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Abstract
Spatial	capture–	recapture	(SCR)	analysis	is	now	used	routinely	to	inform	wildlife	man-
agement	and	conservation	decisions.	 It	 is	 therefore	 imperative	that	we	understand	
the	implications	of	and	can	diagnose	common	SCR	model	misspecifications,	as	flawed	
inferences	could	propagate	to	policy	and	interventions.	The	detection	function	of	an	
SCR	model	describes	how	an	individual's	detections	are	distributed	in	space.	Despite	
the	detection	function's	central	role	in	SCR,	little	is	known	about	the	robustness	of	
SCR-	derived	 abundance	 estimates	 and	 home	 range	 size	 estimates	 to	misspecifica-
tions.	Here,	we	set	out	to	(a)	determine	whether	abundance	estimates	are	robust	to	a	
wider	range	of	misspecifications	of	the	detection	function	than	previously	explored,	
(b)	quantify	the	sensitivity	of	home	range	size	estimates	to	the	choice	of	detection	
function,	and	(c)	evaluate	commonly	used	Bayesian	p-	values	for	detecting	misspeci-
fications	thereof.	We	simulated	SCR	data	using	different	circular	detection	functions	
to	 emulate	 a	wide	 range	of	 space	 use	 patterns.	We	 then	 fit	 Bayesian	 SCR	models	
with	 three	 detection	 functions	 (half-	normal,	 exponential,	 and	 half-	normal	 plateau)	
to	each	simulated	data	set.	While	abundance	estimates	were	very	robust,	estimates	
of	 home	 range	 size	 were	 sensitive	 to	 misspecifications	 of	 the	 detection	 function.	
When	misspecified,	SCR	models	with	the	half-	normal	plateau	and	exponential	detec-
tion	 functions	 produced	 the	most	 and	 least	 reliable	 home	 range	 size,	 respectively.	
Misspecifications	 with	 the	 strongest	 impact	 on	 parameter	 estimates	 were	 easily	
detected	by	Bayesian	p-	values.	Practitioners	using	SCR	exclusively	for	density	esti-
mation	 are	unlikely	 to	be	 impacted	by	misspecifications	of	 the	detection	 function.	
However,	 the	 choice	 of	 detection	 function	 can	 have	 substantial	 consequences	 for	
the	reliability	of	inferences	about	space	use.	Although	Bayesian	p-	values	can	aid	the	
diagnosis	 of	 detection	 function	misspecification	 under	 certain	 conditions,	we	 urge	
the	development	of	additional	custom	goodness-	of-	fit	diagnostics	for	Bayesian	SCR	
models	to	identify	a	wider	range	of	model	misspecifications.
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1  |  INTRODUC TION

Spatial	capture–	recapture	 (SCR)	models	are	now	routinely	used	to	
monitor	 wildlife	 populations,	 estimate	 parameters	 of	 applied	 im-
portance	such	as	population	size	and	space	use	(Borchers	&	Efford,	
2008;	Royle	et	al.,	2014,	2018),	and	 inform	their	management	and	
conservation	(Bischof,	Milleret,	et	al.,	2020;	López-	Bao	et	al.,	2018).	
These	are	hierarchical	models	that	use	the	spatial	information	from	
repeated	 individual	 encounters	 to	 estimate	density	 and	 space	use	
parameters	 in	wildlife	populations,	while	accounting	 for	 imperfect	
detection.	The	Bayesian	paradigm	and	accessible	programming	lan-
guages	(de	Valpine	et	al.,	2017;	Plummer,	2003)	provide	a	convenient	
framework	for	developing	and	fitting	custom	SCR	models	(Bischof,	
Milleret,	et	al.,	2020;	Turek	et	al.,	2021),	and	we	are	experiencing	a	
surge	of	 innovation	 in	Bayesian	SCR	models	of	growing	scope	and	
complexity	 to	study	 landscape	connectivity,	movement,	and	other	
space	use	dynamics	(Royle	et	al.,	2018).

Spatial	 capture–	recapture	 can	 provide	 managers	 and	 policy-
makers	 with	 multiple	 important	 parameters,	 not	 only	 abundance	
(Royle	et	al.,	2018).	 It	 is	 imperative	to	minimize	the	risk	of	errone-
ous	 inferences	 finding	 their	 way	 into	 the	 resource	 management	
decision-	making	 process.	 Specifically,	 there	 is	 a	 dearth	 of	 studies	
that	systematically	evaluate	the	consequences	of	model	misspecifi-
cations	on	space	use	parameters	(e.g.,	home	range	size)	and	reliabil-
ity	of	commonly	used	diagnosis	tools	in	Bayesian	SCR	models	(Royle	
et	al.,	2009,	2014;	Russell	et	al.,	2012).

In	 this	 study,	we	 focus	 on	 the	 consequences	 and	 diagnosis	 of	
misspecifications	of	a	core	component	of	SCR	models:	the	detection	
function.	Detection	probability	 in	SCR	is	modeled	as	a	function	of	
the	distance	between	latent	individual	activity	centers	(ACs)	and	de-
tection	locations.	Often,	detection	patterns	in	SCR	studies	emerge	
from	the	movement	of	individuals	about	their	home	ranges.	In	these	
cases,	the	shape	of	the	detection	function	can	be	 interpreted	as	a	
reflection	of	an	individual's	space	use	around	its	activity	center:	an	
individual	 is	more	 likely	to	be	detected	 in	areas	 in	which	 it	spends	
more time.

The	 half-	normal	 detection	 function	 (HN)	 is	 the	most	 common	
detection	function	in	SCR	and	assumes	a	bivariate	normal	model	of	
animal	 space	use	with	a	monotonic	decay	 in	detection	probability	
as	distance	from	the	AC	increases	(Efford,	2004).	However,	animal	
space	 use	 and	 home	 range	 configurations	 can	 vary	 substantially	
between	 (Ofstad	 et	 al.,	 2016)	 and	 even	 within	 species	 (Efford	 &	
Mowat,	2014)	and	it	is	unlikely	that	“one	size	fits	all,”	as	far	as	SCR	
detection	functions	are	concerned.	For	example,	territorial	species	
may	spend	a	disproportionate	amount	of	time	patrolling	and	scent	
marking	 their	 territorial	 boundaries	 (Langergraber	 et	 al.,	 2017),	
leading	to	a	bimodal	or	donut-	shaped	space	use	profile.	Conversely,	
species	or	demographic	groups	with	long	exploratory	forays	(Zeale	

et	al.,	2012)	may	exhibit	long-	tailed	space	use	distributions.	Species	
with	 relatively	 even	 space	use	 throughout	 a	 clearly	defined	home	
range	(Pearce	et	al.,	2013)	may	represent	another	deviation	from	the	
half-	normal	model,	exhibiting	a	plateau	in	the	utilization	distribution	
followed	by	a	rapid	decline	in	utilization	near	the	edge	of	the	home	
range.

Although	there	are	indications	that	density	estimates	produced	
by	SCR	models	are	robust	to	misspecifications	of	the	detection	func-
tion	(Efford,	2004;	Russell	et	al.,	2012),	this	has	only	been	explored	
for	 a	 limited	 range	 of	 scenarios.	 Furthermore,	 detection	 function	
misspecifications	 may	 have	 consequences	 for	 inferences	 about	
space	use	and	movement,	which	feature	increasingly	in	the	SCR	lit-
erature	(Bischof	et	al.,	2017;	Royle,	Chandler,	Gazenski,	et	al.,	2013).	
Even	 in	the	absence	of	systematic	bias,	misspecifications	could	af-
fect	 the	 associated	 precision	 and	 coverage	 probability	 (Bischof,	
Dupont,	et	al.,	2020).

