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Abstract

Compressed fluorescence lifetime imaging (Compressed-FLIM) is a novel Snapshot com-

pressive imaging (SCI) method for single-shot widefield FLIM. This approach has the advan-

tages of high temporal resolution and deep frame sequences, allowing for the analysis of

FLIM signals that follow complex decay models. However, the precision of Compressed-

FLIM is limited by reconstruction algorithms. To improve the reconstruction accuracy of

Compressed-FLIM in dealing with large-scale FLIM problem, we developed a more effective

combined prior model 3DTGp V_net, based on the Plug and Play (PnP) framework. Exten-

sive numerical simulations indicate the proposed method eliminates reconstruction artifacts

caused by the Deep denoiser networks. Moreover, it improves the reconstructed accuracy

by around 4dB (peak signal-to-noise ratio; PSNR) over the state-of-the-art TV+FFDNet in

test data sets. We conducted the single-shot FLIM experiment with different Rhodamine

reagents and the results show that in practice, the proposed algorithm has promising recon-

struction performance and more negligible lifetime bias.

1. Introduction

Widefield fluorescence lifetime imaging (FLIM) is widely used in biomedical diagnostics and

flow quantitative measurements, such as cancer diagnosis and treatment monitoring [1, 2],

identifying species concentration from reactive-flow systems [3], and understanding the tran-

sient evolutionary behavior of eddies in highly turbulent flames [4]. Most of these examples

are non-repeatable transient events that demand a single-shot widefield measurement method.

However, performing high precision widefield lifetime measurements and quantitative analy-

ses have always been a significant challenge in this field.

The traditional widefield FLIM approaches, including time-correlated single-photon count-

ing (TCSPC) [5, 6], streak camera [7], and single-photon avalanche diode (SPAD) [8, 9] pos-

sess high temporal resolution. Nevertheless, they require repeated measurements to obtain the

widefield fluorescence lifetime. Recently, a snapshot compressive imaging (SCI) method,
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compressed ultrafast photography (CUP), has emerged as a potential solution for snapshot

widefield FLIM [10]. Compared to traditional methods, CUP is the only passive 2D technology

with picosecond to femtosecond time resolution, which can acquire complete 2D transient

processes within a snapshot.

The CUP system is a combination of the streak camera and compressive sensing methods.

The typical CUP process is to map 3D encoded data onto a 2D detection array, and then

restore the original information through compressed sensing algorithms. However, the data

reconstruction step of CUP is a complex task. Significantly, the reconstruction quality of the

image deteriorates rapidly with increasing sequence depth. To solve this issue, numerous algo-

rithms have been designed through the exploration of underlying sparsity structures. Plug and

Play(PnP) [11] is a typical SCI framework that allows the matching of flexible state-of-the-art

forward models with advanced priors or denoising models. On this basis, GAP-TV has become

a popular low memory and fast SCI algorithm that combines generalized alternating projec-

tion (GAP) and Total Variation (TV) [12]. Denoiser based on block similarity such as block-

matching and 3D filtering (BM3D) [13] and weighted nuclear norm minimization (WNNM)

[14] enjoy more effective sparsity representation than TV. However, these methods have high

computational complexity and often take several hours, while the TV algorithm only takes a

few minutes. As a result, BM3D and WNNM are rarely used in Compressed-FLIM, especially

when real-time imaging is required.

In contrast to conventional denoisers, Deep denoiser networks such as FFDNet [15] and

FastDVDnet [16, 17] resolve the common sparsity representation problem in local similarity

and motion compensation while enjoying fast computing speed. However, due to limited pri-

ors with the training sets, Deep denoiser networks are required to extract artifacts in the recon-

struction process, leading to confusing results. To take advantage of both the Deep denoiser

network and TV model, H. Qiu et al. proposed a combined denoiser TV+FFDNet and

achieved superior performance to previous algorithms [18].

