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Abstract 

Background: Vascular calcification is a closely linked to cardiovascular diseases, such as atherosclerosis, chronic 
kidney disease, diabetes,  hypertension and aging. The extent of vascular calcification is closely correlate with adverse 
clinical events and cardiovascular all‑cause mortality. The role of autophagy in vascular calcification is complex with 
many mechanistic unknowns.

Methods: In this review, we analyze the current known mechanisms of autophagy in vascular calcification and dis‑
cuss the theoretical advantages of targeting autophagy as an intervention against vascular calcification.

Results: Here we summarize the functional link between vascular calcification and autophagy in both animal models 
of and human cardiovascular disease. Firstly, autophagy can reduce calcification by inhibiting the osteogenic dif‑
ferentiation of VSMCs related to ANCR, ERα, β‑catenin, HIF‑1a/PDK4, p62, miR‑30b, BECN1, mTOR, SOX9, GHSR/ERK, 
and AMPK signaling. Conversely, autophagy can induce osteoblast differentiation and calcification as mediated by 
CREB, degradation of elastin, and lncRNA H19 and DUSP5 mediated ERK signaling. Secondly, autophagy also links 
apoptosis and vascular calcification through AMPK/mTOR/ULK1, Wnt/β‑catenin and GAS6/AXL synthesis, as apoptotic 
cells become the nidus for calcium‑phosphate crystal deposition. The failure of mitophagy can activate Drp1, BNIP3, 
and NR4A1/DNA‑PKcs/p53 mediated intrinsic apoptotic pathways, which have been closely linked to the formation 
of vascular calcification. Additionally, autophagy also plays a role in osteogenesis by regulating vascular calcification, 
which in turn regulates expression of proteins related to bone development, such as osteocalcin, osteonectin, etc. 
and regulated by mTOR, EphrinB2 and RhoA. Furthermore, autophagy also promotes vitamin K2‑induced MC3T3 E1 
osteoblast differentiation and FGFR4/FGF18‑ and JNK/complex VPS34–beclin‑1‑related bone mineralization via vascu‑
lar calcification.

Conclusion: The interaction between autophagy and vascular calcification are complicated, with their interaction 
affected by the disease process, anatomical location, and the surrounding microenvironment. Autophagy activation 
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Introduction
Regarded as a common pathological manifestation of 
patients with atherosclerosis, chronic kidney disease 
(CKD), diabetes, hypertension, postmenopausal syn-
drome, aortic stenosis [1–3] and the aging population 
[4], vascular calcification (VC) significantly correlated 
with cardiovascular and all-cause mortality, via deleteri-
ous mechanical effects on vascular compliance and vas-
omotion [5, 6]. Pathological abnormalities of VC may 
cause further adverse cardiovascular events and even 
induce death. The importance of VC to human health has 
attracted more attention, but the molecular mechanism 
of VC is under further investigation.

As a fundamental process for degradation and recy-
cling of exhausted cellular components prevalent in 
eukaryotes, autophagy has recently been recognized in 
various physiological and pathological events, which 
presents a unique mechanism of self-regulating/cleaning 
[7–9]. Briefly, as a survival mechanism within an intracel-
lular degradation system, autophagy process is composed 
of numerous chronological steps including sequestra-
tion, transport to lysosomes, degradation of cytoplasmic 
components, and utilization of degradation products. 
This self-degradative process tightly associates with both 
physiological and pathological status within normal 
embryonic and postnatal development in the behaviors 
of microautophagy, macroautophagy, chaperone-medi-
ated autophagy and other new discovered manners [10].

The autophagic mechanism tightly associates with 
critical signaling pathways including PI3K/AKT, MAPK/
Erk1/2, mTOR, AMPK, p53, HIF-1α/PDK4, β-catenin, 
ULK and Atg involved in regulation of the cellular 
autophagy [11, 12]. It has been intensely understood that 
autophagy functions in the cardiovascular diseases [13, 
14], and the autophagic phenotype associated to vascular 
smooth muscle linking to steogenic differentiation [15], 
apoptosis [16], inflammation [17], Fibroblast Growth 
Factor 23 (FGF23)-Klotho [17, 18], Matrix Vesicle (MV) 
release [19], and oxidative stress [20] physiological or 
pathological conditions.