While	simulations	can	inform	about	the	potential	consequences	
of	model	misspecifications,	they	cannot	be	used	to	identify	them	in	
empirical	 situations.	Goodness-	of-	fit	 (GOF)	 testing	offers	 a	 formal	
tool	 for	 diagnosing	 violations	 of	 assumptions	 and	 is	 an	 important	
part	of	statistical	analysis	as	it	reduces	the	risk	of	drawing	erroneous	
inference	(Pradel	et	al.,	2005).	Bayesian	p-	values	are	frequently	used	
to	assess	GOF	in	Bayesian	modeling	and	do	so	by	measuring	the	sys-
tematic	 dissimilarity	 between	 observed	 data	 and	model-	predicted	
data	(i.e.,	replicated	data	Gelman	et	al.,	2014).	Although	Bayesian	p- 
values	have	been	used	previously	for	assessing	GOF	of	different	SCR	
model	 components	 (Ergon	 &	 Gardner,	 2014;	 Russell	 et	 al.,	 2012),	
their	efficacy	in	diagnosing	misspecified	detection	functions	in	SCR	
models	has	yet	to	be	explored.

Using	simulations,	we	evaluated	the	consequences	of	detection	
function	 misspecifications	 on	 key	 SCR	 parameter	 estimates	 and	
assessed	whether	Bayesian	p-	values	can	be	used	to	diagnose	such	
misspecifications.	First,	we	quantified	 the	 impact	of	 the	 choice	of	
detection	 function—	relative	 to	 the	 data-	generating	 function—	on	
SCR-	derived	 estimates	 of	 home	 range	 size	 and	 population	 size.	
Then,	we	calculated	and	compared	a	suit	of	Bayesian	p-	values	and	
assessed	their	ability	to	reveal	misspecifications.	We	discuss	the	im-
plications	of	our	results	in	the	context	of	the	choices	and	challenges	
faced	by	practitioners	using	SCR.

2  |  METHODS

2.1  |  General approach

We	 conducted	 a	 simulation	 study	 to	 assess	 the	 consequences	 of	
misspecifying	 the	 detection	 function	 in	 SCR	models.	 Six	 different	
detection	functions	were	used	to	simulate	contrasting	animal	space	
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use	patterns	and	generate	corresponding	spatial	capture–	recapture	
data	 (Figure	1).	We	then	fitted	three	SCR	models	differing	 in	their	
detection	function	(half-	normal,	exponential,	or	half-	normal	plateau;	
see	Section	2.3.2	below)	to	the	simulated	data	sets.	We	assessed	the	
robustness	of	the	models	using	relative	bias,	coefficient	of	variation,	
and	coverage	probability	of	the	95%	credible	intervals	of	population	
size	and	home	range	size	estimates.	Finally,	we	calculated	a	suite	of	
Bayesian	p-	values	and	compared	their	ability	to	identify	misspecifi-
cations	of	the	detection	function.

2.2  |  SCR model description

A	single-	season	SCR	model	 typically	consists	of	a	 submodel	de-
scribing	the	spatial	distribution	of	 individual	ACs	 in	a	given	area	
(habitat)	 and	 an	observation	 submodel	 describing	 individual	 de-
tection	probability	in	space,	conditional	on	AC	locations.	Consider	
N	individuals	that	reside	in	a	bounded	habitat	 ⊂ ℝ

2	where	each	

individual	is	assumed	to	move	randomly	around	its	AC,	viz.,	s ∈ 

.	 Following	 a	homogeneous	point	process,	 each	 individual	AC	 is	
assumed	to	be	uniformly	distributed	across	 the	habitat		 (Royle	
et	al.,	2014).

We	used	a	data	augmentation	approach	to	model	the	number	of	
individuals	N	in	the	habitat		(Royle	et	al.,	2009).	We	chose	a	large	
integer	M	 to	 bound	N	 and	 introduced	 a	 vector	of	M	 latent	 binary	
variables	z =	(z1,	z2,	…,	zM)	such	that	zi =	1	if	individual	i	is	a	member	of	
the	population	and	zi =	0	otherwise.	We	assume	that	each	zi	is	a	reali-
zation	of	a	Bernoulli	trial	with	parameter	ψ,	the	inclusion	probability.

We	considered	J	detectors	located	within	,	active	during	a	sin-
gle	sampling	occasion.	Recorded	detections	(yij's)	are	binary,	that	is,	
yij =	1	if	the	i-	th	individual	is	detected	at	the	j-	th	detector	and	yij = 0 
otherwise.	Note	that	an	individual	can	be	detected	at	multiple	detec-
tors	within	the	same	sampling	occasion.	If	n	individuals	are	detected	
during	the	capture–	recapture	survey,	Yobs	is	of	dimension	n × J.	As	
part	of	the	data	augmentation	approach,	the	SCR	data	set	Yobs =	((yij))	
is	supplemented	with	a	large	number	of	“all-	zero”	detection	histories.	

F I G U R E  1 Visualization	of	six	
different	detection	functions	(detection	
probability	as	a	function	of	distance	
between	the	detector	and	individual	
activity	center),	both	as	kernel	density	
profiles	and	raster	maps.	Realization	of	
two	different	parameter	sets	is	shown	for	
each	detection	function,	with	red	lines	
and	shading	correspond	to	parameter	
set	1,	whereas	blue	lines	and	shading	
correspond	to	parameter	set	2.	Parameter	
values	used	for	each	detection	function	
(see	main	text	for	descriptions)	are	
provided	in	the	legend	of	each	plot.	
Distances	are	provided	in	arbitrary	
distance	units	(du)

(a) (b) 

(c) (d) 

(e) (f) 
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The	zero-	augmented	data	set	Y	(dimension	M × J)	is	constructed	as	
follows:

where Yrem	denotes	the	array	of	“all-	zero”	detection	histories	with	di-
mensions	(M	−	n)	× J.

A	Bernoulli	model,	conditional	on	zi,	is	assumed	for	each	obser-
vation	yij:

where pij	denotes	the	detection	probability	of	the	i-	th	individual	at	the	
j-	th	detector.	The	detection	probability	pij	is	modeled	as	a	function	of	
the	Euclidean	distance	dij	between	the	detector	location	xj	and	individ-
ual	AC	location	si

where

This	generic	formulation	of	pij,	given	in	(3),	accounts	for	individ-
ual-		 and	 detector-	level	 heterogeneity	 in	 detection	 probability	 due	
to	their	 relative	position	 in	space.	 In	addition,	 this	 implementation	
allows	the	user	to	specify	the	shape	of	the	detection	function	p	 in	
terms	of	dij.	The	detection	function	is	the	focus	of	this	manuscript	
and	is	discussed	in	more	detail	in	Section	2.3.2.

2.3  |  Simulation design

2.3.1  |  Habitat	and	detectors

We	simulated	a	20	×	20	detector	array	(J =	400	detectors)	with	1	
distance	unit	(du)	spacing	between	neighboring	detectors	centered	
on	a	29	×	29	du	habitat	.	This	configuration	results	in	a	5-	du	habi-
tat	buffer	around	the	outermost	detectors	(Figure	2).	Although	the	
number	 of	 detectors	 used	 here	 is	 larger	 than	what	 is	 achieved	 in	
some	study	systems	(e.g.,	most	camera	trapping	studies),	it	was	se-
lected	to	ensure	good	spatial	coverage	and	a	sufficient	number	of	
recaptures	 to	 allow	us	 to	 reliably	quantify	 the	effect	of	detection	
function	misspecification.

2.3.2  |  Detection	functions

We	considered	six	functions	with	substantial	variation	in	their	shapes	
(Table	1	and	Figure	1).	In	SCR	modeling,	it	is	a	common	practice	to	
assume	that	individual	space	use	is	circular,	highest	at	the	AC	loca-
tion	and	gradually	decays	with	distance	from	AC	(Royle	et	al.,	2014).	

Both	the	half-	normal	(HN)	and	exponential	(EX)	detection	functions	
(Table	1,	Figure	1a,d)	reflect	this	behavior	and	are	frequently	used	
in	SCR	studies,	with	the	half-	normal	being	the	most	popular	choice.	
In	both	functions,	p0	denotes	the	baseline	detection	probability	(i.e.,	
the	detection	probability	at	 the	exact	 location	of	 the	AC)	and	 the	
scale	parameter	σ	quantifies	the	spatial	extent	of	animal	space	use	
around	its	AC.

