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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management
remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We
sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with
IPF and controls, and examine relationships between protein expression and markers of disease severity.

Methods: This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known
lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear
regression was used to determine differential protein expression between participants with IPF and controls and
associations between protein expression and disease severity measures (percent predicted values for forced vital
capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLcol; composite physiologic index [CPI]).
Multivariable models were fit to select proteins that best distinguished IPF from controls.

Results: Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47
showed a |log,(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in
levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and
immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein.
Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF
versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF,
14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four
proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule
5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways
analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet
and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and
extracellular matrix organisation.
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Trial registration: ClinicalTrials.gov (NCTO1915511).

Conclusions: Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein
profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker
candidates and implicate pathways for further investigation.

Keywords: Interstitial lung diseases, Observational study, Proteome, Registries

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive
fibrotic interstitial lung disease of unknown cause [1].
Establishing a confident diagnosis of IPF remains a clin-
ical challenge and relies on a multifaceted, multidiscip-
linary approach [1, 2]. Two anti-fibrotic drugs,
nintedanib and pirfenidone, have been approved for the
treatment of IPF and shown to slow the rate of lung
function decline [3, 4]. However, the rate of disease pro-
gression in patients with IPF is variable, and there are no
reliable predictors of disease progression or indicators of
therapeutic response. The discovery and development of
IPF-specific biomarkers for use as diagnostic adjuncts or
measures of disease activity or treatment response re-
mains a critical unmet need [5].

Most of the currently available clinical biomarkers are
proteins. Proteomic profiling represents a highly trans-
latable initiation point for biomarker discovery [6, 7].
Proteomics, the broad-scale, simultaneous quantification
of a large number of proteins using high throughput
technology, enables an understanding of the relationship
between numerous potential protein biomarkers and
disease-specific parameters. The results of such studies
can be validated using targeted approaches such as
enzyme-linked immunosorbent assays (ELISAs) where
such assays exist. Given their relative methodological
ease, protein-based assays are often more readily imple-
mented in the clinical laboratory than other molecular
assays.

Prior proteomics work has suggested that patients with
IPF have a unique peripheral blood proteome [8, 9]. A
study using aptamer-based methods showed that, com-
pared with healthy controls, the blood of patients with
IPF was enriched in proteins related to platelet activa-
tion and coagulation responses, complement activation,
and cardiac muscle hypertrophy, while proteins related
to host defence were under-represented [8]. This study
identified a set of proteins that, when considered to-
gether, discriminated between patients with IPF and
healthy controls. However, this work was limited by the
small size of the cohort, thus the generalisability of the
observations is uncertain.

In the current study, we leveraged a multicentre co-
hort of well-characterised patients with IPF to quantify

the peripheral blood proteome, determine differential
protein expression in patients with IPF versus controls
of similar age, sex and smoking history distribution, and
identify combinations of proteins that best distinguished
patients with IPF from controls. We also examined
whether circulating proteins associated with measures of
IPF severity.

Methods
Cohorts
The IPF cohort consisted of 300 patients enrolled in the
Idiopathic Pulmonary Fibrosis Prospective Outcomes (IPE-
PRO) Registry (NCT01915511) [10] between June 2014
and February 2017. The IPF-PRO Registry is a multicentre
observational US registry of patients with IPF that was diag-
nosed or confirmed at the enrolling centre in the past 6
months. IPF was determined by the site investigator ac-
cording to the 2011 American Thoracic Society/European
Respiratory Society/Japanese Respiratory Society/Latin
American Thoracic Society diagnostic guidelines [11].
Controls were drawn from the Measurement to
Understand the Reclassification of Disease of Cabarrus/
Kannapolis (MURDOCK) Study, a longitudinal cohort
study of adults in North Carolina [12]. Participants con-
sidered for inclusion as controls in our study were white
and non-Hispanic, aged 60 to 80 years, with an enrol-
ment blood (plasma) sample. Participants were excluded
if they had self-reported respiratory disease, cancer, or
autoimmune disease at enrolment or during follow-up,
were active smokers, had second-hand tobacco exposure,
or reported use of respiratory-targeted medication or
immunomodulators. Stratified random sampling (stratifi-
cation on sex and smoking status [ever/never]) was used
to select 100 controls.