Inspired by combined priors, we further explore a more effective combination of traditional

denoisers and Deep denoiser networks. In this paper, we devise a 3DTGp V denoiser by explor-

ing the underlying sparsity of signals in space-time and the superiority of the non-convex ℓp(0
<p< 1) norm in minimizing convergence. Meanwhile, by further combining the video

denoising network FastDVDnet, we develop a novel combination prior, named 3DTGp V_net.

We make various simulations based on the CUP framework and determine that the pro-

posed 3DTGp V_net prior offers a ~4dB improvement in peak signal-to-noise ratio (PSNR)

compared with the TV+FFDNet prior in runner test sets. Meanwhile, the reconstruction arti-

facts caused by Deep denoiser networks are successfully eliminated. Besides, we conduct a

widefield Compressed-FLIM experiment and obtain 70 consecutive high-resolution images

within a single snapshot. Compared with the lifetime bias of the reconstructed data with TV+-

FFDNet, our method provides higher lifetime evaluation accuracy.

2. Principle of compressed-FLIM

A schematic diagram of the compressed ultrafast photography-FLIM (Compressed-FLIM) is

illustrated in Fig 1. It comprises three parts: generation of widefield fluorescence signals, data

acquisition, and data reconstruction. Unlike the previous scheme [10], we use a transmissive

mask rather than the reflective a digital mirror device (DMD) as the spatial encoder.

2.1 Generation of widefield fluorescence signals

A 515nm femtosecond laser (200fs) beam passes a cylindrical lens into a laser sheet. The laser

sheet illuminates a Rhodamine water solution. Behind the Rhodamine solution, a 515nm filter
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is positioned to filter excitation light. The fluorescence signals pass through a pre-designed cir-

cular mask (M1) cut with a cross to highlight spatial recognition, generating shaped fluores-

cence signals. The diameter of M1 is 35mm.

2.2 Data acquisition

After passing through a lens, the shaped signals are divided into two beams by a beam splitter

(BS). One sub-signal is directly detected with an external charge-coupled device (CCD) image

sensor (Hamamatsu C11440). The other is spatially encoded through a binary mask M2 and

recorded by a Streak Camera (XIOPM 5200). The layout of M2 is a random pattern with a

pixel resolution of 250 × 250, and the size of a single-pixel is 20 × 20μm. To ensure entire imag-

ing of the targets, the slit of the Streak Camera is fully open (~5 mm), and the image plane of

the Streak Camera is adjusted at M2.

In the acquisition section of Streak Camera, the encoded signal undergoes photoelectric

conversion at the cathode, then the electric signals at different times are deflected by the slope

voltage to various positions on the fluorescent screen. Finally, photons are emitted and col-

lected by the internal CCD (512 × 512 binned pixels; 4 × 4 binning). The size of the binned pix-

els is 26 × 26 μm.

A DMD is the typical encoder in the CUP system. However, for weak fluorescence acquisi-

tion, the fixed binary mask [19] significantly improves the signal-to-noise ratio (SNR) by its

transmission characteristics. We randomly generated multiple groups of coding layouts

through MATLAB, and selected the best coding layout through simulation results. The signals

transmittance rate is ultimately set to 25%.

2.3 Data reconstruction

The fluorescence signals can be regarded as a data cube I(x, y, t). In the external CCD view, the

cube is directly integrated along the time direction, and the measured data from the CCD can

Fig 1. Schematic diagram of CUP-FLIM. M1: a pre-designed circular mask with a central cross; M2: the fixed binary mask; BS: beam splitter.