To	allow	greater	flexibility	in	individual	space	use,	we	considered	
two	additional	detection	functions.	The	half-	normal	plateau	 (HNP)	
is	an	extension	of	the	half-	normal	detection	function	with	an	addi-
tional	non-	negative	parameter	w	 for	the	radius	of	uniform	activity	
(Table	1,	Figure	1b).	The	asymmetric	logistic	detection	function	(AL)	
is	an	extension	of	the	logistic	curve	model	with	an	additional	param-
eter αb	for	a	second	curvature	(Table	1,	Figure	1e,	also	see	Ricketts	
&	Head,	1999).	The	other	parameters	of	the	AL	function	are	p0,	the	
baseline	detection	probability,	αa,	the	first	curvature	parameter,	and	
σ,	the	distance	from	the	AC	where	the	asymmetric	logistic	detection	
function	takes	the	value	p0/2.

Finally,	we	 included	 two	detection	 functions	which	allowed	an	
increase	in	space	use	with	distance	from	AC	(e.g.,	common	pipistrelle	
bats:	Pipistrellus pipistrellus;	Nicholls	&	Racey,	2006).	The	donut	func-
tion	 (DN)	 is	 characterized	by	 a	 single	peak	with	highest	detection	
probability	p0	at	a	distance	w	from	the	AC	(Table	1,	Figure	1c).	The	
two	tails	on	either	sides	of	the	peak	correspond	to	two	half-	normal	
density	curves	with	mean	w	and	scale	parameters	σa	and	σb. The bi-
modal	function	(BI)	is	a	stochastic	mixture	of	two	univariate	normal	
densities	with	means	0	and	w(>0)	and	scale	parameters	σa	and	σb,	
with	mixture	weights	p0a	and	p0b,	respectively	(Table	1,	Figure	1f).

(1)Y =

⎛
⎜⎜⎝
Yobs

Yrem

⎞
⎟⎟⎠
,

(2)yij ∼ Bernoulli
(
pijzi

)
,

(3)pij = p(dij),

(4)dij = d(si , xj) =
‖‖‖si − xj

‖‖‖ .

F I G U R E  2 Illustration	of	the	habitat	and	the	detector	grid	
configuration	used	in	spatial	capture	simulations:	The	detector	
array	is	a	rectangular	grid	of	20	×	20	detectors	(blue	dots,	400	
detectors	total).	The	habitat	covers	an	area	of	29	×	29	distance	
units,	including	the	detector	region	(dark	grey	area)	and	a	
5-	distance	units	unsampled	buffer	(light	grey	area)	surrounding	the	
detector	array
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2.4  |  Scenarios

We	 simulated	 single-	season	 spatial	 capture–	recapture	 data	 sets	
(Section	2.2)	 for	N =	200	 individuals	with	 the	six	detection	 func-
tions	 and	 two	 sets	 of	 detection	 function	 parameters	 (Table	 1,	
Figure	 1),	 leading	 to	 12	 different	 simulation	 scenarios.	 The	 two	
parameter	 sets	were	chosen	 to	 result	 in	a	comparable	number	of	
detected	 individuals	 (around	60%–	70%)	but	different	home	range	
sizes	(corresponding	to	the	distance	that	delimits	95%	of	the	area	
under	 the	 detection	 kernel)	 and	 different	 total	 detection	 counts	
(i.e.,	

∑M

i=1

∑J

j=1
yij;	Appendix	S2:	Figure	S1).	Like	the	number	of	de-

tectors,	 the	detection	parameters	were	chosen	 to	 result	 in	 a	 suf-
ficiently	high	number	of	recaptures	in	the	simulated	data,	thereby	
boosting	our	ability	to	detect	potential	patterns	arising	from	detec-
tion	function	misspecification.

Estimated	home	 range	 sizes	differed	between	 the	 three	 fitted	
models	because	of	the	different	shapes	of	the	detection	functions	
(Table	1).	We	chose	parameter	sets	that	resulted	 in	simulated	SCR	
data	with	similar	proportions	 (around	60%–	70%)	of	 individuals	de-
tected	 (Table	1)	 in	order	 to	avoid	 confounding	between	detection	
functions	in	information	contents.

Due	to	computation	limitations,	we	did	not	fit	SCR	models	with	
all	six	detection	functions	used	during	simulation	(see	Section	2.3.2).	
Instead,	we	fitted	the	two	most	common	ones:	half-	normal	(HN)	and	
exponential	(EX),	as	well	as	the	half-	normal	plateau	(HNP)	for	its	ex-
pected	flexibility.	For	each	of	the	three	models	to	be	fitted	and	for	
each	of	 the	12	 scenarios,	we	 simulated	50	 independent	 SCR	data	
sets,	resulting	in	1800	simulated	data	sets.

To	ensure	realistic	simulations,	we	computed	a	population-	level	
index	of	home	range	overlap	S = DH,	where	D	denotes	 the	popu-
lation	density	and	H	denotes	 the	home	range	size	 (Damuth,	1981,	
based	on	 the	95%	density	of	 space	use	distribution).	Home	 range	
overlap	S	(average	number	of	individuals	using	a	single	home	range	
area)	ranged	from	9	to	65	in	our	simulation	study	(with	D =	0.24	an-
imals	per	du	sq).

2.5  |  Model fitting

We	fitted	models	using	Markov	chain	Monte	Carlo	(MCMC)	simu-
lations	with	NIMBLE	 (de	Valpine	et	 al.,	2017)	 in	R	 (R	Core	Team,	
2019).	To	reduce	computation	time,	we	implemented	the	local	eval-
uation	approach	(Milleret	et	al.,	2019;	Turek	et	al.,	2021).	We	ran	
three	chains	of	15,000	iterations	including	an	initial	burn-	in	phase	
of	5000	iterations.	MCMC	convergence	of	each	model	was	moni-
tored	using	the	Gelman-	Rubin	convergence	diagnostics	R̂	(Gelman	
et	al.,	2014).

During	 preliminary	 analyses,	 we	 observed	 slow	 mixing	 of	 the	
Markov	chains	for	parameters	σ	and	w	of	the	HNP	detection	func-
tion	with	the	standard	MCMC	within	Gibbs	sampler.	To	improve	mix-
ing,	we	used	the	recycling	Gibbs	sampler	(Martino	et	al.,	2018)	for	
these	parameters.	R	code	for	 implementing	simulations	and	fitting	

the	single-	season	SCR	model	with	different	detection	 functions	 is	
provided	in	Data	S1	and	S2.

2.6  |  Consequences of misspecification

2.6.1  |  Deriving	home	range	size

The	 parameters	 of	 the	 different	 detection	 functions	 used	 in	
this	 study	 cannot	 be	 directly	 compared	 between	 functions.	We	
therefore	 based	 our	 comparison	 of	 the	 different	models	 on	 the	
estimates	of	home	range	size	that	can	be	derived	from	each	de-
tection	 function	estimate.	This	 is	 also	 the	parameter	of	 interest	
to	practitioners.	All	detection	functions	p(x,	s)	used	during	fitting	
(Table	1)	are	proportional	to	the	probability	density	function	of	a	
bivariate	 distribution	 g(x|s)	 that	 represents	 individual	 space	 use	
distribution:

For	any	such	space	use	probability	distribution,	we	can	find	the	
quantile	rα	such	that	α%	of	all	movements	lie	within	the	circle	of	ra-
dius	rα	centered	on	s.	We	can	then	define	the	α%	home	range	area	as	
Aα,	the	set	of	all	points	x ∈ 	such	that	||x	−	s||	≤	rα.	Assuming	a	cir-
cular	home	range,	the	size	of	Aα	is	then	simply	calculated	as	�r

2
�
. The 

α%	home	range	size	can	therefore	be	derived	by	finding	rα	such	that	∑
x∈A�

g(x�s) ≤ �.	Here,	we	used	a	bisection	algorithm	to	find	the	root	
of	the	above	optimization	problem	(i.e.,	to	find	rα;	see	Data	S1	and	S2	
for	the	R	code	to	derive	home	range	size;	Corliss,	1977).

