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Aims As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF sig
nals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identifi
cation of AF signals is subjective and depends on the experience of clinicians. However, experienced cardiologists are scarce. 
This study aimed to apply a deep learning-based algorithm to fully automate primary screening of patients with AF using 24-h 
Holter monitoring.

Methods 
and results

A deep learning model was developed to automatically detect AF episodes using RR intervals and was trained and evaluated 
on 23 621 (2297 AF and 21 324 non-AF) 24-h Holter recordings from 23 452 patients. Based on the AF episode detection 
results, patients with AF were automatically identified using the criterion of at least one AF episode lasting 6 min or longer. 
Performance was assessed on an independent real-world hospital-scenario test set (19 227 recordings) and a community- 
scenario test set (1299 recordings). For the two test sets, the model obtained high performance for the identification of 
patients with AF (sensitivity: 0.995 and 1.000; specificity: 0.985 and 0.997, respectively). Moreover, it obtained good and 
consistent performance (sensitivity: 1.000; specificity: 0.972) for an external public data set.

Conclusion Using the criterion of at least one AF episode of 6 min or longer, the deep learning model can fully automatically screen 
patients for AF with high accuracy from long-term Holter monitoring data. This method may serve as a powerful and 
cost-effective tool for primary screening for AF.
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Graphical Abstract

A deep learning algorithm uses RR interval data to automatically detect AF episodes and identify patients with AF. AF, atrial fibrillation; PAF, paroxysmal AF; 
WAF, whole-course AF; NAF, non-AF; AUC, area under the ROC curve; CI, confidence interval.

Keywords Deep learning • Atrial fibrillation • Electrocardiogram • Holter monitoring • Real-world clinical data

Introduction
Atrial fibrillation (AF) is the most common tachyarrhythmia, with a lifetime 
risk of one in three, and it can lead to dangerous complications and in
creased cardiovascular mortality risk.1,2 Paroxysmal AF (PAF) is associated 
with occasional or intermittent episodes, and long-term dynamic electro
cardiogram (ECG) monitoring (Holter monitoring) is required to detect 
PAF in clinical practice.3 Long-term Holter monitoring produces a large 
amount of ECG data, which clinicians must review for diagnosis. 
Moreover, the popularity of wearable devices has made the acquisition 
of heartbeat interval data increasingly convenient, making it possible to car
ry out AF screening in a large number of people.4,5 However, the identifi
cation of AF signals depends heavily on the experience of clinicians, and 
existing clinician resources can hardly meet the requirements of screening 
for AF from these massive data. Therefore, it is important to develop auto
matic AF detection methods to improve the efficiency of AF screening.

Automatic AF detection has two main application scenarios. One is to 
assist clinicians in improving the accuracy and efficiency of their detec
tion of AF in patient screening, and the other is to fully automate screen
ing for AF without the immediate participation of clinicians. The former 
is applicable to the ‘diagnosis of AF’ scenario in which clinician resources 
are available and diagnostic accuracy requirements are high, whereas the 
latter is applicable to the ‘primary screening for AF’ scenario with insuf
ficient clinician resources and relatively low diagnostic accuracy 

requirements. This study focused on the latter scenario, developing a 
fully automatic screening method for AF in a large patient population.

In recent years, many deep learning-based methods have been pro
posed for automatic AF detection and have achieved good perform
ance on benchmark data sets.6–15 However, most previous studies 
have mainly tested short ECG recordings from public data sets that in
clude only a small number of patients.16 Verification of automatic AF 
detection in large data sets from real-world environments (including 
various arrhythmias) is scarce.17

To address these challenges, we developed an RR interval-based 
deep learning method to fully automatically screen for AF using 24-h 
Holter recording data and evaluated its effectiveness using two large 
real-world clinical data sets. Distinguishing between AF and other ar
rhythmias with irregular RR intervals may be difficult using an RR 
interval-based method.5,18–20 Therefore, we quantitatively assessed 
the performance of the method in distinguishing AF from seven other 
arrhythmias with irregular RR intervals.

Methods
Study design
Our primary goal was to develop a fully automatic method to screen for AF 
based on the RR intervals in long-term Holter monitoring. This method uses 
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Figure 1 Diagram for fully automatic atrial fibrillation screening. Each dot represents an RR interval. The dots of AF and NAF have been marked in the 
figure. In the atrial fibrillation patient identification, a 24-h recording (RR interval data) was diagnosed as an atrial fibrillation patient when it contained an 
atrial fibrillation episode of longer than 6 min. AF, atrial fibrillation; NAF, non-AF.

