration, the black line corresponds to calibration of the simple clinical score, the dotted blue

line corresponds to a smoothed (Loess) calibration, and the gray region corresponds to the

95% confidence band. The divergence between the black and red lines illustrates the poor cali-

bration prior to adjustment of the intercept; as described above, this poor calibration is

expected on the basis of different sampling fractions. Panel A shows calibration of the simple 1

to 10 score, whereas Panel B shows calibration of the model using full regression coefficients.

Both of these plots were generated in the external validation (Ugandan) population before

adjusting the intercept.

(TIFF)

S8 Fig. Discrimination of the clinical risk score with missing values imputed as the most

common value rather than by multiple imputation. This receiver operating characteristic

(ROC) curve shows the discrimination of the model after imputing missing data with the most

common value (as might be done in clinical practice), rather than using multiple imputation.

The black curves show the clinical score’s discrimination in the derivation (South African)

population, and the red curves show the corresponding analysis in the external validation

(Ugandan) population. The solid lines and dotted lines show the simple 1-to-10 scoring and

scoring system using full regression coefficients, respectively. Comparing this figure to Fig 4B

in the main text illustrates that the simple risk score retains the same discrimination (c-statistic
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0.75) in the external validation population when using a simple imputation technique (replac-

ing missing values with the most common value in the population), which could be performed

easily in clinical practice.

(TIFF)

S9 Fig. Discrimination of the clinical risk score after including empirically diagnosed TB

patients as TB positive or as TB negative. In Ugandan study population, 27 TB cases were

clinically diagnosed; 16 of which were empirically treated without microbiological confirma-

tion and 11 of which were empirically treated regardless of negative Xpert results. Among 27

patients treated empirically, 7 (26%) patients ultimately had Xpert–positive (4/7) or culture

positive (3/7). The risk score of empirically diagnosed individuals (median = 6, IQR = 5–6)

was as high as the score of Xpert-confirmed TB cases (5, 4–7) compared to the Xpert–negative

group (4, 3–5). The receiver operating characteristic (ROC) curves show the discrimination of

the model after including empirically diagnosed TB patients in the study population. Left

panel is the ROC curve when empirically diagnosed TB patients were considered as TB posi-

tive together with Xpert-confirmed TB-positive cases. Right panel is the ROC curve when

empirically diagnosed TB patients were considered as TB negative. The curve shows the clini-

cal score’s discrimination in the external validation (Ugandan) population. The points on the

line show the simple 1-to-10 scoring. Comparing these figures to Fig 4B in the main text illus-

trates that the simple risk score retains the similar discrimination power (c-statistic 0.76 versus

0.75) when treating empirically diagnosed TB patients same as Xpert-confirmed TB-positive

cases. As expected, including these empirically diagnosed individuals (slightly) increased the

predictive power of our risk score.

(TIFF)

S10 Fig. Clinically utility of a simple clinical score for diagnosis of active tuberculosis in

sub-Saharan Africa assuming a population with 5% underlying prevalence of TB. The stan-

dardized net benefit (y-axis) was estimated as total benefit (treating true TB) minus total risk

(treating false-positive TB), standardized to a maximum benefit of 1, assuming a population

with 5% underlying prevalence of TB. The standardized net benefit was examined under dif-

ferent considerations of the relative benefit of a true-positive diagnosis versus the risk of a

false-positive diagnosis, or threshold probabilities (x-axis). The decision curve is based on the

external validation population, with 95% confidence bands shown as dotted lines. Black num-

bers on top of the x-axis are the posttest probability we estimated in the main Fig 1 under 5%

pretest probability. Red numbers correspond to the threshold probabilities where the lower 95%

confidence limit of “treatment based on clinical risk score” line is higher than the upper 95%

confidence limit of other lines of 2 different treatment strategies. Use of the clinical risk score of

4 or 5 would offer higher net benefit than alternative treatment strategies (e.g., treatment for all

or no empiric treatment) between 3% and 11%. This figure can also be used to evaluate the

potential impact of incorrectly assumed pretest probability of TB—for example, if practitioners

believe that the pretest probability is 10%, when in reality it is 5%. In this example, the only

score in which a misspecification would lead to an incorrect treatment decision is a score of 5.

This implies a posttest probability of 17% and an empiric treatment consideration at a 10% pre-

test probability setting, when in fact the posttest probability is 9% and no empiric treatment

consideration required at a 5% pretest probability setting. About 20% of symptomatic individu-

als may be falsely treated until the microbiological testing confirmation is available.