Assays

Enrolment plasma samples were assayed using an
aptamer-based platform encompassing 1305 proteins
(SOMAscan, SOMALogic Inc., Boulder, CO). Data were
reported in relative fluorescent units (RFU). No values
were reported as below the limit of detection/
quantification.
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Statistical analyses

Descriptive statistics were used to analyse patient
characteristics and the expression of each protein in par-
ticipants with IPF and controls. Linear regression was
used to assess whether protein concentrations differed
by IPF or control status when considered in a univari-
able fashion. Specifically, log, transformed protein mea-
surements were modelled as a function of group status
(IPF versus control) such that the slope coefficient for
group status estimated the fold-change (FC) in protein
concentration between participants with IPF and con-
trols. The group comparison was characterised by this
estimate, its 95% confidence interval and corresponding
p Value. p Values were corrected for multiple compari-
sons using the Benjamini-Hochberg procedure to con-
trol the false discovery rate (FDR) at 5%. Differences in
protein concentrations between patients with IPF and
controls were considered significant if the corrected p
Value was < 0.05.

We then employed multivariable classification ap-
proaches to understand if a set of proteins could distin-
guish participants with IPF from controls. Considering all
1305 analytes, highly correlated proteins were identified
using pairwise correlation analyses (Pearson correlation
coefficient >0.9) and proteins were removed such that
those omitted were those correlated with the most other
proteins, resulting in the fewest possible analytes removed
(n=143) [13]. The remaining data were Box-Cox trans-
formed, centred and scaled. Prior to model fitting, the data
on all 400 participants were randomly divided into train-
ing (75%) and test (25%) sets. Two linear and 6 nonlinear
models were fit. Linear models were penalised logistic re-
gression (GLMN) and partial least squares (PLS) [13].
Nonlinear models were flexible discriminant analysis
(FDA), support vector machines (SVM), K-nearest neigh-
bours (KNN), recursive partitioning - single tree (RPART),
random forest (RF), and gradient boosted machine (GBM)
[13]. While fitting each model using the training set, 10-
fold cross validation was used to choose the optimal
tuning parameter based on the area under the receiver
operating curve. Operating characteristics including
accuracy, kappa, specificity, and sensitivity, as well as posi-
tive and negative predictive values were computed in the
training set. To evaluate model results, confusion matrices
were calculated using a probability cut-off of 0.5 to con-
vert model-predicted probabilities to IPF or control classi-
fications. The model performance characteristics were
then computed on the test set. Variable importance mea-
sures for each model were assessed and the most import-
ant proteins across the models were summarised. We also
explored the discrimination of subjects with IPF from
controls using a relatively simple linear discrimination
function. This function was then refit to the entire 400-
participant cohort.
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In the IPF cohort, we used univariate linear regression
models to determine if circulating proteins were associ-
ated with measures of disease severity. Three measures
of disease severity were considered: forced vital capacity
(FVC) % predicted, diffusion capacity of the lung for car-
bon monoxide (DLco) % predicted, and the composite
physiologic index (CPI), which correlates with the
amount of radiographic fibrosis [14]. Each measure was
analysed as a continuous variable. As the use of antifi-
brotic treatment may be related to disease severity, the
analyses were repeated adjusting for treatment at enrol-
ment (nintedanib, pirfenidone, neither). Comparisons
were considered significant if the FDR-corrected p Value
was <0.05 and there was a>5 point difference in the
disease severity measure per unit change in the log,RFU
for the protein (i.e. the protein had a statistically signifi-
cant association and a doubling of the protein concen-
tration was associated with a > 5-point difference in the
disease severity measure). All statistical analyses were
completed in SAS version 9.4 or R version 3.4.2 (‘Short
Summer’).