In both tumorigenesis and cardiovascular pathology, 
calcium  (Ca2+) is considerate to be an essential constitu-
ent vital to the healthy physiology and disease pathology 
of both tumor cells and myocytes [21–24]. In regula-
tion of cellular proliferation and apoptotic death, AKT/

AMPK pathway control the cell cycle by targeting on 
critical point of G2/S transition functioning along with 
Ras and Cyclin D1. With involvement of autophagic pro-
teins including Beclin, LC3-1 and LC3-II, up-regulations 
of AMPK, phospholated pAKT and pmTOR powerfully 
link Akt/mTOR associated autophagy to osteogenic dif-
ferentiation of human mesenchymal stem cells [25].

Recently, it confirmed that the VC process accompa-
nies on expression alternation of vascular smooth muscle 
cells (VSMCs) contractile phenotype-related factors such 
as α-SMA, calponin-1, SM22α and others along with the 
imbalance of a variety of calcification promoting factors 
including ALP, Runx2, BMPs, OCN, Collagen I and their 
inhibitors [26, 27]. Osteoblasts derived from VSMCs 
and mesenchymal stromal cells (MSCs) are regulated by 
autophagy [28, 29] and promotes transition of calcifica-
tion signals for mineralization in the vessel wall of the 
vascular structure [30–32]. Autophagy within the physi-
ological range functions protective effect but pathologic 
autophagy generates excessively or less activation. In this 
paper, we elucidate that the clarification on the mecha-
nism of autophagy regulated VC would provide valuable 
information for developing diagnostic strategy and anti-
VC drug design targeting on autophagy.

Autophagy affects vascular calcification 
by interfering with the osteogenic differentiation 
of VSMCs
As defined as an active, highly controllable mineral dep-
osition process, the pathological changes of VC involve 
intima and middle layer of blood vessels, mainly VSMCs 
included in vessels-wall structure [33]. In the VC process, 
VSMCs transform from contractile phenotype to osteo-
genic/chondral phenotype directly or through synthetic 
inter-type [15]. Currently known related signaling path-
ways include ERα, β-catenin, HIF-1a/PDK4, p62, miR-
30b, BECN1, mTOR, SOX9, GHSR/ERK, AMPK, Elastin 
[34–39]. The definite mechanism of osteoblastic differen-
tiation of VSMCs is critical for vascular calcification.

Autophagy reduces calcification by inhibiting 
the osteogenic differentiation of VSMCs
Liang, et  al. proved that long non-coding RNA-ANCR 
promoted the expression of LC3 and Atg5 in 
β-GP-induced VSMCs, and inhibited osteoblastic 

in existent cellular damage is considered protective, while defective autophagy in normal cells result in apoptotic acti‑
vation. Identifying and maintaining cells at the delicate line between these two states may hold the key to reducing 
vascular calcification, in which autophagy associated clinical strategy could be developed.

Keywords: Vascular calcification, Autophagy/mitophagy, Osteoblastic differentiation of VSMCs, Osteogenesis, AMPK/
mTOR, HIF‑1a/PDK4, EphrinB2, GAS6/AXL
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differentiation of VSMCs. The ANCR may attenuate 
arterial calcification through activating autophagy that 
inhibits osteogenic differentiation of VSMCs [40]. The 
autophagy inhibitor 3-MA or knockout of Atg5 increased 
calcium deposition, whereas the autophagy inducer val-
proic acid reduced VSMC calcification [31]. Yuan and 
colleagues approved that oestrogen inhibited the osteo-
blastic differentiation of VSMCs by promoting autophagy 
through the ERα but not ERβ signaling pathway [34].

Statins display various protective effects against 
VSMC proliferation and inflammation in cardiovas-
cular remodeling [41] and inhibit calcification of ath-
erosclerotic plaques in the apoE-deficient mice [42]. 
Results from clinical trials suggest an association of 
statins usage with slow progression of calcific aor-
tic stenosis, and coronary artery calcification [43, 44]. 
Liu and colleagues found inhibitory effect of atorvas-
tatin on calcification is caused by inducing autophagy 
by using 3-MA, chloroquine,  NH4Cl and bafilomycin 

A1. Their data approved that atorvastatin can protect 
VSMC differentiation from TGF-β1-stimulated calcifi-
cation through suppression of β-catenin pathway [35]. 
Their data are consistent with the recently results that 
atorvastatin could reduce arterial calcification and 
plasma calcium concentration [45] (Fig. 1).