For	the	half-	normal	detection	function	pHN(x,	s)	= p0	exp(−0.5σ−2 
||x	−	s||2),	an	analytical	solution	exists	to	calculate	rα.	Since	σ

−2 ||x	−	s||2 
follows	a	chi-	square	distribution	with	2	degrees	of	freedom,	rα	can	
be	calculated	as	�

√
q (�, 2) where q(α,	2)	is	the	α%	quantile	of	a	chi-	

square	distribution	with	2	degrees	of	freedom	(Royle	et	al.,	2014).	
As	the	analytical	solution	is	more	accurate	and	faster	to	obtain	than	
numerical	approximations,	we	analytically	derived	home	range	size	
for	the	HN	model	but	used	numerical	approximations	for	the	other	
five	detection	functions	for	which	no	simple	analytical	solution	ex-
ists.	In	order	to	compare	the	different	models,	we	calculated	home	
range	sizes	using	a	thinned	sample	(thinning	rate	=	10)	combining	all	
the	MCMC	chains,	thus	producing	posterior	distributions	of	the	α%	
home	range	size	(e.g.,	α =	95	or	50).

2.6.2  |  Deriving	population	size	N

Population	 size	 is	 a	 derived	 parameter	 which	 follows	 a	 binomial	
distribution	with	parameters	M	and	�,	N =

∑M

i=1
zi.	The	parameter	ψ 

gives	the	probability	that	an	arbitrary	 individual	from	the	set	of	M 
individuals	is	a	member	of	the	population.	For	model	fitting,	we	set	
M	to	400	for	all	scenarios.

(5)g (x�s) =
p (x, s)∑
x∈p (x, s)

.
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2.6.3  | Model	performance	measures

We	used	relative	bias,	coefficient	of	variation,	and	coverage	prob-
ability	to	evaluate	the	effect	of	detection	function	misspecifications	
on	 population	 size	 and	 home	 range	 size	 estimators.	 Suppose	 {θ(r): 
r =	1,	2,	…,	R}	denotes	a	set	of	MCMC	draws	from	the	posterior	dis-
tribution	of	a	scalar	parameter	θ.

Relative bias
Relative	bias	(RB)	is	calculated	as

where ̂�	denotes	the	posterior	mean	1
R

∑R

r=1
�(r)	and	θ0	denotes	the	true	

(simulated)	value.

Coefficient of variation
Precision	was	measured	by	the	coefficient	of	variation	(CV):

where ŜD(�) =
�

1

R

∑R

r=1
(�(r)− �̂)2	 is	the	posterior	standard	deviation	

of	parameter	θ.

Coverage probability
Coverage	probability	was	computed	as	the	proportion	of	model	fits	(to	
the	50	simulations	within	a	set,	see	Section	2.4)	for	which	the	estimated	
95%	credible	interval	of	the	estimate	(CI)	contained	the	true	value	of	θ.

2.7  |  Goodness- of- fit testing

We	assessed	the	goodness-	of-	fit	of	SCR	models	using	Bayesian	p- 
values	(Gelman	et	al.,	2014).	It	is	a	model	checking	procedure	which	
measures	 the	 dissimilarity	 between	 the	 observed	 data	Y	 and	 the	
model-	predicted	 data	Yrep.	 The	 computation	 of	 Bayesian	 p-	values	
requires	 specifying	 a	discrepancy	measure	T	 chosen	 to	 reflect	 as-
pects	of	the	model	that	are	to	be	checked.

In	 practice,	 posterior	 replicates	 of	 a	 SCR	 data	 set	 Y	 are	 ob-
tained	 by	 drawing	 one	 replicated	 data	 set	 Yrep

r
	 from	 the	 fitted	

model	 for	each	posterior	simulation	of	parameter	vector	θr	 (r =	1,	
2,	…,	R),	where	R	denotes	the	number	of	posterior	MCMC	samples.	
Consequently,	two	sets	of	discrepancy	measures	(T(Y,	θ1),	T(Y,	θ2),	…,	
T(Y,	θR))′	and	(T(Y

rep

1
, �1), T(Y

rep

2
, �2,…, T(Y

rep

R
, �R))

�	are	generated.	The	
Bayesian	p-	value	is	calculated	as	the	proportion	of	times	the	repli-
cated	discrepancy	measure	T(Yrep

r
, �r )	 is	greater	 than	the	observed	

quantity	T(Y,	θr):

where I(x)	is	an	indicator	function	taking	the	value	1	if	x	is	true	and	0	
otherwise.

If	 the	 model	 fit	 is	 adequate,	 the	 Bayesian	 p-	value	 should	 be	
near	 .5	as	the	discrepancy	measure	in	the	replicated	data	set	would	
be	equally	likely	greater	or	less	than	the	observed	measure,	thus	in-
dicating	that	the	model-	predicted	data	are	consistent	with	the	ob-
served	data	with	respect	to	the	aspect	the	discrepancy	measure	is	
designed	to	check	(but	the	converse	is	not	always	true,	see	Section	
4.3).	 The	 general	 recommendation	 to	 identify	 a	 lack	 of	 fit	 with	

(6)R̂B(�) =
�̂ − �0
�0

,

(7)ĈV(�) =
ŜD(�)

�̂
,

(8)Bayesianp-value ≈
1

R

R∑
r=1

I
{
T
(
Y
rep
r

, �r
)
> T

(
Y, �r

)}
,

TA B L E  1 Parameter	values	of	the	six	detection	functions	used	for	simulating	spatial	capture–	recapture	data.	Also	shown	are	the	
corresponding	95%	quantile	home	range	area	and	number	of	detected	individuals	(mean,	2.5%	and	97.5%	quantiles)	for	two	parameter	sets

Detection function Equation Parameters

Parameter set 1 Parameter set 2

Parameter values 95% HR area (du sq.)
No. of detected 
individuals Parameter values

95% HR area 
(du sq.)

No. of detected 
individuals

Half-	normal	(HN) pHN (d) = p0exp
(
−

d2

2�2

)
p0 ∈	(0,	1),	σ >	0	(Figure	1a) p0 =	.3,	σ =	1.5 42.35 123	(111,	137) p0 =	.05,	σ = 3 169.40 123	(110,	137)

Exponential	(EX) pEX (d) = p0exp
(
−

d

�

)
p0 ∈	(0,	1),	σ >	0	(Figure	1d) p0 =	.3,	σ =	1.5 158.87 136	(123,	149) p0 =	.1,	σ = 2 274.48 117	(104,	132)

Half-	normal	plateau	
(HNP)

pHNP (d)=p0, d<w and

=p0exp
(
−

(d−w)2

2𝜎2

)
, d≥w

p0 ∈	(0,	1),	σ >	0,	w	≥	0	(Figure	1b) p0 =	.25,	σ =	1,	w =	1.5 39.50 133	(123,	146) p0 =	.05,	σ =	1.5,	w =	2.5 95.75 126	(114,	138)

Asymmetric	logistic	(AL) pAL (d) = p0
[
1+ (d∕�)�a g(d)+ (d∕�)�a�b (1−g(d))

]−1
,

where g(d) = {1+ (d∕�)�}−1,

� =
2|�a|�b
1+ �b

p0 ∈	(0,	1),	σ >	0,	�a ∈ ℝ,	αb >	0	(Figure	1e) p0 =	.3,	σ = 2
αa =	5,	αb = 1

57.82 127	(113,	141) p0 =	.15,	σ = 3
αa =	10,	αb = 1

40.92 127	(115,	139)

Donut	(DN) pDN(d) = p0exp
(
−

(d−w)2

2𝜎2a

)
, d < w,

pDN(d) = p0exp
(
−

(d−w)2

2�2
b

)
, d ≥ w

p0 ∈	(0,	1),	σa >	0,
σb >	0,	w	≥	0	(Figure	1c)

p0 =	.25,	σa =	1.5
σb =	1,	w =	1.5

39.98 133	(120,	146) p0 =	.05,	σa = 2
σb =	1.5,	w =	2.5

97.14 125	(115,	137)

Bimodal	(BI) pBI (d)=p0aexp
(
−

d2

2�2a

)

+p0bexp
(
−

(d−w)2

2�2
b

)
p0a  ∈	(0,	1),	σa >	0,	p0b ∈	(0,	1),	σb >	0,	w	≥	0	(Figure	1f) p0a =	.25,	σa =	0.5

p0b =	.15,	σb =	1,	w = 2
49.64 133	(120,	147) p0a =	.05,	σa =	1.5

p0b =	.1,	σb =	0.5,	w = 3
46.81 121	(107,	136)
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Bayesian	p-	values	 is	 to	check	whether	or	not	 they	fall	outside	the	
interval	(.1,	.9),	also	in	SCR	(Royle	et	al.,	2014).