Pathways analyses were performed on proteins found
to be significant in the analyses described above using
EnrichR [15] based on the Reactome 2016 pathway data-
base [16].

Results

Cohort characteristics

In the IPF cohort (n =300), the median (Q1, Q3) age at
enrolment was 70.0 (65.0, 75.0) years, 74% were men,
94% were white and 67% were former smokers (Table 1).
The majority of participants (73%) were classified by the
investigator as having definite IPF; 54% were recorded in
their medical record as taking nintedanib or pirfenidone
at the time of enrolment, when the blood sample was
drawn. Median (Q1, Q3) FVC % predicted was 69.7
(61.0, 80.2), DLco % predicted was 40.6 (31.7, 49.4) and
CPI was 53.5 (46.6, 60.5). In the control cohort (n=
100), the median (Q1, Q3) age at enrolment was 66.0
(63.0, 71.5) years, 74% were men, all were white, and
68% were former smokers.

Circulating proteome in patients with IPF versus controls
The concentrations of the 1305 measured proteins are
described in Additional file 1: Table S1. Linear regres-
sion analyses identified 551 proteins with a level that
was significantly different (corrected p Value <0.05)
between patients with IPF and controls. Forty-seven
of these proteins had a |log,FC| >0.585 (i.e. a 1.5-fold
difference in protein concentration between groups),
of which 37 occurred at higher levels in patients with
IPF than controls (Table 2, Additional file 1: Fig. S1).
A total of nine proteins had a |log,FC|>1 (Table 2,
Additional file 1: Fig. S1).
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Table 1 Characteristics of the IPF cohort (N =300)
Age, years, median (Q1, Q3)

70 (65, 75)

Male, n (%) 223 (74.3%)
Race, n (%)
White 281 (93.7%)
Black/African-American 8 (2.7%)
Asian 6 (2.0%)
Other 5(1.7%)
Ethnicity (Hispanic or Latino), n (%) 8 (2.7%)
Smoking status, n (%)
Past 202 (67.3%)
Never 96 (32.0%)
Current 2 (0.7%)

Diagnostic criteria®, n (%)

Definite IPF 220 (73.3%)

Probable IPF 63 (21.0%)

Possible IPF 7 (5.7%)
Emphysema on CT, n (%) 1 (10.3%)
Supplemental oxygen use at rest, n (%) 59 (20.0%)°
Pulmonary function measures, median (Q1, Q3)

FEV; (L) 22(18,27)

FEV; (% predicted) 774 (680, 89.1)

FVC (L) 27 (22,3.2)

FVC (% predicted) 69.7 (61.0, 80.2)

FEV;/FVC ratio 74.1 (72.8,89.6)

DLco (mL/min/kPa) 0 (86, 14.7)

DLco (% predicted) 406 (31.7,494)

CPI, median (Q1, Q3) 53.5 (46.6, 60.5)

Antifibrotic drug use, n (%)
Pirfenidone

Nintedanib

106 (35.3%)
56 (18.7%)

Neither pirfenidone or nintedanib 138 (46.0%)

Definition of abbreviations: CT Computed tomography, CPI Composite
physiologic index, DLco Diffusing capacity of the lungs for carbon monoxide,
FEV; Forced expiratory volume in 1s, FVC Forced vital capacity

“Determined by the investigator according to 2011 ATS/ERS/JRS/ALAT
diagnostic guidelines [11]

PInformation available for 295 patients

Among the top proteins with higher circulating
levels in the IPF cohort than in controls were several
immune-related proteins including chemokine (CC
motif) ligand (CCL) 5, 17, 18, 22; chemokine (C-X-C
motif) ligand 13 (CXCL13); and complement compo-
nents CIR, C4A and C4B; as well as extracellular
matrix components (including fibronectins), matrix
remodelling proteins (including matrix metalloprotein-
ases [MMPs] 1 and 9 and tissue inhibitor of metallo-
proteinase [TIMP] 3), and proteins important in cell
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proliferation, adhesion, or motility (such as platelet-
derived growth factor [PDGF] subunits A and B,
intracellular adhesion molecule 5 [ICAM5)] and se-
creted protein, acidic and rich in cysteine [SPARC]).
Among the top proteins that were observed at lower
levels in patients with IPF relative to controls were
the matrix remodelling protein stromelysin-1
(MMP3), creatine kinase enzymes B and M, and the
advanced glycosylation end products receptor (AGER).