Recently, it is approved that AGEs could increase 
alkaline phosphatase (ALP) and accelerate the calcifi-
cation of VSMCs [46]. AGE-BSA treatment on VSMCs 
improved the expression of PDK4 via HIF-1α upregu-
lation. The AGE-BSA incubation promoted expression 
increase of LC3-II and decrease of p62 protein levels. 
The treatment could enhance autophagic flux mediated 
by mRFP-GFP-LC3 adenovirus, make co-localization 
of LC3-II and LAMP-1, and eventually augmenter the 
number of autophagosome under TEM. HIF-1a/PDK4 
pathway was activated in the process of AGEs-induced 
autophagy of VSMCs, which reduced the expression 
of the Runt-related transcription factor (RUNX2) and 

Fig. 1 Signaling molecules linking autophagy to vascular calcification. A Autophagy affects VC by interfering with the osteogenic differentiation of 
VSMCs. B Autophagy may affect VC by inhibiting apoptosis. C VC is a tightly cell‑regulated pathological process that resembles osteogenesis. D The 
effect of autophagy regulation in stem cells on VC. E MV involved in autophagy regulation of VC
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presented protective effects against VC induced by 
AGEs [36].

Some miRNAs are implicated in proliferation, devel-
opment, and function of VSMCs, and directly involved 
in pathological calcification [47]. miR-30b regulates the 
Runx2 expression and plays an important role in VC 
as a common feature in patients with CKD [48]. More 
studies have highlighted the central role of miR-30b in 
high Pi level-induced autophagy via the regulation of 
BECN1, which suggested miR-30b as possible target for 
the treatment of vascular diseases [49]. Li, et al.clarified 
that restoring miR-30b can promote autophagy while 
inhibiting VC by modulating mTOR signaling pathway 
in β‐glycerophosphate induced VSMCs. miR‐30b nega-
tive regulates SOX9 while restoring miR‐30b in cell can 
increase the mitochondrial membrane potential (MMP) 
in β‐glycerophosphate‐induced VSMCs [37].

Hormonal ghrelin prevents osteoblastic transformation 
and mineralization of VSMCs mediated by GHSR/ERK 
signaling pathway [38]. Ghrelin application increases the 
expression of LC3 and beclin1 indicated autophagy, while 
3-MA delays the ameliorative effect of ghrelin on VC. The 
protein levels of p-AMPK are promoted by the hormonal 
treatment, and AMPK inhibitor, compound C blocks the 
effect of ghrelin on VC and autophagy. In animal model, 
the hormone promotes autophagy in VC aorta and acti-
vates AMPK pathway meanwhile. Improved autophagy 
was detected following the activation of AMPK, which 
resulted in VC amelioration [50].

Autophagy can promote the osteogenic differentiation 
of VSMCs within diverse circumstances
The co-relationship between calcification and autophagy 
indicates that autophagy is one target for inhibition of 
VSMC calcification. Different from the inhibitory effect 
of autophagy on the osteogenic trans-differentiation of 
VSMCs, indoxyl sulfate stimulates the autophagy path-
way through downregulating the expression of SET 
domain encompassing lysine methyltransferase 7/9. Sub-
sequently, it can induce osteoblast differentiation and 
matrix mineralization of VSMCs [51] (Table 1).

Low dietary potassium can induce elevation of intra-
cellular calcium, activate intracellular calcium signaling-
mediated CREB and autophagy, and further promote 
VSMC osteoblast differentiation and calcification [52]. 
The occurrence and development of VC symptom caused 
by autophagy were linked to autophagy-induced degrada-
tion of elastin [39].

Interestingly, in osteogenic differentiation of VSMCs, 
autophagy can play an opposite role within diverse cir-
cumstances. Besides the above, two independent teams 
approved that IV application of astragaloside effectively 
inhibit autophagy and mineralization in VSMCs, in 

which the inhibition is accomplished within the involve-
ments of the ERK signaling pathway mediated by lncRNA 
H19 and DUSP5 [53] and mainly associated with mes-
enchymal stromal cells (MSCs) [25]. The biological cir-
cumstances on osteogenic differentiation left a critical 
challenge for drug design when developing anti-VC tar-
geting autophagy pathway.