Figure 2 Profile of the data sets. Data in the randomly selected data cohort were used for training the deep learning model, and data in the remaining 
cohorts were used for testing the model performance. PAF, paroxysmal atrial fibrillation (AF) patients; WAF, whole-course AF patients; NAF, non-AF 
patients.



Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning                                                                  219

deep learning technology without immediate intervention by clinicians. Our 
method consists of multiple steps, as shown in Figure 1. In this study, sam
ples containing 90 RR intervals were extracted from 24-h Holter record
ings. The deep neural network (DNN) then classified each 90-RR-interval 
sample as AF or non-AF (NAF). Finally, based on the results of AF episode 
detection, patients with AF were automatically identified using our pro
posed criterion of at least one continuous AF episode of 6 min or longer.

Data sources
This study was approved by the ethical committee of Tongji Medical 
College, Huazhong University of Science and Technology (Institutional 
Review Board approval number 2022-S021). We constructed an in-house 
data set and an external publicly available data set to train and evaluate the 
deep learning model, as shown in Figure 2. The in-house data set consisted 
of 24 707 recordings collected from 24 372 adult patients (age > 18 years) 
who had a 24-h dynamic 12-lead ECG recording with a sampling rate of 
512 Hz captured by a Holter machine (DMS Holter Company, Stateline, 
NV, USA) at Tongji Hospital (Huazhong University of Science and 
Technology, Wuhan, China). In-hospital and ambulatory patients were 
pooled together in our data set.

The in-house data set included three types of patient data: whole-course 
AF (WAF), PAF, and NAF. For WAF, the entire recording included only AF 
signals. Non-AF recording data had no AF signals but included normal sinus 
rhythm, sinus arrhythmia, atrial arrhythmia, ventricular arrhythmia, and 
atrioventricular block. The data of the patients with PAF included both AF 
and NAF signals. Because the WAF recordings were easily detected, the 
WAF data were used only for training the deep learning algorithm (model) 
and were not included in the data to test the performance of the model.

The profile of the in-house data set is shown in Figure 2 and the charac
teristics of the patients are listed in Table 1. The in-house data set contained 
the following three cohorts: 

(1) A randomly selected data cohort was created to include 3000 record
ings (1000 WAF, 1000 PAF, and 1000 NAF) from 3000 adult patients 
randomly selected from the patient pool enrolled between April 
2012 and May 2020. This cohort was employed only for training the 
deep learning model; therefore, strict inclusion and exclusion criteria 
were used, as shown in the Supplementary Methods.

(2) The hospital-scenario cohort included 20 408 recordings from all consecu
tive adult patients (n = 20 073) who received 24-h dynamic 12-lead ECG 
monitoring at Tongji Hospital between June 2020 and January 2021. After 
excluding 429 recordings shorter than 16 h or clinically unqualified and 752 
WAF recordings, 19 227 recordings were used as the test set. More details 
are provided in the Supplementary Methods. It is worth mentioning two 
special groups in the 254 PAF recordings. The first group included 54 
PAF recordings in which the AF episodes were <6 min. These recordings 
could be tested at the sample level, but not at the patient level (see 
Algorithm Evaluation Section), because the patients with AF were identi
fied based on a 6-min duration of AF episode. The second group included 
53 patients with PAF whose recordings contained AF and NAF signals that 
were too ambiguous to be clearly distinguished by clinicians. These record
ings could be tested at the patient level, but not at the sample level. This 
was a real-world clinical cohort that was employed only to test the deep 
learning model. Moreover, it represents the clinical application scenario 
of screening for AF in inpatient and outpatient departments.

(3) The community-scenario cohort included 20 recordings from 20 pa
tients with PAF and 1279 recordings from 1279 individuals who did 
not report heart disease and were recruited to receive 24-h Holter 
monitoring at Tongji Hospital. More details are provided in the 
Supplementary Methods. This cohort was employed only to test the 
deep learning model and represented the application scenario of 
screening individuals for AF in a normal population.