https://doi.org/10.1371/journal.pone.0271441.g001
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be expressed as Ec =
R
I(x, y, t)dt. From the perspective of Streak Camera, operator T carries

out spatial coding of the cube, and operator S executes the shearing of signals from the coding

cube to the tilted coding cube. Ultimately, the accumulation of tilted coding cubes along the

time direction is represented by operator C. The entire data acquisition process in Streak Cam-

era view can be described as Es = TSCI(x, y, t).
Data reconstruction is an ill-condition inverse process. Adding sparsity constraints to the

least-squares method realizes the stable reconstruction of the algorithm. The optimization

problem of CUP-FLIM can be expressed as:

argmin
I
k TSCI x; y; tð Þ � Es k

2

2
þm k

Z

I x; y; tð Þdt � Ec k
2

2
þlφ Ið Þ ð1Þ

where the first and the second terms are fidelity terms with data collected by the Streak Camera

and external CCD, respectively. The last term φ(I) represents the prior used to impose sparsity

features to signals while μ and λ are weight parameters. In the next section, we will describe

the implementation process of the proposed algorithm and the innovative sophisticated prior.

3. Reconstruction algorithm

3.1 3DTGpV priors

Prior plays a key role in the reconstruction algorithms of compressed sensing. The ℓ0 norm

prior is the sparsest representation, as it counts the number of nonzero entries in signals. How-

ever, it is extremely challenging to process numerically. For solving the dilemma of algorithms

without convergence, Donoho. et al. verified the approximate equivalence of the ℓ1 and ℓ0

norms [20].

Formally, the ℓ1 norm minimization can be expressed as

argmin
u
k Au � b k2

2
þlkuk

1
ð2Þ

In the research area of images, by considering the spatial smoothing properties of natural

signals, the generalized form of ℓ1 norm total variation (TV) has been proved to be far sparser

when applying the minimization principle of image gradient shown in Fig 2A. The TV prior

obeys

FTV uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jui;j;t � ui� 1;j;tj
2
þ jui;j;t � ui;j� 1;tj

2
� �

2

r

: ð3Þ

Next, we will briefly introduce three generalized forms (3DTV, TGV, TpV) based on the TV

prior that strengthen sparsity representation.

We define

Di ¼ jui;j;t � ui� 1;j;t j

ðaÞ

;Dj ¼ jui;j;t � ui;j� 1;tj

ðbÞ

;Dt ¼ jui;j;t � ui;j;t� 1j

ðcÞ

: ð4Þ

3.1.1 Stretch in the spatial domain–TGV. Total generalized variation (TGV) is a second-

order gradient minimization proposed by Kunisch. et al. [21]. It incorporates more adjacent

elements than TV and regards the second-order gradient of images as the sparse coefficients,

as Fig 2B illustrates. For mathematical imaging problems, TGV is an effective approach that

enhances the details of high-frequency signals and eliminates staircasing effects [22]. It can be

PLOS ONE Compressed fluorescence lifetime imaging via combined TV-based and Deep Priors

PLOS ONE | https://doi.org/10.1371/journal.pone.0271441 August 12, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0271441


expressed as

FG uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Diþ1 � Di

� �2
þ Djþ1 � Dj

� �22

r

: ð5Þ

3.1.2 Stretch in the time domain– 3DTV. The TV prior merely considers image similar-

ity in continuous 2D space but ignores the similarity of adjacent elements [23] in the time

direction. 3DTV introduces the 3D sparsity constraint of fluorescence signals shown in Fig 2C,

and can be represented as

F3D uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
i þ D2

j þ D2
t

� �
2

r

: ð6Þ

Furthermore, given that the time-domain correlation decreases with the increase of motion

scale, we add a time-domain weight parameter τ (0� τ� 1) to flexibly balance the relevancy

between motion scale and time-domain correlation. Therefore, Eq (6) can be rewritten as

F3D uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
i þ D2

j þ tD2
t

� �
2

r

: ð7Þ

3.1.3 ℓp(0 <p< 1) norm of gradient–TpV. The ℓp (0 <p< 1) norm is defined as
Xn

i¼1
jxij

p
� �1=p

, which is closer to ℓ0 norm than ℓ1 norm in mathematical form, thus

approaching the sparsest solution. Our previous work has proved that non-convex optimiza-

tion algorithm based on ℓp norm has more vital sparsity constraints even when it belongs to

non-convex optimization problem [24]. With superior sparsity performance, the TpV prior

eliminates artifacts and achieves superior reconstruction results [25, 26]. The TpV prior is

expressed as

Fp uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dp
i þ D

p
j

� �
p
q

ð8Þ

Fig 2. Associated elements among the different priors (a)TV (b) TGV (c) 3DTV.