Multiprotein classification approaches to distinguish
patients with IPF from controls

We sought to identify a set of proteins that optimally
differentiated patients with IPF from controls by fitting
models on a training set and a test set. Select perform-
ance measures by model in the training set are
illustrated in Fig. 1. Six of the eight multivariable classifi-
cation models evaluated (both linear models [GLMN,
PLS] and four non-linear models [FDA, SVM, RF,
GBM)]) had a good overall ability to distinguish between
participants with IPF from controls. Several models
made no or minimal classification errors for all iterations
of the cross-validation procedure, as indicated by models
with an area under the curve (AUC) of 1 with no or
minimal variation (Fig. 1A). When the models were
applied to the test set, we observed similar results
(Fig. 1B). Computed operating characteristics for all models
in the test set are shown in Additional file 1: Table S2.

To understand the proteins of importance in distin-
guishing patients with IPF from controls, we deter-
mined the variable importance measures of proteins
selected by each multivariable model. Thirteen pro-
teins were designated as among the 10 most influen-
tial proteins in at least two of the eight models
(Additional file 1: Table S3). A heat map of the
expression of these proteins in participants with IPF
versus controls is shown in Fig. 2.

As the performance of the linear models was equiva-
lent to that of the more complex non-linear models, we
explored the discrimination of IPF using a linear
discriminant function with recursive feature elimin-
ation. This indicated that the optimal number of pro-
teins to differentiate participants with IPF from
controls was nine (Table 3). The linear discriminant
analysis considering these nine proteins had an AUC of
0.99. Linear discriminant scores for every participant
were calculated by multiplying the protein values for
each selected protein by the respective model coeffi-
cient (Table 3) and plotted by IPF versus control status.
As illustrated in Additional file 1: Fig. S2, the linear
discriminant analysis based on these nine proteins
distinguished patients with IPF from control subjects
with very little overlap.



Todd et al. Respiratory Research

(2019) 20:227

Page 5 of 13

Table 2 Top proteins with higher or lower levels in participants with IPF versus controls. Proteins with a [log,FC| > 0.585 (i.e. a > 1.5-
fold difference in protein concentration between groups) and a false discovery rate (FDR)-corrected p Value < 0.05 are shown