(TIFF)

S11 Fig. Calibration of a simple clinical score for empirical diagnosis of active tuberculosis

developed from the Ugandan study population. Panel A shows model calibration using Cox
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linear logistic regression in the internal validation (Ugandan) population, among those whose

data did not contribute to model development. An intercept of 0 and slope of 1 is consistent

with good calibration. In this plot, the red line represents perfect calibration, the black line cor-

responds to calibration of the simple clinical score, the dotted blue line corresponds to a

smoothed (Loess) calibration, and the gray region corresponds to the 95% confidence band.

Panel B shows model calibration in the external validation (South African) population. The

calibration curve for Panel B was generated after adjusting for the different sampling fraction

of TB in the derivation and validation populations, as described in the text.

(TIFF)

S12 Fig. Discrimination of a simple clinical score and more detailed clinical risk score

(using actual regression coefficients) for empirical diagnosis of active tuberculosis devel-

oped from the Ugandan study population. Panel A shows the receiver operating characteris-

tic (ROC) curve in the South African derivation cohort (red line), internal validation cohort

(blue line), and Ugandan external validation cohort (black line). The number on each dot rep-

resents the risk score at which sensitivity and specificity are estimated. For example, at a score

of 5, sensitivity and specificity are 0.66 and 0.82, respectively, in the derivation and internal

validation populations, versus 0.79 and 0.64, respectively, in the external validation population.

The reported c-statistics did not differ with adjustment of the sampling fractions to a popula-

tion with 10% estimated prevalence. Panel B shows the ROC curve using more detailed score

incorporating full regression coefficients. The discrimination power was retested under an

assumption of 10% TB prevalence (by replicating the TB-negative population to fit the target

prevalence); the c-statistics remained the same.

(TIFF)

S1 Table. Interview questions for self-reported tuberculosis symptoms and HIV status.

(DOCX)

S2 Table. Observed and predicted probability of active pulmonary TB in the Ugandan

external validation population. The table provides the observed percentage of the population

in the external validation population (urban Uganda) who had Xpert-confirmed TB, given

each clinical risk score. The observed percentages are compared to the percentages predicted

by the clinical risk score (right-most column). The optimal cutoff for clinical decision-making

was at a score of�4 or�5; above these cutoffs, observed and predicted probabilities were simi-

lar.

(DOCX)

S3 Table. Lasso regression coefficients and the simple scoring system after modeling actual

classical TB symptoms as individual binary variables (instead of the total number of TB

symptoms). We explored use of the actual regression coefficients from the lasso model (rather

than a simple 1-to-10 scoring system), including both a categorical expression of age and a

representation of age using restricted cubic splines. For each of these alternative scoring sys-

tems, derivation and external validation were performed in the same fashion as for the primary

score described in the main text.

(DOCX)

S4 Table. Lasso regression coefficient and simple scoring systems, using a single imputa-

tion method (i.e., mode) for the missing predictors. For the clinical risk score to be useful as

a tool in the field, clinicians must be able to directly impute missing data when those data are

unavailable. We therefore performed a secondary analysis in which all missing values were

assigned the most common value (or single imputation) to reflect likely clinical use of the
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score in the field. For example, when a clinician does not have information about duration of

TB symptoms, the clinician can use the dominant value, 0 or 1, among patients. In our study, a

missing duration of TB symptoms, any other non-TB symptoms, and diabetes mellitus was

replaced to 1, 1, and 0. After replacing the missing values with the most common value of each

variable, the simple score rule based on the least absolute shrinkage and selection operator

(lasso) regression coefficients remained the same. We then compared the discrimination of

this model using simple (clinical) imputation versus multiple imputation.

(DOCX)

S5 Table. Additional characteristics of the model derivation population (Uganda) after

bootstrapping and random splitting of the model derivation and the internal validation

population. To further assess the transportability of the components of the clinical risk score,

we performed a de novo model development using the population from Kampala, Uganda, as

the derivation population and the population from South Africa as the external validation pop-

ulation. For this analysis, we used a 20-fold bootstrap sample of the Ugandan population

(given its smaller sample size) to optimize statistical power. Then, we applied a split internal

validation approach by randomly selecting two-thirds of the population as the model training

cohort and internally validating the model on the remaining one-third of the testing popula-

tion (whose data did not contribute to model development).

(DOCX)

S6 Table. Association of key variables with Xpert-confirmed pulmonary tuberculosis in

the bootstrapped Ugandan population.

(DOCX)
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