https://doi.org/10.1371/journal.pone.0271441.g002
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By combining the different merits of the three TV-based priors, we proposed the following

3DTGpV prior:

C uð Þ ¼
X

i;j;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Diþ1 � Di

� �p
þ Djþ1 � Dj

� �p
þ t Dtþ1 � Dt

� �pp

r

: ð9Þ

3.2 PnP- 3DTGpV_net algorithms

In this section, we propose a novel algorithm based on the PnP-framework 3DTGp V_net

prior by combining 3DTGp V prior and Deep denoiser network.

We will introduce the overall algorithm flow presented in Fig 3 and Algorithm 1. The sparse

signals of interest u are rebuilt by determining the minimum solution from the following con-

strained formula

u tð Þ; v tð Þð Þ ¼ arg minu;v
1

2
k u � v k2

2
þlC vð Þ

subject to Asu ¼ bs; Acu ¼ bc

; ð10Þ

where bs denotes data measured by Streak Camera. bc signifies data measured by the external

CCD, As and As represent the corresponding projection matrices, respectively, v is an auxiliary

variable, and λ is an added weight.

According to the generalized alternating projection (GAP) algorithm [12], we update the

fidelity and prior term separately. Fig 3 displays the workflow of the PnP-3DTGp
V_net algorithm. For each iteration stage, we first apply the Euclidean projection for updating

u(t):

u tð Þ ¼ v t� 1ð Þ þ
As
> AsAs

>ð Þ
� 1 bs � Asv t� 1ð Þð Þ þ μAc

> AcAc
>ð Þ
� 1 bc � Acv t� 1ð Þð Þ

� �

1þ μ
ð11Þ

The update of v is a denoising problem, we execute the denoising process by using 3DTGpV
and FastDVDnet [16], respectively

For the 3DTGpV update section

v tð Þ
1 ¼ u tð Þ � C

> z tð Þ
� �

; ð12Þ

z tð Þ ¼ clip z t� 1ð Þ þ
1

a
C v t� 1ð Þ
� �

;
l

2

� �

; ð13Þ

Fig 3. Workflow of the PnP- 3DTGpV_net algorithm.

https://doi.org/10.1371/journal.pone.0271441.g003
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where

clip s;Tð Þ :¼
s; if jsj � T

Tsign sð Þ; otherwise
ð14Þ

(

For the Deep denoiser network update section

v tð Þ2 ¼ FastDvDnet v
tð Þ

1

� �
ð15Þ

Algorithm 1. PnP- 3DTGp V_net framework.

Input As, Ac, bs, bc, Given p 2 (0,1):

Initialize v0 = As’bs, μ = 0.1,λ = 0.07

for iteration in range(0, 250):

1. Update streak camera’s reconstruction data u tð Þ
sc by

u tð Þ
sc ¼ v t� 1ð Þ þ As

> AsAs
>ð Þ
� 1 bs � Av t� 1ð Þð Þ;

2. Update CCD’s reconstruction data u tð Þ
CCD by

u tð Þ
CCD ¼ v t� 1ð Þ þ Ac

> AcAc
>ð Þ
� 1 bc � Acv t� 1ð Þð Þ;

3. Update ut by ut ¼ x tð Þ
sc þ μu tð Þ

CCD

� �
=ð 1þ μÞ;

4. 3DTGpV denoising: Update v tð Þ
1 by v tð Þ

1 ¼ u tð Þ � C
> z tð Þð Þ where

z tð Þ ¼ clip z t� 1ð Þ þ 1

a
C v t� 1ð Þð Þ; l

2

� �
;

5. Deep network denoising: Update v tð Þ
2 by v tð Þ2 ¼ FastDvDnet v

tð Þ
1

� �
;

6. Update v(t) by v tð Þ ¼ v tð Þ
2

Obtain reconstruction result: u

4 Simulation results

In the simulation, we compare the reconstruction performances of six priors (TV, 3DTGpV,

BM3D, TV+FFDNet, TV+FastDVDnet, and 3DTGp V_net) by applying widely-used drop and

runner datasets. Each dataset comprises 30 video clips. For initialization, we set v(0) = AsTbs,
z(0) = 0, λ = 0.07, μ = 0.1, and τ = 0.2. Each algorithm performs 250 iterations independently.