In addition, three publicly available databases were used as the external 
test set: the MIT-BIH AF database,21 MIT-BIH NSR database,22 and NSR 
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Table 1 Patient characteristics

Randomly selected data (n = 3000) Hospital-scenario (n = 19 227) Community-scenario  
(n = 1299)

WAF (n = 1000) PAF (n = 1000) NAF (n = 1000) PAF (n = 254) NAF (n = 18 973) PAF (n = 20) NAF (n = 1279)

Age Group, n (%)
18–25 0 (0) 1 (0.1) 38 (3.8) 0 (0) 383 (2.0) 0 (0) 51 (4.0)

26–40 25 (2.5) 19 (1.9) 121 (12.1) 7 (2.8) 2235 (11.8) 1 (5) 393 (30.7)

41–60 236 (23.6) 274 (27.4) 428 (42.8) 61 (24.0) 7596 (40.0) 9 (45) 595 (46.5)
61–80 622 (62.2) 623 (62.3) 382 (38.2) 158 (62.2) 8102 (42.7) 8 (40) 239 (18.7)

≥81 117 (11.7) 83 (8.3) 31 (3.1) 28 (11.0) 657 (3.5) 2 (10) 1 (0.1)

Sex Group, n (%)
Male 635 (63.5) 653 (65.3) 531 (53.1) 181 (71.3) 10 159(53.5) 17 (85.0) 671 (52.5)

Female 365 (36.5) 347 (34.7) 469 (46.9) 73 (28.7) 8814 (46.5) 3 (15.0) 608 (47.5)

Pacemaker, n (%)
1 (0.1) 2 (0.2) 1 (0.1) 8 (3.1) 188 (1.0) 0 (0) 0 (0)

Frequent premature atrial contraction > 3000, n (%)
6 (0.6) 359 (35.9) 40 (4.0) 85 (33.5) 877 (4.6) 5 (25) 8 (0.6)

Frequent ventricular premature contraction > 3000, n (%)
94 (9.4) 46 (4.6) 57 (5.7) 11 (4.3) 961 (5.1) 0 (0) 38 (3.0)

First-degree AVB (AVB1), n (%)
0 (0) 9 (0.9) 43 (4.3) 2 (0.1) 577 (3.0) 0 (0) 0 (0)

Second-degree AVB (AVB2), n (%)
0 (0) 3 (0.3) 9 (0.9) 0 (0) 345 (1.8) 0 (0) 0 (0)

Third-degree AVB or complete heart block, n (%)
3 (0.3) 0 (0) 2 (0.2) 0 (0) 26 (0.1) 0 (0) 0 (0)

Frequent premature atrial contraction (ventricular premature contraction) > 3000 means that there were more than 3000 atrial (ventricular) premature heartbeats during the 24-h 
Holter monitoring. AF, atrial fibrillation; PAF, paroxysmal AF; WAF, whole-course AF; NAF, non-AF; AVB, atrioventricular block.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
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RR Interval database.22 The MIT-BIH AF database includes 23 PAF record
ings of 10 h from 23 patients. The MIT-BIH NSR and NSR RR interval da
tabases include 18 and 54 NAF recordings of 24 h, respectively. The 
recordings in this test set were recorded using devices that were different 
from those used in the community- and hospital-scenario test sets and were 
used to test the generalization ability of the proposed method.

Data pre-processing
Raw ECG signals were pre-processed using manufacturer-specific commer
cial software for the DMS CardioSca12 Satellite System (DMS Holter 
Company, Stateline, NV, USA) to detect noise and obtain RR interval 
data. Then, the RR interval data of a recording were divided into segments 
(samples) of 90 RR intervals for testing; samples with detected noise were 
removed. On average, 137 samples (12.4%) were removed from each re
cording. The deep learning model used in this study was trained and evalu
ated based on the remaining RR interval samples.

Each 90-RR-interval sample was labelled as either an AF (positive) or an 
NAF (negative) sample according to the labelled start and end times of the 
AF episodes. The samples extracted from patients designated WAF were all 
AF, and those from patients designated NAF were all NAF. Some testing 
samples extracted from patients with PAF contained both AF and NAF 
RR intervals and were named mixed samples. According to previous stud
ies,10,23 a mixed sample was labelled as AF when the percentage of anno
tated AF beats in the sample was equal to or >50%; otherwise, it was 
labelled NAF.