Although	a	 range	of	different	discrepancy	measures	exist,	cur-
rently,	no	universal	discrepancy	measure	is	available	for	SCR	models.	
We	therefore	implemented	four	different	discrepancy	measures	to	
compare	 their	ability	 to	 identify	misspecifications	 in	 the	detection	
function.	 For	 notational	 convenience,	 we	 suppressed	 the	 depen-
dency	of	the	discrepancy	measure	on	the	data	set	and	the	parameter	
henceforth.	We	used	the	Freeman–	Tukey	(FT)	measure	for	its	appli-
cability	 for	 sparse	data	 sets	due	 to	 the	variance	stabilizing	 square	
root	transformation	(Brooks	et	al.,	2000):

where yij	and	Eij	denote	the	capture–	recapture	observation	for	individ-
ual	i	at	the	j-	th	detector	and	its	expected	value	under	the	fitted	model,	
respectively.	We	also	used	two	versions	of	this	statistic	pooled	at	the	
individual	or	detector	level:

and

where yi0 =	∑jyij	denotes	the	number	of	observations	for	individual	 i 
across	the	J	detectors	and	y0j =	∑iyij	denotes	the	number	of	individuals	
observed	at	detector	j with Ei0 =	∑jEij	and	E0j =	∑iEij.

In	addition,	we	used	Pearson's	chi- square	metric	(Gelman	et	al.,	
2014):

We	calculated	all	Bayesian	p-	values	using	a	thinned	sample	(thinning	
rate	=	10)	of	all	MCMC	samples	drawn	during	fitting	of	a	given	model.

3  |  RESULTS

All	MCMC	samples	of	 the	parameters	of	 interest	 (e.g.,	N,	α%	home	
range	 size)	were	obtained	after	ensuring	proper	mixing	and	conver-
gence,	with	̂R	values	below	1.1.	When	correctly	specified,	that	is,	fitted	
with	the	detection	function	used	for	simulation	(in	our	case,	with	HN.	
HNP	or	EX	functions),	both	population	size	and	home	range	size	were	
estimated	without	significant	bias	(average	RB	between	0%	and	4%),	
with	good	precision	 (CV	<	10%)	and	nominal	coverage	 (approx.	 .95;	
Figure	3).

3.1  |  Consequences of misspecification

3.1.1  |  Home	range	area

Most	misspecifications	of	 the	detection	 function	 led	 to	erroneous	
95%	kernel	home	range	size	estimates	 (Figures	4	and	5,	Appendix	
S2:	Figures	S2	and	S5).	Although	we	did	not	notice	any	specific	pat-
tern	in	the	coefficients	of	variation,	home	range	size	estimates	were	

(9)TFT =

M�
i=1

J�
j=1

�√
yij−

�
Eij

�2

,

(10)TFT-I =

M�
i=1

�√
yi0−

√
Ei0

�2

,

(11)TFT-D =

J�
j=1

�√
y0j−

�
E0j

�2

,

(12)TP =

M∑
i=1

J∑
j=1

(yij−Eij)
2

Eij
.

TA B L E  1 Parameter	values	of	the	six	detection	functions	used	for	simulating	spatial	capture–	recapture	data.	Also	shown	are	the	
corresponding	95%	quantile	home	range	area	and	number	of	detected	individuals	(mean,	2.5%	and	97.5%	quantiles)	for	two	parameter	sets

Detection function Equation Parameters

Parameter set 1 Parameter set 2

Parameter values 95% HR area (du sq.)
No. of detected 
individuals Parameter values

95% HR area 
(du sq.)

No. of detected 
individuals

Half-	normal	(HN) pHN (d) = p0exp
(
−

d2

2�2

)
p0 ∈	(0,	1),	σ >	0	(Figure	1a) p0 =	.3,	σ =	1.5 42.35 123	(111,	137) p0 =	.05,	σ = 3 169.40 123	(110,	137)

Exponential	(EX) pEX (d) = p0exp
(
−

d

�

)
p0 ∈	(0,	1),	σ >	0	(Figure	1d) p0 =	.3,	σ =	1.5 158.87 136	(123,	149) p0 =	.1,	σ = 2 274.48 117	(104,	132)

Half-	normal	plateau	
(HNP)

pHNP (d)=p0, d<w and

=p0exp
(
−

(d−w)2

2𝜎2

)
, d≥w

p0 ∈	(0,	1),	σ >	0,	w	≥	0	(Figure	1b) p0 =	.25,	σ =	1,	w =	1.5 39.50 133	(123,	146) p0 =	.05,	σ =	1.5,	w =	2.5 95.75 126	(114,	138)

Asymmetric	logistic	(AL) pAL (d) = p0
[
1+ (d∕�)�a g(d)+ (d∕�)�a�b (1−g(d))

]−1
,

where g(d) = {1+ (d∕�)�}−1,

� =
2|�a|�b
1+ �b

p0 ∈	(0,	1),	σ >	0,	�a ∈ ℝ,	αb >	0	(Figure	1e) p0 =	.3,	σ = 2
αa =	5,	αb = 1

57.82 127	(113,	141) p0 =	.15,	σ = 3
αa =	10,	αb = 1

40.92 127	(115,	139)

Donut	(DN) pDN(d) = p0exp
(
−

(d−w)2

2𝜎2a

)
, d < w,

pDN(d) = p0exp
(
−

(d−w)2

2�2
b

)
, d ≥ w

p0 ∈	(0,	1),	σa >	0,
σb >	0,	w	≥	0	(Figure	1c)

p0 =	.25,	σa =	1.5
σb =	1,	w =	1.5

39.98 133	(120,	146) p0 =	.05,	σa = 2
σb =	1.5,	w =	2.5

97.14 125	(115,	137)

Bimodal	(BI) pBI (d)=p0aexp
(
−

d2

2�2a

)

+p0bexp
(
−

(d−w)2

2�2
b

)
p0a  ∈	(0,	1),	σa >	0,	p0b ∈	(0,	1),	σb >	0,	w	≥	0	(Figure	1f) p0a =	.25,	σa =	0.5

p0b =	.15,	σb =	1,	w = 2
49.64 133	(120,	147) p0a =	.05,	σa =	1.5

p0b =	.1,	σb =	0.5,	w = 3
46.81 121	(107,	136)
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biased	and	had	very	low	coverage	for	both	parameter	sets	with	the	
misspecified	HN	and	EX	models.

The	 EX	model	 overestimated	 home	 range	 size	 by	 up	 to	 170%	
(mean	RB	between	50%	and	170%)	and	coverage	probabilities	de-
creased	to	0	when	fitted	to	the	HN,	HNP,	DN,	or	BI	data.	The	only	
exception	was	the	AL	data	for	parameter	set	1,	where	relative	bias	
was	lower	(mean	RB	=	17%)	and	coverage	higher	(42%).