For related Deep network, we directly use the FFDNet model and parameters from https://

github.com/cszn/KAIR. Besides, the FastDVDnet model and parameters are from https://

github.com/m-tassano/fastdvdnet. The drop and runner datasets are from https://github.com/

zsm1211/PnP-SCI/tree/master/dataset/simdata/benchmark.

Figs 4 and 5 present the reconstructed frames (seen in Visualization 1 and Visualization

2) restored with different priors using the two above-mentioned datasets. The 3DTGpV prior

achieves superior detailed than the TV prior. Although BM3D has a more rigorous denoising

ability than the TV-based methods, excessive smoothing leads to the loss of image detail. The

combined priors based on TV and Deep denoiser networks (TV+FFDNet and TV+-

FastDVDnet) provide better reconstruction contrast and detail than traditional priors but they

expose unsatisfactory artifacts in the reconstructed images. Our proposed combined prior

3DTGp V_net succeed in eliminating artifacts, leading to more accurate representations of the

original images.
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We evaluate the quality of the reconstructed images by two indicators: peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM).

The PSNR can be calculated by

PSNR ¼ 10 � log
10

2552 �mn
Pm� 1n� 1

i¼0

½xði; jÞ � yði; jÞ�2

0

B
B
@

1

C
C
A ð16Þ

where x and y represents the original image and the reconstructed image, respectively.m and

n indicates the height and width of the image, respectively.

Fig 4. The 5th, 15th and 25th reconstructed frames based on simulated datasets: Drop.

https://doi.org/10.1371/journal.pone.0271441.g004

Fig 5. The 5th, 15th and 25th reconstructed frames based on simulated datasets: Runner.

https://doi.org/10.1371/journal.pone.0271441.g005
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The SSIM can be calculated by

SSIMðx; yÞ ¼
2mxmy þ c1

� �
2sxy þ c2

� �

m2
x þ m

2
y þ c1

� �
s2
x þ s

2
y þ c2

� � ð17Þ

where μx and μy represents the mean value of the original image and the reconstructed image,

respectively. s2
x and s2

y are the corresponding variance. σxy means the covariance.

Table 1 presents the average PSNR and SSIM results. We can conclude that the 3DTGp
V_net prior outperforms the other priors in both PSNR and SSIM. Significantly, the proposed

prior improve the reconstructed accuracy by approximately 4dB (PSNR) over the state-of-the-

art TV+FFDNet in runner test sets.

5. Experiments

In the experiments, we record widefield fluorescence data of Rhodamine 6G and Rhodamine

B by CUP. The results are reconstructed using both the PnP—TV+FFDNet algorithm and the

proposed PnP - 3DTGp V_net algorithm. We set the CUP time resolution to be 330 ps. The

reconstruction process is implemented in Ubuntu 20.04 with an NVIDIA GeForce GTX

1650Ti GPU.

Fig 6A presents the streak camera measurement data for Rhodamine 6G. The scanning

direction of the data is from top to bottom. Fig 6B and 6C show the widefield fluorescence

data rebuilt by the PnP-TV+FFDNet and PnP - 3DTGp V_net algorithms, respectively. Also,

the reconstructed movies are shown in Visualization 3 and Visualization 4. By comparing

the two sets of data, it is apparent that our proposed algorithm achieves smoother reconstruc-

tion results with fewer artifacts.