Annotation procedures
All 24-h ECG data in the in-house data set underwent additional annotation. 
They were initially interpreted by primary cardiologists, and the randomly 
selected data cohort was further reviewed by three senior board-certified 
cardiologists. The other two cohorts were reviewed by one of the three 
senior board-certified cardiologists to ensure the correctness of the base 
diagnostic labels. Each AF episode included accurately labelled start and 
end times for patients with PAF. The start and end times of each AF episode 
were the time corresponding to the first atrial wave with an atrial rate >350 
beats/min and the time corresponding to the first P-wave with sinus rhythm 
after the termination of AF.

Moreover, each interval of premature beat or tachycardia was marked ‘A’ 
(atrium event) or ‘V’ (ventricle event) for further labelling six types of ar
rhythmias with irregular RR intervals: premature atrial contraction (PAC), 
frequent premature atrial contraction (FPAC), ventricular premature con
traction (VPC), frequent ventricular premature contraction (FVPC), atrial 
tachycardia (AT), and ventricular tachycardia (VT). The long RR interval 
caused by QRS wave dropping was marked ‘B’ to further label second- 
degree atrioventricular block (AVB2). The detailed standards are presented 

in Supplementary material online, Table S1. Because a 90-RR-interval sample 
might contain ‘A’, ‘B’, and ‘V’ at the same time, the sample could have mul
tiple labels and was evaluated independently for each label during testing. 
The labels of the data were consistent with the diagnostic results of the clin
ical cardiologists.

Deep learning model
In this study, we constructed a convolutional, long short-term memory, and 
fully connected DNN (CLDNN) to automatically detect AF episodes. The 
architecture of the model, illustrated in Figure 3, is composed of three mod
ules: convolutional neural networks (CNNs), long short-term memory net
works (LSTMs), and DNNs. Specifically, the CNNs were composed of two 
convolutional layers with 64 kernels of size 5 and 32 kernels of size 3, re
spectively. After the convolutional layers, we used the bidirectional LSTM 
to utilize the forward and backward information of the input. We took 
the output of all time steps as the output of the bidirectional LSTM and 
used them as the input of the global max pooling layer. The DNN module 
consisted of two fully connected layers. Before each fully connected layer, 
we applied dropout with a probability of 0.2 to prevent overfitting and im
prove the generalization ability. The final fully connected softmax layer pro
duced, as the output of our model, a distribution over AF and NAF. The 
ReLU activation function was applied after each layer except the output 
layer. For each input of a 90-RR-interval sample, the model outputs a pre
dicted label of AF or NAF. Additional technical details are provided in the 
Supplementary Methods.

Algorithm evaluation
In this study, each 24-h recording was divided into many 90-RR-interval 
samples (segments), as described in the data pre-processing section. Our 
deep learning algorithm detected each 90-RR-interval sample as AF or 
NAF. Atrial fibrillation episode detection was assessed at the level of 
each 90-RR-interval sample, referred to as sample-level results. At this level, 
the detection results were compared with the reference standard for each 
90-RR-interval sample. Based on the sample-level results, we further iden
tified whether a patient could be diagnosed to have AF, referred to as 
patient-level results. At the patient level, a patient was identified as having 
AF if his/her recording included at least one continuous AF episode of 
6 min or longer.

Statistical analysis
We used different performance metrics to evaluate the performance of our 
model, including area under the receiver operating characteristic (ROC) 
curve (AUC), sensitivity, specificity, and accuracy. We used a two-sided 
95% confidence interval (CI) to evaluate data variability for each metric.24

The CI for the AUC was estimated using the DeLong method,25 whereas 

Figure 3 Architecture of the deep learning model.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
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those for the other metrics were obtained using the bootstrap method with 
2000 replications. More details are provided in the Supplementary Methods.

Results
Performance of the deep learning model at 
the sample level
None of the test sets had been included in model training. The perform
ance of the model was first evaluated at the sample level for the three 
test sets, and the results are shown in Table 2. Specifically, the model 
achieved a sensitivity of 0.993 and specificity of 0.999 for the 
community-scenario test set, a sensitivity of 0.992 and specificity of 
0.997 for the hospital-scenario test set, and a sensitivity of 0.966 and 
specificity of 0.994 for the external test set.

Figure 4A shows the ROC curves for the sample-level analyses of all 
testing recordings in the three test sets. For the ROC curves, our 
model achieved an AUC of 0.999, 0.999, and 0.997 for the 
community-scenario, hospital-scenario, and external test sets, respect
ively. In general, our model achieved very good performance for the 
community-scenario and hospital-scenario test sets, and it also ob
tained good and consistent performance for the external test set, indi
cating good generalization ability.