Gene Aptamer 1D Protein log,FC p Value FDR adjusted
p Value
Higher levels in participants with IPF versus controls
PGAM1 3896-5 Phosphoglycerate mutase 1 1.260 9.00E-08 9.24E-07
GPD1 11,081-1 Glycerol-3-phosphate dehydrogenase 1.224 4.95E-19 3.08E-17
[NAD(+)], cytoplasmic
THBS1 3474-19 Thrombospondin-1 1.203 146E-16 6.55E-15
VWEF 3050-7 von Willebrand factor 1.136 3.68E-32 1.20E-29
ccLiz 3519-3 C-C motif chemokine 17 1.053 238E-16 1.03E-14
BPI 4126-22 Bactericidal permeability-increasing 1.031 7.26E-15 2.37E-13
protein
OLR1 3636-37 Oxidised low-density lipoprotein 0.929 4.84E-32 1.26E-29
receptor 1
CAPG 4968-50 Macrophage-capping protein 0.882 1.09E-28 143E-26
SPARC 3043-49 SPARC 0.869 3.13E-15 1.13E-13
FN1 4131-72 Fibronectin 0.864 1.19E-30 2.59E-28
PF4 2697-7 Platelet factor 4 0.853 7.84E-08 832E-07
PPBP 4544-4 Connective tissue-activating 0.850 2.74E-08 3.26E-07
peptide Il
PPBP 2790-54 Neutrophil-activating peptide 2 0.844 3.23E-08 3.73E-07
ICAM5 5124-69 Intercellular adhesion molecule 5 0.841 4.10E-34 1.78E-31
CXCL13 3487-32 C-X-C motif chemokine 13 0.834 1.63E-15 6.27E-14
PGD 4187-49 6-phosphogluconate dehydrogenase, 0.833 7.64E-07 6.39E-06
decarboxylating
CIR 3285-23 Complement C1r subcomponent 0.825 3.39E-29 5A49E-27
HISTTH1C 2987-37 Histone H1.2 0.808 1.58E-07 1.56E-06
MMP9 2579-17 Matrix metalloproteinase-9 0.792 449E-16 1.83E-14
SFTPD 4414-69 Pulmonary surfactant-associated 0.789 1.75E-08 220E-07
protein D
GDF15 4374-45 Growth/differentiation factor 15 0.782 2.32E-28 2.75E-26
S100A9 5339-49 Protein S100-A9 0.778 9.08E-18 4.74E-16
FN1 3434-34 Fibronectin fragment 3 0.770 3.78E-29 549E-27
PDGFB 4149-8 Platelet-derived growth factor 0.768 7.67E-08 8.25E-07
subunit B
ccLi1g 3044-3 C-C motif chemokine 18 0.734 2.31E-29 431E-27
ANXA6 5335-73 Annexin A6 0.725 3.36E-09 4.82E-08
MMP1 4924-32 Matrix metalloproteinase-1 0.712 3.92E-11 8.25E-10
TIMP3 2480-58 Metalloproteinase inhibitor 3 0.690 4.04E-10 7.32E-09
VAV1 5275-28 Proto-oncogene vav 0.687 831E-05 4.15E-04
HNRNPA2B1 5351-52 Heterogeneous nuclear 0.683 2.27E-12 5.69E-11
ribonucleoproteins A2/B1
PDGFA 4499-21 Platelet-derived growth factor 0.665 3.05E-08 3.55E-07
subunit A
APP 3171-57 Amyloid-beta A4 protein 0.662 1.34E-11 297E-10
S100A6 13,090-17 Protein S100-A6 0.625 447E-14 1.33E-12
CCL5 5480-49 C-C motif chemokine 5 0614 343E-07 3.15E-06
C4A C4B 2182-54 Complement C4A and C4B 0.604 1.13E-08 1.49E-07
CCL22 3508-78 C-C motif chemokine 22 0.599 6.96E-18 3.95E-16
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Table 2 Top proteins with higher or lower levels in participants with IPF versus controls. Proteins with a [log,FC| > 0.585 (i.e. a > 1.5-
fold difference in protein concentration between groups) and a false discovery rate (FDR)-corrected p Value < 0.05 are shown

(Continued)
Gene Aptamer ID Protein log,FC p Value FDR adjusted
p Value
HK2 13,130-150 Hexokinase-2 0.592 2.22E-09 3.35E-08
Lower levels in participants with IPF versus controls
MMP3 2788-55 Stromelysin-1 -1.343 2.77E-36 1.81E-33
CKB CKM 3714-49 Creatine kinase B-type; Creatine -1.325 4.95E-22 4.04E-20
kinase M-type
ADSL 5023-23 Adenylosuccinate lyase -1.126 2.70E-26 2.93E-24
SHH 2743-5 Sonic hedgehog protein —0.852 7.35E-26 7.38E-24
CA6 3352-80 Carbonic anhydrase 6 —-0.778 2.15E-15 8.01E-14
AGER 4125-52 Advanced glycosylation end —-0.770 5.74E-20 3.74E-18
product-specific receptor
HSPB1 11,103-24 Heat shock protein beta-1 -0.734 1.46E-05 9.18E-05
TFF1 9185-15 Trefoil factor 1 -0.708 1.20E-12 3.20E-11
PRKCA 2644-11 Protein kinase C alpha type —-0.695 3.68E-04 1.54E-03
PRKACA 3466-8 cAMP-dependent protein kinase —0.590 7.02E-05 3.63E-04

catalytic subunit alpha

p Values are shown as exponentiated values

Association between circulating proteome and measures
of disease severity in patients with IPF