Autophagy affects vascular calcification 
by inhibiting apoptosis
It was proved that apoptotic cells can compose a nidus 
for the deposition of calcium-phosphate crystals [54]. 
The studies that apoptotic bodies form a nidus to nucle-
ate apatite from dying VSMC [16] reflect the importance 
of VC promoted apoptosis, which indicated a possible 
mechanisms initiating the VSMC calcification process 
[55].

Autophagy inhibits apoptosis and vascular calcification
Many works linked apoptosis and VSMC calcification 
in both human sample and animal models. For instance, 
massive apoptotic cell death found in both human and 
animal atherosclerotic plaques [56], suggests that apop-
tosis could promote calcification of providing matrix 
through the release of apoptotic bodies in nidus along 
with nucleation sites of VC. In calcification model of 
uremia, apoptosis is positively detected with calcifica-
tion of VSMCs, which always occurs before calcification. 
The observation exhibited that in which apoptotic bodies 
were normally found to encompass with high concentra-
tions of calcium by accumulating on extracellular matrix 
(ECM), and eventually leading to calcification [57].

In hyperphosphate-induced VC, inhibition of calcium 
aggradation can be attained by inhibiting apoptosis and 
potentiating autophagy and many hormonal molecules 
exhibits their critical roles [58–61]. Melatonin protected 
VSMCs against apoptosis and attenuated β-GP-induced 
VSMC calcification via autophagy stimulation associ-
ated to an AMPK/mTOR/ULK1 signaling pathway [59]. 
Bavachin suppresses apoptosis and calcification effects 
in HASMCs. Mechanism of the above hormonal effect is 
dependent on Atg7/mTOR-mediated autophagy pathway 
and suppression of Wnt/β-catenin signaling [60]. Coz-
zolino group also claimed the related role of autophagy 
and apoptosis in the iron citrate preventing calcium 
deposition in high Pi-calcified VSMC associated with an 
iron-induced positive modulation of GAS6/AXL synthe-
sis. They demonstrated that iron citrate arrests further 
high Pi-induced calcium deposition through an anti-
apoptotic action and induction of autophagy on estab-
lished calcified VSMC [61].

While a different in  vitro model was established to 
delay high phosphate-induced VC progression, the group 
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treated rat aortic VSMCs with high Pi in a repeated and 
short suspensions of high Pi treatment (intermittent sus-
pension, IS). The treatment generates significant inhibi-
tion on high Pi calcification. Their data further approved 
that the inhibition on apoptosis is carried out through 
the preservation of AXL protein levels [62] and enhanced 
autophagy plays a protective role in arterial calcification 
through inhibiting apoptosis.

Mitophagy partially reverse mitochondrial disorder 
of vascular calcification
After mitochondrial toxicity is induced, the damaged 
mitochondria will be wrapped in a double-layer mem-
brane structure to form autophagosomes, which are 
further degraded by lysosomes, otherwise the intrinsic 
apoptotic pathways will be activated. Its on-site accumu-
lation promotes crystallization as nucleation of calcium 
phosphate crystals for further VC plaques [63]. Other 
data demonstrated that lactate impaired mitochondrial 
function inducing oxidative stress and apoptosis during 
VSMC calcification.

The Drp1-related mitochondrial fission promoted 
by lactate through NR4A1 upregulation, while NR4A1 
suppressed the autophagic flux and BNIP3-mediated 
mitophagy, which were by p53 regulated phosphoryla-
tion. The regulation of Drp1 and BNIP3 is further related 
to the NR4A1/DNA-PKcs/p53 pathway in the pathologi-
cal plaques [64]. BNIP3-mediated mitophagy could par-
tially reverse mitochondrial disorder, excessive oxidative 
stress and enhanced apoptosis, which plays a protective 
role against VSMC calcification in the presence of lactate 
[65]. This phenomenon suggests that, to some extent, 
autophagy/mitophagy can avert the activation of apop-
totic pathways by the removal of damaged mitochondria 
[66].