In Fig 7A, the measured data of Rhodamine B is displayed. It has a shorter glow duration

than Rhodamine 6G. The corresponding rebuild results are shown in Fig 7B and 7C, and the

movies are presented in Visualization 5 and Visualization 6. The results indicate that the pro-

posed algorithm achieves better detail reconstruction in various fluorescence environments.

To further analyze the measurement accuracy of widefield fluorescence lifetime, we imple-

ment the exponential fitting with the least square method, based on a mono-exponential decay

model for each pixel [27].

The measured decay h(t) can be expressed as

h tð Þ ¼ irf tð Þ � Aexp �
t
t

� �

þ ε ð18Þ

where A represents the amplitude, τ denotes the lifetime, ε signifies noise, and irf (t) is the

instrument response function (IRF) of the measurement system. Since the full width at half

Table 1. Average PSNR and SSIM results.

Priors Drop Runner

PSNR SSIM PSNR SSIM

TV 26.90 0.901 24.86 0.862

3DTGpV 27.13 0.905 25.06 0.874

BM3D 26.57 0.891 24.81 0.862

TV+FFDNet 29.20 0.934 26.91 0.899

TV+FastDVDnet 29.76 0.942 27.85 0.914

3DTGp V_net 31.75 0.958 30.87 0.948

https://doi.org/10.1371/journal.pone.0271441.t001
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Fig 6. Measurement and reconstruction data of Rhodamine 6G: (a) Streak Camera image; (b) Reconstructed frames using PnP-TV+FFDNet algorithm;

(c) Reconstructed frames using PnP-3DTGp V_net algorithm.

https://doi.org/10.1371/journal.pone.0271441.g006

Fig 7. Measurement and reconstruction data of Rhodamine B: (a) Streak Camera image; (b) Reconstructed frames using PnP-TV+FFDNet algorithm;

(c) Reconstructed frames using PnP-3DTGp V_net algorithm.

https://doi.org/10.1371/journal.pone.0271441.g007
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maximum (FWMH) of the laser pulse is 200fs, irf (t) can be regarded as a delta function for

fluorescence decays with nanosecond lifetimes.

Fig 8A and 8B display the two groups of 2D lifetime images rebuilt using the PnP-TV+-

FFDNet and PnP-3DTGp V_net algorithms, respectively. Besides, Fig 9 shows the reconstruc-

tion lifetime bias. For Rhodamine 6G (R6G), the mean lifetime and standard deviation of the

proposed algorithm are 3.91 ns and 0.57 ns, respectively. Also, the corresponding values for

PnP-TV+FFDNet are 4.41 ns and 1.1 ns. For Rhodamine B (RB), the mean lifetime and stan-

dard deviation of the proposed algorithm are 1.68 ns and 0.52 ns, while for PnP-TV+FFDNet

they are 1.72 ns and 0.54 ns.

In the slit-scanning mode of the Streak Camera, we re-obtain non-superimposed fluores-

cence lifetime data as a reference. The single exponential fitting results of Rhodamine 6G and

Rhodamine B are 3.62 ns and 1.51 ns, respectively. These improved results demonstrate that

our proposed PnP-3DTGp V_net algorithm produces a bias that is 0.29 ns and 0.17 ns lower

than the PnP-TV+FFDNet algorithm.

6. Conclusion

In this study, we propose 3DTGp V_net, a highly effective Compressed-FLIM combined prior.

Results from numerous simulations and experiments confirm that our proposed method has

better reconstruction performance than the existing algorithms and presents higher evaluation

accuracy for wide-field FLIM. Besides, this study further confirms that combined priors can

Fig 8. Comparison with 2D lifetime images.

https://doi.org/10.1371/journal.pone.0271441.g008
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effectively complement the advantages of traditional priors and Deep denoiser networks to

improve the reconstruction performance of compressive video imaging technology. Lastly, it is

noted that our algorithm is a general framework and demanding to relevant SCI systems.
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Fig 9. Comparison with reconstruction lifetime bias.

https://doi.org/10.1371/journal.pone.0271441.g009
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