Using significance criteria of a corrected p Value <0.05
and a > 5-unit difference in disease severity measure per
doubling in protein concentration, we identified 14 pro-
teins that were associated with FVC % predicted, 23 with
DLco % predicted, and 14 with CPI (Fig. 3). These
associations were largely unchanged after adjustment for
treatment (nintedanib, pirfenidone, neither) at enrol-
ment (Additional file 1: Tables S4-S6). Four proteins,
roundabout homolog-2 (ROBO2), spondin-1 (SPON1),
polymeric immunoglobulin receptor (PIGR) and ICAM
5, satisfied both analytic criteria for all three disease
severity measures. Each of these proteins were observed
at higher levels in patients with more severe disease.

Pathways analysis of proteins associated with presence or
severity of IPF

To elucidate potential pathways related to the presence
or severity of IPF, we performed a pathways analysis on
proteins demonstrated to be significant in the previous
analyses. In analyses of the 47 proteins that occurred at
different levels in patients with IPF versus controls with
an absolute > 1.5-fold change and a corrected p Value <
0.05, we observed a significant enrichment of proteins in
pathways related to platelet activation, innate immunity,
extracellular matrix organisation, and vascular growth
factor signalling (Fig. 4A). The same pathways, plus
mechanistically-related pathways and processes, were
identified in analyses of the 36 proteins that were sig-
nificantly correlated with measures of disease severity

(Fig. 4B). Additionally, activation and regulation of
the complement cascade appeared to be prominent
pathways of importance in disease severity.

Discussion

In this comprehensive study using a targeted platform of
over 1300 proteins, we identified a distinct circulating
proteome associated with IPF. When considered to-
gether, nine proteins accurately distinguished patients
with IPF from controls who had a similar distribution of
age, sex, and smoking status. Further, several proteins
were associated with clinical measures of disease sever-
ity. When proteins associated with the presence or
severity of IPF were considered in pathways analyses,
they tended to be found in pathways involved in platelet
and haemostatic responses, including vascular growth
factor signalling, immune activation (including innate
immunity and the complement cascade), and extracellu-
lar matrix organisation.

The majority of proteomic studies in IPF have fo-
cussed on the characterisation of protein expression in
lung tissue or bronchoalveolar lavage fluid (BALF)
[17-21], with only a few studies having quantified the
circulating proteome [8, 9]. An additional novel as-
pect of our analysis was the identification of proteins
associated with clinical measures of disease severity,
as well as proteins associated with the presence of
IPE. In general, the proteins associated with disease
severity were distinct from those that distinguished
patients with IPF from controls. Though it was ex-
pected that proteins associated with CPI would also
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Fig. 1 Operating characteristics of linear and non-linear models to differentiate patients with IPF from controls in training set (a) and receiver
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Fig. 2 Heat map indicating expression of most frequently observed proteins of importance across the linear and non-linear models in patients
with IPF versus controls

be associated with DLco or FVC, given that these mea-
sures are used in the CPI calculation, we observed that
only four proteins (ROBO2, SPON1, PIGR, ICAM5) were
associated with all three disease severity measures.