Performance of the deep learning model at 
the patient level
Based on the results at the sample level, we tested the performance of 
our model at the patient level with different identification criteria of at 

least one AF episode of 3 min, 6 min, or 9 min in the hospital-scenario 
and community-scenario test sets, and the results are shown in Table 3. 
For the hospital-scenario test set, all patients with PAF were successful
ly identified using the criterion of 3 min; however, the false-positive rate 
was 0.032. Using the criterion of 6 min, the sensitivity decreased by 
0.005, and the false positive rate decreased by 0.017. Using the criterion 
of 9 min, performance did not improve. The performance changes re
sulting from the criterion changes were consistent for the 
community-scenario test set. The method based on the criterion of 
shorter time will have better practicability, and after weighing the sen
sitivity and specificity, the criterion of 6 min was selected.

By the use of the criterion of at least one AF episode lasting 6 min for 
identifying patients with AF, the results for the three test sets at the pa
tient level are shown in Table 4 and Figure 4B. Our model achieved con
sistently higher performance for the community-scenario than the 
hospital-scenario test set. The performance on the external test set 
was slightly weaker but was still sufficiently good (AUC: 0.998). This in
dicates that our method obtained very strong and robust performance 
in the automatic screening for patients with AF.

Distinction between AF and other 
arrhythmias with irregular RR intervals
Based on the results of sample-level analyses, we further quantitatively 
evaluated the performance of our model in distinguishing AF from 
other arrhythmias with irregular RR intervals in the NAF recordings 
of the community-scenario and hospital-scenario test sets. Seven types 
of arrhythmias with irregular RR intervals were included, and the detec
tion results at the sample level are shown in Table 5. Our model 
achieved an average accuracy of 0.999 and 0.986 for specifically 
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Table 2 Atrial fibrillation detection performance at the ‘sample-level’ for all patients

Type of cohort AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Community-scenario 0.999 (0.999–0.999) 0.993 (0.991–0.995) 0.999 (0.999–0.999) 0.999 (0.999–0.999)

Hospital-scenario 0.999 (0.999–0.999) 0.992 (0.991–0.993) 0.997 (0.997–0.997) 0.997 (0.997–0.997)

External 0.998 (0.997–0.998) 0.966 (0.962–0.973) 0.994 (0.993–0.995) 0.992 (0.991–0.993)

AF, atrial fibrillation; AUC, area under the curve; CI, confidence interval.

Figure 4 The receiver operating characteristic curves for the ‘sample-level’ and the ‘patient level’ analyses in the three test sets. A, The results at the 
‘sample-level’. B, The results at the ‘patient level’.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
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detecting NAF samples in all seven types of arrhythmias in the 
community- and hospital-scenario test sets, respectively, with a rela
tively lower accuracy of 0.858 for AT in the hospital-scenario test set.

Analysis of misclassified cases at the 
patient level
Finally, we analysed the misclassified cases at the patient level for the 
community- and hospital-scenario test sets. Only four cases in the 
community-scenario test set were misclassified; the misclassifications 
in the hospital-scenario test set are shown in Table 6. In the 
hospital-scenario test set, only one case of PAF was misclassified as 
NAF, and 278 NAF cases were misclassified as PAF, including atrial high- 
rate episodes (AHREs), FPAC, FVPC, and AVB2. Specifically, the mis
classification rates in the AHREs, FPAC, FVPC, and AVB2 cases were 
16.8%, 7.75%, 2.50%, and 2.32%, respectively. The misclassification 
rate of AHREs and FPAC was significantly higher than that in all NAF 
cases (1.50%). In general, our RR interval-based deep learning model ef
fectively screened AF cases from NAF cases; however, patients with 
other arrhythmias with irregular RR intervals (especially AHREs and 
FPAC) were more easily misclassified as AF than other patients without 
AF.