The	HN	model	also	overestimated	home	range	size,	but	to	a	 lesser	
extent	(mean	RB	between	21%	and	71%),	when	fitted	to	the	HNP,	DN,	or	
BI	data,	with	coverage	probabilities	between	0%	and	32%.	The	HN	model	
underestimated	home	range	size	when	fitted	to	the	EX	data	(mean	RB	of	
−25%	and	−22%	for	parameter	sets	1	and	2),	with	coverage	probabilities	
of	6%	and	38%	respectively.	The	pattern	was	also	different	for	the	AL	data,	

with	negative	bias	(mean	RB	=	−14%;	coverage	=	26%)	with	parameter	set	
1	and	positive	bias	with	parameter	set	2	(mean	RB	=	31%;	coverage	=	0%).

The	HNP	model	was	most	 forgiving	and	accommodated	HN,	
DN,	and	BI	data	(mean	RB	between	−7%	and	1%,	coverage	≥	88%).	
However,	home	range	size	was	underestimated	(mean	RB	=	−26%	
and	 −31%	 for	 parameter	 sets	 1	 and	 2,	 respectively)	 with	 low	
coverage	probability	 (≤	10%)	when	 fitted	 to	 the	EX	data.	Again,	
the	pattern	differed	 for	 the	AL	data	with	 a	negative	bias	 (mean	
RB	=	−15%;	coverage	=	26%)	with	parameter	set	1	and	a	small	pos-
itive	bias	with	parameter	set	2	(mean	RB	=	7%;	coverage	=	78%).

Conversely,	 when	 true	 space	 use	 pattern	 followed	 an	 EX	 or	
HNP	model,	we	observed	the	 largest	average	bias	 in	home	range	
size	 estimation	when	 the	 detection	 function	 in	 the	 fitted	model	

F I G U R E  3 Posterior	summaries	of	population	size	N	derived	using	spatial	capture–	recapture	in	parameter	set	1.	Results	compare	relative	
bias	(RB,	in	%),	coefficient	of	variation	(CV,	in	%),	and	95%	coverage	probability	(in	%)	for	different	pairings	of	simulated	and	fitted	detection	
functions.	Detection	functions	include	the	half-	normal	(HN),	exponential	(EX),	half-	normal	plateau	(HNP),	asymmetric	logistic	(AL),	donut	
(DN),	bimodal	(BI).	Violins	represent	the	distribution	of	RB/CV	from	50	simulations
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was	misspecified	(mean	RB	<	−22%	for	EX	and	>	21%	for	HNP,	see	
Table	S3	in	Appendix	S1).	When	true	space	use	patterns	followed	
DN	or	BI	models,	we	observed	moderate	bias	 in	home	range	size	
while	fitting	with	HN	or	EX	models	(mean	RB	>	23%	for	DN	and	> 
26%	for	BI),	but	home	range	size	was	estimated	with	negligible	bias	
when	fitting	with	HNP	model	(absolute	mean	RB	<	2%).

3.1.2  |  Population	size

We	detected	no	pronounced	effect	of	the	choice	of	detection	function	
(HN,	HNP,	EX)	on	relative	bias,	precision,	or	coverage	of	N	estimates,	

regardless	of	the	detection	function	used	for	simulation	(Figure	3	and	
Appendix	S2:	Figure	S3).	Average	RB	of	N	ranged	between	−2%	and	
2%	for	all	three	models	with	parameter	set	1	and	between	−2%	and	
3%	for	parameter	set	2.	Average	CV	were	also	comparable	for	all	mod-
els	(avg.	CV	=	5.3%	and	6.5%	for	parameter	set	1	and	2	respectively),	
and	coverage	exceeded	93%	for	all	scenarios.

3.2  |  Goodness- of- fit

Bayesian	p-	values	 for	 individual	or	detector-	level	counts	 (TFT- I	 and	
TFT- D)	 were	 centered	 on	 .5	 and	 highly	 dispersed,	 thus	 failing	 to	

F I G U R E  4 Posterior	summaries	of	home	range	area	derived	using	spatial	capture–	recapture	in	parameter	set	1.	Home	range	area	was	
estimated	as	the	95%	kernel	of	the	utilization	distribution	from	the	realization	of	detection	function	used	during	model	fitting.	Results	
compare	relative	bias	(RB,	in	%),	coefficient	of	variation	(CV,	in	%),	and	95%	coverage	probability	(in	%)	for	different	pairings	of	simulated	
and	fitted	detection	functions.	Detection	functions	include	the	half-	normal	(HN),	exponential	(EX),	half-	normal	plateau	(HNP),	asymmetric	
logistic	(AL),	donut	(DN),	and	bimodal	(BI).	Violins	represent	the	distribution	of	RB/CV	from	50	simulations
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reveal	 misspecifications.	 Bayesian	 p-	values	 based	 on	 individual-		
and	detector-	specific	detections	were	 less	centered	on	 .5	and	 less	
dispersed,	 thus	 more	 useful	 to	 detect	 potential	 misspecifications	
(Figure	6	and	Appendix	S2:	Figure	S4).	We	also	found	that	Bayesian	
p-	values	 p(FT)	 showed	 higher	 concentration	 around	 .5	 compared	
with p(χ2).

Both	p-	values	 showed	no	evidence	of	 lack	of	 fit	when	 the	 fit-
ted	model	matched	the	simulation.	Taking	both	parameter	sets	into	

account,	 average	 p(χ2)	 were	 .49	 (HN	model,	 CV	 19.9%),	 .51	 (HNP	
model,	 CV	 12.2%),	 .50	 (EX	 model,	 CV	 26%);	 and	 average	 p(FT)	
were	 .49	(HN	model,	CV	5.1%),	.49	(HNP	model,	CV	3.4%),	.50	(EX	
model,	CV	4.4%).

The	 most	 pronounced	 lack	 of	 fit	 was	 observed	 for	 the	 EX	
model	fitted	to	the	HN,	HNP,	DN,	or	BI	data	 (mean	p(χ2)	between	
.84	and	  .96,	mean	p(FT)	between	 .19	and	 .32	for	parameter	set	1,	
mean	p(χ2)	between	.7	and	.82,	mean	p(FT)	between	.26	and	.48	for	

F I G U R E  5 Comparison	of	estimated	detection	functions	(“red”	lines)	and	the	estimates	of	home	range	radius	(50%	and	95%	quantiles,	
“pink”	violins	representing	the	distribution	from	50	simulations)	with	the	“true”	detection	function	(“blue”	line)	and	“true”	home	range	radius	
(“cyan”	vertical	dashed	lines)	for	different	scenarios	in	parameter	set	1.	Rows	correspond	to	the	“true”	detection	function	used	to	simulate	
the	SCR	data	sets,	and	columns	represent	the	detection	function	used	to	fit	the	SCR	model.	Parameter	estimates	of	each	model	fitting	were	
used	to	estimate	the	fitted	detection	function	and	they	are	plotted	as	a	function	of	distance	in	arbitrary	distance	units

F I G U R E  6 Estimates	of	Bayesian	p-	values	from	different	metrics:	Freeman–	Tukey	(FT),	Pearson's	chi- squared,	FT	metric	based	on	
individual	level	count	(FT-	I),	and	FT	metric	based	on	detection	level	count	(FT-	D).	Graphs	compare	the	Bayesian	p-	value	estimates	between	
different	pairings	of	simulated	and	fitted	detection	functions	for	parameter	set	1.	Each	violin	represents	the	distribution	of	Bayesian	p- 
values	for	a	specified	metric	from	50	simulations
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parameter	set	2).	For	the	AL	data,	the	pattern	differed	between	pa-
rameter	set	1	(mean	p(χ2)	=	.32,	mean	p(FT)	=	.43)	and	parameter	set	
2	(mean	p(χ2)	=	.89,	mean	p(FT)	=	.48).