Our observation related to expression of circulating
PIGR, a transmembrane glycoprotein important in im-
munoglobulin A transport across mucosal epithelial
cells, is particularly intriguing, as prior work has demon-
strated that the lungs of patients with IPF have ectopic

expression of PIGR within areas of type 2 alveolar cell
hyperplasia [22]. Moreover, PIGR-deficient mice demon-
strated attenuated lung fibrosis after bleomycin treat-
ment compared with wild-type mice [22]. Others have
demonstrated that PIGR is upregulated by cytokines
induced by innate immune activation and have impli-
cated PIGR as a bridge between innate and adaptive
immune responses [23], responses which we found to be
enriched in pathways analyses of proteins associated
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Table 3 Nine proteins that optimally differentiated patients
with IPF from control participants. Proteins selected by the
linear discriminant function with recursive feature elimination
and the respective model coefficient

Gene Aptamer 1D Protein Model
coefficient®

APOA1 2750-3 Apolipoprotein A-l 038

CIR 3285-23 Complement Clr -041
subcomponent

MMP3 2788-55 Stromelysin-1 —-0.30

SFN 4829-43 14-3-3 protein sigma 043

CCL18 3044-3 C-C motif chemokine 18 036

ICAM5 5124-69 Intercellular adhesion —-0.06
molecule 5

SHH 2743-5 Sonic hedgehog protein 046

OLR1 3636-37 Oxidised low-density -0.32
ipoprotein receptor 1

CAPG 4968-50 Macrophage-capping 0.28

protein

“The sign of the coefficient indicates whether the subject’s linear discriminant
analysis score increases or decreases as values of the protein change. Higher
scores are associated with IPF, as opposed to control, status

with disease severity. While the other three proteins as-
sociated with all three disease severity measures have
not been well characterised in lung fibrosis, ROBO2 has
been demonstrated to be overexpressed in a murine
model of toxin-induced liver fibrosis, where it localised
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on the surface of hepatic stellate cells within fibrotic sep-
tae. Moreover, the interaction between ROBO2 and its
ligand (slit guidance ligand 2) promoted fibrogenic activ-
ity within stellate cells [24].

In prior work, an aptamer-based proteomic approach
similar to that used in our analysis was used to quantify
1129 circulating proteins in 60 patients with IPF versus
21 healthy controls of older mean age who were lifetime
non-smokers. Consistent with our observations, higher
levels of complement Clr subcomponent, complement
C4, fibronectin, ICAM 5, thrombospondin 1, and MMP1
were observed in the IPF cohort [8]. However, many of
the proteins found to have lower levels in patients with
IPF than in controls in this previous study were observed
at higher levels in patients with IPF than controls in our
study, including MMP9, S100A9, and surfactant protein
D, for which other literature supports increased expres-
sion in IPF [8, 25-29]. The factors accounting for these
divergent observations are likely multifactorial, and may
include the types of assays used, technical aspects of the
aptamer-based assay, differences in disease severity be-
tween the groups with IPF, or differences between the
control groups.

While the peripheral blood proteome may not fully re-
flect intrapulmonary changes, several of our findings are
consistent with those of proteomic studies of BALF or
lung tissue. A study using mass spectrometry-based

FVC % predicted

THBS4
GNS
DDC

CD36
AHSG

DL, % predicted

SPON1
SLPI
ROBO2
NID1
LSAMP
ICAM5
PIGR
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RSPO4
MRC1
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CXCL8
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Fig. 3 Proteins significantly associated with measures of disease severity
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(See figure on previous page.)

Fig. 4 Top 12 pathways/gene sets related to proteins observed at higher (black) or lower (hatched) levels in patients with IPF versus controls
(Benjamini-Hochberg corrected p Value for enrichment in respective pathway using Fisher's exact test < 4.40E-5) (a) or observed at higher levels
in more severe disease (black) or less severe disease (hatched) in patients with IPF (corrected p Value for enrichment < 0.029) (b) as identified by