Discussion
This study aimed to develop a fully automatic screening method for AF 
in patients without immediate clinician intervention, for the ‘primary 
screening for AF’ scenario with insufficient clinician resources. At pre
sent, there is no well-recognized criterion for artificial intelligence 
(AI)-based automatic patient screening for AF using 24-h Holter mon
itoring; therefore, fully automatic AF screening cannot be achieved. In 
clinical practice, the 2020 ESC guidelines for the diagnosis and manage
ment of AF suggest that patients be diagnosed with AF when their data 
include at least one AF episode lasting 30 s or longer.26 This is the cri
terion for clinical diagnosis of AF in patients; however, it cannot be ap
plied in automatic AF screening because current automatic AF 

detection methods cannot meet this accuracy requirement. For the pri
mary AF screening that is the aim of this study, our method identified 
AF in patients by using a relatively relaxed criterion of at least one AF 
episode of 6 min or longer. This criterion was used in the old version 
of the ESC guidelines, and this more relaxed condition significantly in
creased the risk of thromboembolism (stroke, transient ischaemic at
tack, or systemic embolism).27,28 Our method achieved very high 
performance with this criterion, and we believe that it may be a general 
criterion for AI-based automatic identification of AF in patients in long- 
term Holter monitoring. However, the implications of our method for 
AF screening in clinical practice remain unclear. Compared with 
single-time-point or symptom-based AF screening, whether AF screen
ing through long-term Holter monitoring using this criterion has similar 
clinical significance needs further investigation.

This study used RR intervals as the input to the deep learning model 
for two reasons: (i) the irregularity of RR intervals is a main feature of 
AF18; (ii) compared with raw ECG waves, RR interval data can be easily 
obtained from Holter devices with different leads and various wearable 
devices and require lower computational cost. In addition, a recent 
study by Han et al. 29 showed that common perturbations (adversarial 
attacks) to single-lead ECG data could lead to a 74% misdiagnosis rate 
for a raw-ECG-based deep learning model. In contrast, a method based 
on RR intervals appeared to be more robust to such adversarial at
tacks.29 Our experiments further showed that our RR interval-based 
method could distinguish (with an average accuracy of more than 
0.986 at the sample level) AF from seven types of other arrhythmias 
with irregular RR intervals, which are commonly considered to be dif
ficult to recognize from RR intervals.19,20 At the patient level, although 
the identification accuracy of AHREs (including atrial flutter) and FPAC 
cases was lower than that of other NAF cases, the overall identification 
accuracy at the patient level still exceeded 0.98. In general, this study has 
proven that the RR interval-based method is a good choice for auto
matic AF screening in long-term monitoring.

The data used in most AI-related clinical studies are selected with 
strict inclusion criteria, and marginal or uncertain data are excluded, 
which leads to a decline in model performance in real clinical applica
tion.30 To minimize selection bias, our model was verified using real- 
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Table 3 Atrial fibrillation detection performance at the ‘patient level’ using different thresholds

Type of cohort Threshold (min) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Community-scenario 3 1.000 (1.000–1.000) 0.988 (0.981–0.997) 0.988 (0.981–0.997)

6 1.000 (1.000–1.000) 0.997 (0.994–1.000) 0.997 (0.994–1.000)

9 0.950 (0.800–1.000) 1.000 (1.000–1.000) 0.999 (0.997–1.000)
Hospital-scenario 3 1.000 (1.000–1.000) 0.968 (0.966–0.971) 0.968 (0.966–0.972)

6 0.995 (0.9841.000) 0.985 (0.984–0.988) 0.985 (0.984–0.998)

9 0.990 (0.969–1.000) 0.990 (0.989–0.992) 0.990 (0.989–0.992)

CI, confidence interval.
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Table 4 Atrial fibrillation detection performance at the ‘patient level’ using the criterion of 6 min on three test sets

Type of cohort AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Community-scenario 0.999 (0.999–0.999) 1.000 (1.000–1.000) 0.997 (0.994–1.000) 0.997 (0.994–1.000)
Hospital-scenario 0.999 (0.998–0.999) 0.995 (0.984–1.000) 0.985 (0.984–0.988) 0.985 (0.984–0.988)

External 0.998 (0.993–0.999) 1.000 (1.000–1.000) 0.972 (0.931–0.986) 0.978 (0.944–0.989)

CI, confidence interval.
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world data that included patients with PAF and patients with various 
other arrhythmias. This truly reflects the performance of the deep 
learning model in clinical applications and exposes shadow spots for 
some special data. The expert committee re-analysed the data misclas
sified by the model in this study and found that patients with AHREs 
were regularly misclassified as having AF. Atrial high-rate episodes (in
cluding atrial flutter) are classified as subclinical AF and convey a high 
risk of AF,31 and such ‘misclassifications’ may have a positive impact 
on the prevention of AF. In general, the analysis of misclassifications 
in real-world clinical data helps us find shadow spots in our model 
for the detection of specific rare and special ECG signals. 
Accordingly, the application range can be set in advance, and the model 
can be further improved in later stages. Therefore, real-world data test
ing is an important step in the practical application of deep learning 
models. In addition, the potential methods for avoiding such misclassi
fied cases may include (i) further improving the performance of the 
deep learning model to reduce misclassified cases and (ii) requiring clin
icians to check the patients identified as having AF by the deep learning 
model to exclude the misclassified cases.