As two critical catabolic processes that assist preserve 
cell and tissue homeostasis [67, 68], autophagy and apop-
tosis are highly related in deciding cell fate. Apoptosis 
stringently related to autophagy could be considered 
the result of the failure of autophagy to re-establish a 
physiological balance for the cells involving in survival. 
Autophagy can promote cell survival, but under certain 
conditions, autophagy also protected cells from necrosis 
via promoting apoptosis. The autophagy played a role in 
either promoting apoptosis or inhibiting apoptosis [68]. 
Therefore, the precarious issue is how to determine the 
range of moderate and appropriate mitophagy for VC.

VC associated osteogenic resembling and cellular 
pathological autophagy
The normal distribution where calcium is mineralized 
in the human body are bones and teeth meanwhile it 
becomes VC when calcium is excessively deposited on 

the blood vessel wall [28]. In the process of VC, the cells 
within vascular wall are transformed into an osteoblast-
like phenotype, and begin to synthesize and secrete a vari-
ety of proteins related to bone formation, such as ALP, 
bone morphogenetic protein (BMP), osteopontin (OPN), 
osteonectin, osteocalcin, etc. [69]. Calcium nodules are 
formed in the extracellular matrix or cytoplasm of these 
cells, which are tightly associated with non-bone osteo-
genesis or autophagy related mineral resembling [70].

Vascular calcification and osteoporosis
While VC patients with high risk are often accompanied 
with osteoporosis, Matrix Gla protein (MGP) and osteo-
calcin are important factors for their regulation. The nor-
mal calcium balance in the human body guarantees the 
amount of calcium required in bones and teeth, but not 
abnormal calcium deposition in other locations such as 
blood vessels and internal organs [71]. When this cal-
cium associated metabolism is disturbed, it will lead to 
a series of diseases, such as osteoporosis due to excessive 
loss of calcium in the bones, and dominant gain of cal-
cium on the blood vessel wall.

VC often occurs simultaneously with low bone mineral 
density or poor bone turnover [72]. In general considera-
tion, the balance and metabolism of calcium are closely 
related to vitamin K2, vitamin D3, MGP and osteocalcin 
[73]. The study of VC mechanism often involves changes 
in the expression of proteins related to bone develop-
ment, such as OPG/RANK, OPN, MGP, BMP, etc. [69], 
in which the proteins plus blood calcium are cellular and 
mechanically resembled bone tissue architecture dur-
ing osteogenesis. This bone-like structure formation is 
based on the structure and scaffold of blood vessels, and 
depending on osteoblasts differentiated from angiogenic 
pericytes or blood-borne mesenchymal cells surrounding 
the vasculature [74]. Up to date, many factors regulating 
bone mineralization are proved in calcified plaques [75, 
76].

Autophagy exhibits variable effects in the metabolism 
of bone tissue and vessel
Property of autophagic recycling damaged orga-
nelles is highly related to bone metabolism during the 
dynamic synthesis and degradation process in bone [77]. 
Autophagy can display variable effects in the calcifica-
tion of chondrocytes/osteocytes. Then, AdipoRon can 
activate autophagy of Osteoarthritis (OA) chondrocytes 
through the AMPK mTOR pathway, and as well improve 
autophagy contribution to suppress calcification in OA 
chondrocytes [78].

Using osteocyte differentiation approach, Vrahnas 
and colleagues collected data within in vitro system on 
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murine stromal cell lines, Ocy454 cells and Kusa 4b10 
cells compared to Dmp1Cre mice (Tg(Dmp1Cre)1Jqfe) 
and EphrinB2-floxed  (Efnb2tm1And) mice. The data 
exhibited that significant mineral deposition in Dmp-
1Cre.Efnb2f/f bone along with massive increase of 
autophagosomes [79] and EphrinB2 deletion in osteo-
cytes generated defected mice with brittle bones. Their 
result approved that Osteocytic EphrinB2 could lim-
its autophagy through RhoA, which could be respon-
sible for limiting mineral accumulation and carbonate 
substitution within the bioapatite matrix and restrain-
ing collagen fiber compaction [79]. Subsequently, fur-
ther investigations unveiled that EphrinB2 deficiency 
in bones dysregulated many genes including Fam134b 
[80], Fbxo32 [81], Lama2 [82], Bnip3 [83], Peg3 [84], 
Eps8l1 [85], Klf1 [86], Tspo2 [87], and Unc5a [88], which 
is specifically related to a series of autophagy processes, 
including mitophagy and ER-phagy.