Mean	p(χ2)	were	>	.5	for	the	HN	model	fitted	to	the	HNP,	DN,	
and	BI	data	(mean	p(χ2)	between	.72	and	.79	for	parameter	set	1	and	
between	.59	and	.69	for	parameter	set	2).	As	mentioned	above,	the	
pattern	was	inverted	for	p(FT)	(mean	p(FT)	between	.31	and	.34	for	
parameter	set	1	and	between	.43	and	.47	for	parameter	set	2).	Mean	
p(χ2)	were	<	 .5,	 and	p(FT)	>	 .5	when	 fitted	 to	 the	EX	data	 (mean	
p(χ2)	=	.18	and	.35,	and	mean	p(FT)	=	.56	and	.52	for	parameter	sets	
1	and	2,	respectively).	When	fitted	to	the	AL	data,	the	pattern	was	
again	inverted	between	parameter	sets	1	and	2,	showing	evidence	
of	a	lack	of	fit	for	parameter	set	1	only	(mean	p(χ2)	=	.04	and	.67,	and	
mean	p(FT)	=	.71	and	.41	for	parameter	sets	1	and	2,	respectively).

Bayesian	 p-	values	 clustered	 around	 .5	 for	 the	 HNP	 model	
fitted	 to	 the	HN,	DN,	 and	BI	 data	 (mean	p(χ2)	 between	 .44	 and	
.52,	mean	p(FT)	between	.48	and	.51	across	parameter	sets).	The	
pattern	was	similar	to	the	HN	model	for	the	EX	data,	with	mean	
p(χ2)	=	 .21	and	  .36,	and	mean	p(FT)	=	 .56	and	.51	for	parameter	
sets	1	and	2,	respectively.	Results	for	the	AL	data	stood	out	again,	
with	a	marked	lack	of	fit	for	parameter	set	1	(mean	p(χ2)	=	.02	and	
mean	p(FT)	=	.74)	but	not	for	parameter	set	2	(mean	p(χ2)	=	.44	and	
mean	p(FT)	=	.50).

Spatial	capture–	recapture	data	sets	simulated	using	the	EX	and	
AL	detection	functions,	due	to	their	 longer	right	tails,	occasionally	
resulted	in	very	distant	detections	(>	9	du)	from	individual	ACs.	SCR	
models	with	HNP	and	HN	detection	models	have	difficulties	to	ac-
commodate	these	distant	detections.	This	is	reflected	in	the	poste-
rior	samples	of	detection	probability	for	these	detections,	being	of	
infinitesimal	magnitude	under	the	HNP	model	and	hence	minuscule	
Bayesian	p-	value	estimates	p(χ2).

4  |  DISCUSSION

Our	 study	 revealed	 that	 misspecifying	 the	 detection	 function	 in	
SCR	studies	can	have	potentially	severe	consequences	for	inference	
about	 animal	 space	 use.	 By	 contrast,	 and	 as	 previously	 reported,	
abundance/density	estimates	were	nearly	unaffected	(Efford,	2004;	
Royle	 et	 al.,	 2014;	 Russell	 et	 al.,	 2012).	 Fortunately,	misspecifica-
tions	with	the	strongest	 impact	on	space	use	parameter	estimates	
are	also	the	ones	most	readily	detectable	using	Bayesian	p-	values.	
We	also	found	that	some	detection	functions	are	better	able	to	ac-
commodate	 a	 variety	 of	 space	 use	 patterns	 than	 others,	with	 the	
half-	normal	 plateau	 and	 exponential	 function	 being	 the	most	 and	
least	flexible,	respectively.

4.1  |  Consequences of misspecification

All	misspecifications	 of	 the	 detection	 function	 led	 to	 pronounced	
bias	 in	home	range	area	estimates	with	the	most	common	EX	and	
HN	models.	Bias	was	especially	 severe	when	using	 a	misspecified	

EX	model	(>	50%	for	all	misspecifications,	except	for	AL	data	with	
parameter	set	1)	and,	to	a	 lesser	degree,	a	HN	model.	This	finding	
is	of	concern,	as	the	half-	normal	 is	by	far	the	most	used	detection	
function	 in	SCR	analyses	 (Royle	et	al.,	2014).	 It	 is	also	noteworthy	
that	a	simple	expansion	of	the	half-	normal,	the	half-	normal	plateau	
detection	function,	proved	to	be	the	most	accommodating,	due	to	
the	extra	parameter	(plateau	width)	which	provides	substantial	ad-
ditional	flexibility.

On	the	contrary,	and	despite	the	wide	range	of	space	use	pat-
terns	tested	(Figure	2),	we	found	little	effect	of	misspecifications	on	
the	 precision	 and	 accuracy	 of	 population	 size	 estimates.	 This	 cor-
roborates	findings	from	other	studies	that	tested	the	consequences	
of	misspecifying	the	detection	function	(Efford,	2004;	Efford	et	al.,	
2009;	 Russell	 et	 al.,	 2012).	 Recently,	 Efford	 (2019)	 showed	 with	
simulations	that	SCR	estimates	of	population	size	are	also	robust	to	
some	violations	of	the	assumption	of	circularity	of	home	ranges.	In	
another	study,	Sutherland	et	al.	(2015)	had	shown	that	accurate	esti-
mation	of	population	size	and	home	range	geometry	is	possible	using	
an	ecological	distance	SCR	model	(instead	of	Euclidean	distance)	by	
explicitly	modeling	the	species–	landscape	interactions	when	space	
use	is	not	symmetrical.

In	empirical	applications,	a	misspecified	detection	function	may	
also	have	indirect	consequences	for	SCR-	based	inferences	if	it	leads	
to	a	smaller	than	required	habitat	buffer	around	the	detector	area.	
In	populations	that	are	geographically	open	beyond	the	study	area,	
the	size	of	the	buffer	is	usually	chosen	to	ensure	virtually	zero	prob-
ability	 of	 detecting	 individuals	with	ACs	outside	 the	buffer.	 If	 the	
fitted	detection	 function,	 also	used	 for	determining	what	 this	dis-
tance	shall	be	(e.g.,	3.5–	4	times	σ	of	the	HN	function,	Royle	et	al.,	
2014)	does	not	match	the	true	process	generating	detections	(e.g.,	
EX	function,	which	has	a	longer	tail),	population	size	estimates	may	
be	biased.

4.2  |  Goodness- of- fit

We	 found	 that	misspecifications	of	 the	detection	 function	 can	be	
challenging	to	detect	using	Bayesian	p-	values.	Among	the	four	met-
rics	used,	only	the	FT	and	Pearson's	chi- squared	were	able	to	reveal	
some	misspecifications.	We	 found	 a	 positive	 correlation	 between	
the	 RB	 and	 p(χ2),	 meaning	 that	 a	 model	 with	 a	 Bayesian	 p-	value	
>	  .5	is	 likely	to	overestimate	home	range	area,	while	a	model	with	
a	Bayesian	p-	value	<	 .5	 is	 likely	 to	underestimate	 it	 (Appendix	S2:	
Figure	S6).	For	example,	under	parameter	set	1,	HN	models	 fitted	
to	HNP	data	led	to	a	mean	p(χ2)	of	.78	(with	2.5%	and	97.5%	quan-
tiles	 as	 0.67,	 0.88	 respectively)	 and	 to	 overestimated	 home	 range	
size	estimates	 (21%	average	relative	bias	with	0%	coverage	prob.).	
Conversely,	 HN	 models	 fitted	 to	 AL	 data	 underestimated	 home	
range	size	(−14%	average	relative	bias	with	26%	coverage	prob.)	and	
had	a	mean	p(χ2)	of	.04	(with	2.5%	and	97.5%	quantiles	at	0	and	0.3;	
Figure	6).