EnrichR, sorted according to the combined score'”

proteomics of BALF demonstrated a 3-fold increase in
CCL18 and protein S100A9 in patients with IPF com-
pared with controls [18]. Another proteomic study of
BALF from patients with fibrotic diseases, including IPF,
demonstrated increased expression of S100A6 [20].
Several proteins observed at higher or lower levels in
patients with IPF in our study were consistent with ob-
servations from a study that performed unbiased proteo-
mics on lung tissue samples from patients with fibrosing
lung disease. For example, both studies demonstrated
higher levels of CCL13 and lower levels of AGER com-
pared with controls [17]. These observations suggest that
blood-based protein analysis may be a useful tool to
phenotype patients with IPF and facilitate monitoring of
disease progression. Consistent with this idea, Maher
et al. quantified 123 circulating proteins in patients with
IPF and identified a new IPF-associated protein, cancer
antigen-125 protein, rising levels of which were associ-
ated with the risk of disease progression and mortality
[29]. The newly identified IPF-associated circulating pro-
teins identified in our analyses expand the pool of candi-
date biomarkers for further evaluation in relation to
clinically relevant outcomes.

Our results support the importance of circulating pro-
teins relevant to extracellular matrix remodelling in pa-
tients with IPF. Notably several extracellular matrix
glycoproteins, MMPs 1 and 9, and the MMP inhibitor
TIMP3 were present at higher levels in patients with IPF
relative to controls. These data are of interest in view of
prior work by Jenkins et al. demonstrating that circulat-
ing levels of protein fragments generated by MMP activ-
ity are increased in patients with IPF relative to healthy
controls and may associate with disease progression
[30]. Although the majority of our data with regard to
extracellular matrix remodelling protein expression are
consistent with prior work, we note a particular discord-
ance between our results and those of previous studies
related to MMP3. High MMP3 levels have been reported
in lung tissue from patients with IPF, and genetic dele-
tion of MMP3 in mice abrogates bleomycin-induced
pulmonary fibrosis [31, 32]. In contrast to these observa-
tions, in our cohort, of all the proteins with lower levels
in patients with IPF than in controls, MMP3 showed the
strongest association. Given that MMP3 was selected as
a protein of importance in multivariable models distin-
guishing patients with IPF from controls, including the
linear discriminant analysis, we examined the sensitivity

of this model to the exclusion of MMP3. When the ana-
lysis was performed without MMP3 in the pool of ana-
lytes available for model selection, the optimal number
of proteins to differentiate participants with IPF from
controls was also nine, with adenylosuccinate lyase fill-
ing the final position and the remaining markers chosen
in the same order. The linear discriminant analysis con-
sidering these nine proteins also had an AUC of 0.99
(data not shown).

Our study has several strengths, including the multi-
centre nature of the IPF cohort and the inclusion of con-
trol participants of comparable age, sex and smoking
distribution. However, we acknowledge some inherent
limitations. First, we acknowledge that our cohort is a
US-based population of predominantly white patients,
thus broader generalisability to other populations of pa-
tients with IPF is uncertain. Additionally, although we
characterised a broad array of proteins, our approach
was targeted rather than discovery-based, so proteins of
potential importance could have been missed if not
included on our platform. Finally, we acknowledge that
an aptamer-based approach to protein detection and
quantification does not always yield results that are re-
producible when using ELISA-based approaches. This
may in fact explain the differences between previous
studies and our results with regard to MMP3. Thus, the
proteins we identified as of interest in our study need to
be validated, both from a technical and a clinical view-
point. In particular, the association of the circulating
proteins identified herein with clinical measures of IPF
severity warrants validation.

Conclusion

The results of this study add to the evidence suggesting
that circulating proteins are likely to hold value in the
diagnostic approach to IPF. Additionally, these data
indicate that profiling of circulating proteins may pro-
vide insights into biological pathways underlying the
development of IPF or contributing to disease severity.
Validation of candidate proteins will be necessary, as will
extension of these analyses to examine the association of
the circulating proteome with clinical outcomes. Rich
longitudinal data collection through the IPF-PRO
Registry, including serial pulmonary function measures,
hospitalisation data, and information on vital status, will
support these analyses and further the goal of improving
the diagnosis and management of IPF.
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