Recently, a study claimed that autophagy plays a criti-
cal role in promoting vascular calcification within osteo-
blast differentiation and mineralization using vitamin 
K2-induced MC3T3 E1 cells [89]. During post-natal 
bone development, autophagy is induced in growth-plate 
chondrocytes during post-natal bone development via 
regulating the secretion of type II collagen (Col2). When 
FGFR4 and JNK-dependent activation, the autophagy ini-
tiated complex VPS34 and beclin-1 [90]. Therefore, on 
compression on how autophagy regulating VC, further 
investigations can plagiarize the above information from 
bone formation [80–88].

The effect of autophagy regulation in stem cells 
on vascular calcification
Because both VSMCs and osteoblasts are mesenchymal 
originated, many works focus on the mechanism of VC 
on the correlation with stem cells. Interestingly, as MSCs 
have a dual role as progenitors to osteoblasts and peri-
cytes further to develop to VSMC, some studies found 
that cells with MSC phenotype in the adventitia of arter-
ies are the major source of osteoblast-like cells in intimal 
and medial calcification [29]. The uremic milieu causes 
osteoblastic differentiation of MSC and calcification [91], 
indicating loss of vascular progenitor properties.

Recently, Carracedo and his colleagues discovered 
that initiated autophagy in calcific aortic valve steno-
sis (CAVS) confers protection of valvular interstitial 
cells (VICs). Their data suggest that the upregulation of 
autophagy observed in the calcified tissue of these valves 
serves as a compensatory and pro-survival mechanism 
to protect valves from calcification [92]. Their results 
are also supported by another result that VIC autophagy 
could prevent calcification via pro-osteogenic signaling 
[93]. Hegner and colleagues discovered that mTORC1 

and mTORC2 pathways show different regulatory roles 
in cell fate during the osteoblastic differentiation from 
MSCs. Furthermore, other studies demonstrated that 
blockade of autophagy can exacerbate calcification of 
differentiated MSC. Inhibition of AKT signaling or 
genetic depletion of mTORC2 abrogate the protective 
effect of rapamycin on MSC calcification. And enhanced 
mTORC2 signaling is sufficient in this protection effect 
from MSC against calcification [94]. Autophagy could be 
attributed a key role in the transition from undifferenti-
ated MSC to osteoblast-like calcifying cells.

In a recent report, a study shows that, in tendon-
derived stem cells (TDSCs), pioglitazone increased 
the ratio of LC3B/LC3A and decreased that of P62 
expression, and performed as an agonist to promote 
autophagy via modulation of the AMPK/mTOR path-
way. Pioglitazone treatment can induce autophagy flux 
in AGEs-treated TDSCs, which possesses anti-apoptosis, 
anti-senescence, and anti-ossification effects [95]. Based 
on the discussion above, targeting on differentiated pro-
genitor cells such as VSMC and osteoblast-like cells could 
maintain and resort the endogenously physiological MSC 
function. Enabling protective cell fate patterns in the 
MSC-pericyte-VSMC-continuum could be an innovative 
approach for treatment of VC.

MV involved in autophagy regulation of vascular 
calcification
As an effective approach based on recent investigation, 
MV can be transmitted among co-cultured cells through 
endocytosis and induced cell-cell communication. When 
extracellular MV exosomes containing low fetuin-A con-
tent were added to recipient VSMC, the calcification 
was increased upon these cells. The increase in calcium 
induced by cellular derived MV is partly attributable to 
the activation of NOX and MAPK (MEK1 and Erk1/2) 
signaling pathway [96].