Our study had some limitations. First, the performance of the deep 
learning model may be improved in the future to further reduce the 
misclassification rate in AF identification and realize the ability to iden
tify PAF in patients with AF episodes of <6 min. A second limitation is 
that the deep learning model achieved relatively lower accuracy in dis
tinguishing AF from AT (0.858) compared with the average accuracy 
(0.986) over the seven arrhythmias with irregular RR intervals as a 
whole. More training data of AT may be required to improve its detec
tion accuracy. In addition, annotation of the PAF recordings in this study 

was time-consuming. Minimizing this process through a semi- 
supervised learning-based automatic AF detection method could signifi
cantly reduce the workload of clinicians.12 Finally, the effectiveness of 
the deep learning model for wearable devices with photoplethysmogra
phy requires further verification.

Conclusions
We developed a deep learning model to fully automatically screen for 
AF in patients using long-term Holter monitoring data without the im
mediate participation of clinicians. Our method was evaluated on two 
large real-world clinical data sets and an external public data set, and 
consistently achieved good performance. In addition, we demonstrated 
that the RR interval-based method could effectively distinguish AF from 
other arrhythmias with irregular RR intervals. Our method has great 
potential for wide application in the primary screening for AF and will 
promote AF screening at a lower cost.
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Table 5 The results of distinguishing atrial fibrillation from other arrhythmias with irregular RR interval

Community-scenario cohort (sensitivity:0.993) Hospital-scenario cohort (sensitivity:0.992)

Type Number of samples Specificity (95% CI) Number of samples Specificity (95% CI)

FPAC 3268 0.998 (0.996–0.999) 392 875 0.973 (0.965–0.966)

PAC 25 879 0.998 (0.998–0.999) 1 099 797 0.995 (0.995–0.995)
FVPC 19 455 0.998 (0.998–0.999) 502 958 0.990 (0.992–0.992)

VPC 36 251 0.999 (0.999–0.999) 972 031 0.995 (0.995–0.995)

AT 959 0.989 (0.983–0.996) 109 723 0.858 (0.852–0.826)
VT 71 1.000 (1.000–1.000) 9855 0.942 (0.969–0.975)

AVB2 0 N/A 29 387 0.950 (0.899–0.906)

All seven types 85 883 0.999 (0.999–0.999) 3 116 626 0.986 (0.985–0.985)
Other NAF 1 160 406 0.999 (0.999–0.999) 15 156 223 0.999 (0.999–0.999)

All 1 244 846 0.999 (0.999–0.999) 18 048 239 0.997 (0.997–0.997)

Seven types of arrhythmia with irregular RR interval were included: premature atrial contraction (PAC), frequent premature atrial contraction (FPAC), ventricular premature contraction 
(VPC), frequent ventricular premature contraction (FVPC), atrial tachycardia (AT), ventricular tachycardia (VT), and second-degree atrioventricular block (AVB2).
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Table 6 The analysis of misclassified cases at the 
‘patient level’ for the hospital-scenario test set

Types of arrhythmia False-positive  
patients (n = 278)

Second-degree atrioventricular block 8

Atrial high-rate episodes 42

Frequent premature atrial contraction 68
Frequent ventricular premature contraction 24

Others 136

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad018#supplementary-data
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/nsrdb/1.0.0/
https://physionet.org/content/nsrdb/1.0.0/
https://physionet.org/content/nsr2db/1.0.0/
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Restrictions apply to the availability of the in-house data, which were 
used with institutional permission through IRB approval for the current 
study, and are thus not publicly available. Please email all requests for 
academic use of raw and processed data to the corresponding author. 
The code for the deep learning model in this study is available at: https:// 
codeocean.com/capsule/0 201 225/tree/v1; https://github.com/hustzp/ 
Fully-automatic-AF-screening
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