Goodness-	of-	fit	 tests	 are	 aimed	 at	 identifying	 models	 with	
a	 poor	 fit.	 Using	 the	 recommended	 guidelines,	 that	 is,	 Bayesian	
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p-	values	falling	outside	the	interval	(.1,	.9)	indicate	a	lack	of	fit	(men-
tioned	 in	 Section	2.7	 and	 also	 in	Royle	 et	 al.,	 2014),	 the	Bayesian	
p-	values	tested	here	would	have	failed	to	reveal	most	misspecifica-
tions,	especially	those	based	on	the	Freeman–	Tukey	metric.	Indeed,	
our	simulations	showed	that	even	p-	values	between	.20	and	.80	do	
not	guarantee	that	the	detection	function	is	correctly	specified	and	
that	home	range	size	estimates	are	free	from	bias.	For	instance,	we	
obtained	p(χ2)	of	.78	and	21%	relative	bias	in	95%	home	range	size	
estimate	for	a	HN	model	fitted	to	HNP	data	under	parameter	set	1,	
which	illustrates	the	lack	of	power	of	the	Bayesian	p-	values	tested	
here.

Nonetheless,	the	most	problematic	misspecifications	could	still	
be	 identified.	For	 instance,	 in	cases	 leading	to	 the	highest	 relative	
bias	 and	 lowest	 coverage	 probabilities	 (e.g.,	 when	 fitting	 an	 EX	
model	to	data	generated	under	another	space	use	model),	Bayesian	
p-	values	were	furthest	from	.5	and	thus	effective	in	identifying	the	
lack	of	fit	(Appendix	S2:	Figures	S6	and	S7).

Further,	 Bayesian	 p-	values	 performed	 substantially	 worse	 for	
parameter	set	2	 than	for	parameter	set	1	as	none	of	 the	misspec-
ifications	were	 identified	even	 though	home	 range	area	estimates	
showed	moderate	to	severe	bias.	For	example,	under	parameter	set	
2,	mean	relative	bias	of	95%	home	range	size	estimate	was	higher	
than	 100%	 for	 a	 EX	 model	 fitted	 to	 AL	 or	 BI	 data,	 even	 though	
Bayesian	p-	value	in	both	cases	was	within	the	recommended	inter-
val	 (.1,	 .9).	The	 lower	number	of	detections	 in	parameter	set	2	 is	a	
likely	explanation	for	this	lack	of	power	of	Bayesian	p-	value.

Practitioners	 should	 choose	 the	 Bayesian	 p-	value	 discrepancy	
metric	 with	 caution.	 As	 we	 have	 shown,	 different	 metrics	 per-
form	 differently.	 The	 FT	metric	with	 variance	 stabilizing	 property	
was	 overly	 optimistic	 in	 assessing	GOF	 and	 showed	 high	 concen-
tration	 around	 .5,	 even	 in	 cases	of	 severe	model	misspecification.	
The	pooled	version	of	the	discrepancy	metrics	(e.g.,	FT-	I	and	FT-	D)	
showed	extremely	high	variance	(Figure	6),	and	although	they	might	
be	useful	to	identify	other	sources	of	lack	of	fit	(Royle	et	al.,	2014),	
they	did	not	reveal	misspecifications	of	the	detection	function	in	our	
study.	Appropriate	GOF	metrics	 should	 be	 chosen	 based	 on	 their	
ability	to	detect	certain	misspecifications,	 instead	of	selecting	and	
reporting	those	metrics	that	indicate	a	good	fit	(Head	et	al.,	2015).

4.3  |  Recommendations

Based	on	our	simulation	study,	we	can	make	recommendations	for	
SCR	users	regarding	the	choice	of	a	detection	function.	First,	density	
and	population	 size	 estimates	 are	 largely	 immune	 to	misspecifica-
tions	of	the	detection	function.	However,	 if	the	goal	is	to	estimate	
space	use	(e.g.,	home	range	size),	SCR	users	need	to	be	more	cau-
tious.	 If	the	SCR	detection	function	does	not	match	the	space	use	
pattern	of	the	species	under	study,	SCR-	based	home	range	sizes	are	
likely	to	be	biased.	This	finding	may	partially	explain	the	discrepancy	
between	estimates	of	home	range	size	obtained	from	SCR	and	col-
lared	individuals	 in	previous	studies	(Bischof,	Milleret,	et	al.,	2020;	
Harmsen	et	al.,	2020).

Bayesian	 p-	values	 near	 0	 or	 1	 are	 indicative	 a	 lack	 of	 fit	 and	
possible	 violation	 in	 underlying	 model	 assumptions.	 Furthermore,	
Bayesian	p-	values	can	help	reveal	the	direction	of	bias	in	home	range	
size	resulting	from	a	misspecification,	as	we	found	a	positive	correla-
tion	between	the	relative	bias	in	home	range	size	and	the	Bayesian	
p-	values	used	in	our	study.	However,	p-	values	close	to	the	nominal	
value	(.5,	Stern	&	Cressie,	2000)	do	not	necessarily	indicate	good	fit.	
As	a	consequence,	relying	solely	on	Bayesian	p-	values	to	diagnose	
model	misspecification	 is	 too	optimistic	and	we	urge	 the	develop-
ment	of	additional	diagnostic	tools.

Testing	SCR	models’	goodness-	of-	fit	is	a	key	step	toward	reporting	
valid	statistical	 inference	and	should	be	a	precursor	 to	model	selec-
tion.	Although	it	can	often	be	impractical	to	fit	alternative	models,	it	
is	imperative	to	validate	model	adequacy	using	goodness-	of-	fit	tests.	
When	feasible,	we	recommend	fitting	multiple	SCR	models	with	dif-
ferent	 detection	 functions,	 computing	 associated	Bayesian	p-	values	
and	also	comparing	their	home	range	size	estimates.	Although	relative	
bias	 and	 coverage	probability	 cannot	 be	 assessed	when	models	 are	
fitted	to	empirical	data,	Bayesian	p-	values	can	potentially	reveal	which	
of	the	fitted	models	are	inadequate.

Our	 results	 suggest	 that	 the	 highest	 risk	 of	 flawed	 inferences	
is	 associated	 with	 the	 exponential	 detection	 function.	 If	 feasible,	
we	 recommend	 using	 a	 flexible	 detection	 function	 which	 can	 ac-
commodate	a	variety	of	home	range	shapes.	In	our	study,	we	have	
found	the	half-	normal	plateau	(HNP)	detection	function	to	be	flex-
ible	enough	 to	 fit	most	home	range	shapes	 tested	here.	However,	
fitting	the	HNP	detection	function	comes	at	the	cost	of	estimating	
an	additional	parameter	w	 and	has	proved	 to	be	more	challenging	
to	fit	than	the	simpler	half-	normal	or	exponential	functions.	Finally,	
alternative	sources	of	information,	such	as	telemetry	data,	may	allow	
independent	estimation	of	individual	space	use	pattern	in	the	study	
population	(Royle,	Chandler,	Sun,	et	al.,	2013)	and	inform	the	choice	
of	detection	function.

5  |  CONCLUSIONS

Although	initially	developed	with	the	intent	to	provide	spatially	ref-
erenced	estimates	of	population	size	(Efford,	2004),	SCR	is	increas-
ingly	 being	 used	 to	 estimate	 other	 ecological	 parameters	 that	 are	
sought	 after	 in	 wildlife	 management	 and	 conservation	 (Chandler	
et	 al.,	 2018;	 Ergon	 &	 Gardner,	 2014).	 SCR	 holds	 particular	 prom-
ise	 for	 addressing	 spatial	 ecological	 questions	 at	 the	 population	
level	with	direct	 relevance	for	 the	monitoring	and	management	of	
wide	ranging	populations	 (Bischof	et	al.,	2017;	Morin	et	al.,	2017).	
Whereas	 SCR-	based	 population	 size	 and	 density	 estimates	 have	
proven	 to	be	 remarkably	 robust	 to	misspecifications	of	 the	detec-
tion	 function,	 repercussions	can	be	severe	when	 inferences	about	
space	use,	 for	example,	home	 range	 size,	 are	 sought.	GOF	 testing	
should	be	an	integral	part	of	data	analysis,	especially	when	results	
have	the	potential	to	inform	policy,	and	we	urge	for	developing	cus-
tom	model	checking	 tools	 to	diagnose	additional	misspecifications	
of	SCR	models.
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