MVs formed from VSMCs and macrophages under 
atherosclerotic conditions mainly, are calcified and 
released into the collagen-rich matrix within the intima 
of vessel [19, 97]. Macrophages indirectly promote min-
eral formation by producing the inflammatory cytokines 
while lipid oxidation products promote vascular cell 
mineralization. Xu, et al emphasized that autophagy 
would be an endogenous protective mechanism coun-
teracting VC under hyperphosphatemia. The autophagy 
inhibition leads to increased MV release rather than cell 
apoptosis, and the inhibition promoted Pi-induced MV 
release and increased ALP activity may be the cause of 
calcification [31]. Other study on the calcification of aor-
tic leaflets claimed that autophagy resulted in the release 
of MVs in early degenerative aortic valves, which attract 
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Table 2 Autophagy related proteins in human and their functions in vascular calcification

# Autophagy 
proteins involved

Functions in VC process PubMed ID Chromosome 
location/band

Transcript 
(bp)

CDS (bp) Peptides 
(AA)

References

1 LC3‑I transcript 
variant 1

Cysteine protease cleaved 
LC3 I from LC3 inhibits 
osteogenic differentiation 
of VSMCs

NM_032514 Chromo‑
some 20: 
34,546,854–
34,560,345 
forward 
strand; 
20q11.22

964 366 121 Peng et al. [28];

LC3‑I transcript 
variant 2

NM_181509 971 378 125 Zhang et al. [34];  
Song et al. [47];         

Xu et al. [90]

2 Atg5(Autophagy 
related 5)

Knocking down Atg5 
expression significantly 
upregulates β‑GP‑induced 
Runx2 expression and ALP 
activity along inhibition of 
osteogenic differentiation 
of VSMCs

JQ924061.1 Chromo‑
some 6: 
106,045,423–
106,325,791 
reverse 
strand; 6q21

828 828 275 Dai et al. [25]; 
Zhang et al. [34]

3 LC3‑II Along with enhancing 
autophagic flux, LC3‑II 
augmenter the number of 
autophagosome by reduc‑
ing the RUNX2 expression

NM_022818 Chromo‑
some 16: 
87,383,953–
87,404,779 
forward 
strand; 
16q24.2

2147 378 125 Peng et al. [28]; 
Yang et al. [30];           
Song et al. [47]; 

Xu et al. [90]

4 p62 (SQSTM1) By reducing the RUNX2 
expression, p62 augmenter 
the number of autophago‑
some

M88108 Chromo‑
some 5: 
179,806,398–
179,838,078 
forward 
strand; 
5q35.3

2685 1332 443 Yang et al. [30]

5 Beclin1 transcript 
variant 1

As an up‑regulator of 
autophagic pathway, bec‑
lin1 decreases expression of 
Runx2 and Msx2

NM_003766 Chromo‑
some 17: 
42,810,134–
42,833,350 
reverse 
strand; 
17q21.31

2131 1353 450 Xu et al. [31]; 
Wang et al. [43]NM_001313998 2109 1353 450

NM_001313999 1840 1068 355

6 Atg7 transcript 
variant 4

As an upstream autophagy‑
related gene of LC3, Atg7 
promotes the conversion of 
LC3‑I to LC3‑II and preven‑
tion of calcification

NM_001349232 Chromo‑
some 3: 
11,272,309–
11,557,665 
forward 
strand; 
3p25.3

5333 2112 703 He et al. [58]

Atg7 transcript 
variant 5

NM_001349233 5087 2112 703

Atg7 transcript 
variant 7

NM_001349235 5224 2112 703

7 VPS34 transcript 
variant 1

Forming VPS34–beclin‑1 com‑
plex for autophagy initiation 
and promoting vascular 
calcification

NM_002647 Chromo‑
some 18: 
41,955,234–
42,087,830 
forward 
strand; 
18q12.3

9415 2664 887 Cinque et al. [85]

VPS34 transcript 
variant 2

NM_001308020 9226 2475 824

inflammatory cells and triggered calcification of the 
valve [98, 99].

Depending on various induction signals, the origin 
and selected content in the MVs of autophagy promoted 
VSMC exocytosis are different [31, 32], and MVs are 

considered the first nidus for mineralization in the ves-
sel wall [30]. Therefore, as an effective hydroxyapatite 
mediator, the mechanism of MV autophagy release in the 
initiation and development of VC needs more detailed 
research.
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Current clinical trial involved with autophagy 
related treatment for VC
Autophagy related treatment have been used for halt-
ing many cancer development involved with autophagic 
pathways including in both animal models and human 
samples [100–103]. Strong potential drugs against 
diverse tumors were designed and applied as anti-cancer 
therapy. Autophagy-targeting drugs such as autophagy 
inhibitors Choloroquine and Bafilomycin A1 targeting 
on endosomal acidification, and 3-Methyladenine and 
LY294002 targeting PI3K pathway currently approved for 
use in the treatment of solid and non-solid malignancies 
[100]. However, up to date, only one drug SNF472 against 
autophagy recently were used on Phase 2 treatment for 
treatment against cardiovascular calcification in patients 
with actual strong positive results [103, 104].

As a derivative of phytic acid, SNF472 (hexaso-
dium salt of phytate) play a critical role as a poten-
tial treatment for Alzheimer’s disease targeting on 
autophagy- associated proteins (beclin-1 and LC3B) 
[105]. Currently, using SNF472 as a calcification 
inhibitor, a clinical Phase II CaLIPSO trial (EudraCT 
2016–002834–59) for the treatment of cardiovascular 
calcification is completed. Based on double-blind and 
placebo-controlled Phase II trial, computed tomog-
raphy scan unveiled that, in randomized three groups 
including SNF472 300 mg (n=92)/SNF472 600 mg 
(n=91)/or placebo control (n=91), two SNF472 dosages 
significantly slowed down of both the accumulation of 
coronary artery calcium and the development of aortic 
valve calcification [103, 104]. This favorable data high-
lights strong possibility to develop more practical and 
high efficient approach with other drugs targeting on 
the pathway of the molecular mechanism of autophagy 
in VC associated cardiovascular disorders.

With the above promising results, it would be rational 
to accomplish more clinical trials associated with 
autophagic proteins (Table  2) based on massive posi-
tive data obtained animal models. Providentially, along 
with endosomal acidification targeted and PI3K pathway 
targeted autophagy inhibitors, MAPK pathway associ-
ated inhibitors including SB202190 and SB203580 also 
be available for diverse VC related trials. The advantage 
should be employed in which many autophagy inhibitors 
are FDA approved drugs that can be used in other dis-
eases [100–102].

Conclusion and perspective
The maintenance of the normal structure of blood ves-
sels and the regulation of its functions are critical for 
circulation system which is tightly related to autophagy. 
Within a certain criteria, autophagy activation as a pro-
tective affection on VSMCs can promote cell survival, 

lead to enhanced cell proliferation, migration, and extra-
cellular matrix secretion, and reduce calcification. 
Removing cell debris such as misfolded proteins and 
dysfunctional organelles that can cause senescence and 
apoptosis, autophagy plays an important role in main-
taining the adaptability of juvenile cells [95]. Reversely, 
when autophagy is inhibited, lack of autophagy leads to 
accumulation of harmful substances in cells, cell aging, 
changes in vascular structure, vasomotor function 
becomes abnormal, and the increasing incidence of VC. 
When autophagy is beyond the scope of its beneficial 
effects and/or over-activated, cell and organelle damage 
within VSMCs could lead to the vascular calcification 
accompanying with triggering cell death, and further 
accelerating the occurrence of VC. Autophagy plays an 
intricate and often distinct role under various pathologi-
cal conditions.

The effects of autophagy on VC appears to be compli-
cated, which depend on degree of autophagy associated 
with disease status, location, and the surrounding micro-
environment. Autophagy activation in the presence of 
acute pathological damage is generally considered to be 
protective, resulting in degradation of dysfunctional cel-
lular components and maintenance of cell homeosta-
sis. Reversely, some chronic diseases induce sustained 
autophagy which may be detrimental, since defective 
autophagy can activate the apoptotic pathway, damage 
important organelles and cause cell apoptosis. In order 
to develop effective and unique approaches to slow down 
or eliminate VC targeting on VC-related autophagy, the 
functional and regulatory genes in osteogenesis includ-
ing the bone formation such as Fam134b, Klf1 and Bnip3, 
and the MSCs differentiation such as ALP, Runx2 and 
BMPs could be efficient candidates. The more intensive 
investigation on precise chick-point between these ben-
eficial function and apoptotic death occurred on vessel 
wall, would be critical in further study in this field.
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