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Abstract 

Background:  Exposure to fine particulate matter (PM2.5) increases the risk of asthma exacerbations, and thus, moni-
toring personal exposure to PM2.5 may aid in disease self-management. Low-cost, portable air pollution sensors offer a 
convenient way to measure personal pollution exposure directly and may improve personalized monitoring com-
pared with traditional methods that rely on stationary monitoring stations. We aimed to understand whether adults 
with asthma would be willing to use personal sensors to monitor their exposure to air pollution and to assess the 
feasibility of using sensors to measure real-time PM2.5 exposure.

Methods:  We conducted semi-structured interviews with 15 adults with asthma to understand their willingness to 
use a personal pollution sensor and their privacy preferences with regard to sensor data. Student research assistants 
used HabitatMap AirBeam devices to take PM2.5 measurements at 1-s intervals while walking in Philadelphia neigh-
borhoods in May–August 2018. AirBeam PM2.5 measurements were compared to concurrent measurements taken by 
three nearby regulatory monitors.

Results:  All interview participants stated that they would use a personal air pollution sensor, though the consensus 
was that devices should be small (watch- or palm-sized) and light. Patients were generally unconcerned about privacy 
or sharing their GPS location, with only two stating they would not share their GPS location under any circumstances. 
PM2.5 measurements were taken using AirBeam sensors on 34 walks that extended through five Philadelphia neigh-
borhoods. The range of sensor PM2.5 measurements was 0.6–97.6 μg/mL (mean 6.8 μg/mL), compared to 0–22.6 μg/
mL (mean 9.0 μg/mL) measured by nearby regulatory monitors. Compared to stationary measurements, which were 
only available as 1-h integrated averages at discrete monitoring sites, sensor measurements permitted characteriza-
tion of fine-scale fluctuations in PM2.5 levels over time and space.

Conclusions:  Patients were generally interested in using sensors to monitor their personal exposure to PM2.5 and 
willing to share personal sensor data with health care providers and researchers. Compared to traditional methods 
of personal exposure assessment, sensors captured personalized air quality information at higher spatiotemporal 
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Introduction
Air pollution is harmful to health and contributes sub-
stantially to the global disease burden [1, 2]. While 
air pollution is detrimental to all people regardless of 
health status, its effects disproportionately impact those 
with underlying conditions such as asthma. Moderate 
increases in fine particulate matter (PM2.5), nitrogen diox-
ide (NO2), ozone, carbon monoxide and traffic-related air 
pollution (TRAP) are known to trigger exacerbations in 
adults and children with asthma [3–6], and recent stud-
ies have linked early- and mid-life exposure to PM2.5, 
NO2, and TRAP to greater asthma prevalence [7–11]. Yet 
despite the role that air pollution plays in asthma onset 
and morbidity, accurately quantifying personal pollution 
exposure for individuals remains a challenge.

Air pollution exposure estimates for research studies 
are often based on measurements taken by stationary 
regulatory monitors, such as those operated by the U.S. 
Environmental Protection Agency (EPA). While these 
monitors are highly accurate and well-suited for ensuring 
compliance to federal air quality standards, their utility 
for capturing individual-level pollution exposure is lim-
ited for a few key reasons: 1) Due to their relative spar-
sity, monitor locations rarely coincide with the locations 
that exposure takes place (e.g., home, work or school), 
and thus, an individual’s exposure to air pollution can 
only be measured indirectly through spatial interpolation 
techniques, such as inverse distance weighted interpola-
tion and kriging, or statistical methods, such as land-use 
regression modeling; 2) regulatory monitors offer limited 
temporal resolution (e.g., hourly averages in the case of 
particulate matter monitors), which may lead them to 
miss transient spikes in pollution levels; 3) indirect meth-
ods of exposure assessment typically estimate exposure 
for a single location per individual, such as their loca-
tion of residence, place of work [12] or school [13], which 
does not capture exposures that occur while people are at 
different locations or during regular activities like com-
muting and errands; 4) methods that rely on outdoor 
regulatory monitors can only capture ambient pollution 
concentrations rather than exposures occurring inside 
the home or other indoor settings, which is a significant 
limitation given that most individuals in industrialized 
nations spend > 90% of their time indoors [14].

Low-cost portable pollution sensors are accessible 
environmental monitoring devices that can be carried or 
worn by individuals during their usual activities. Because 

they measure pollution levels directly and in real-time, 
they could enable health providers and researchers 
to monitor individual-level exposures and empower 
patients to manage their personal exposure to pollutants 
beyond what is possible with regulatory monitors [15, 
16]. While their accuracy is not as high as that of regula-
tory or research-grade monitors, researchers have dem-
onstrated the practicality of using lower cost pollution 
sensors to assess indoor air quality [17–21] and pollu-
tion levels within commute microenvironments [22–24]. 
Early personal exposure studies using sensors have also 
highlighted the disproportionate impact of commuting 
and cooking to total pollution exposure experienced by 
individuals [25–32]. However, few studies have used per-
sonal sensors to monitor pollution exposure in patients 
with respiratory diseases [26, 33]. Because they can be 
used to aid in self-management of symptoms, personal 
pollution sensors may be especially helpful for individu-
als with asthma, and particularly for those living in dis-
advantaged neighborhoods, which tend to have higher air 
pollution levels [34]. Philadelphia is a city largely com-
prised of Environmental Justice areas as defined by the 
state of Pennsylvania (i.e., census tracts where 20 percent 
or more of individuals live in poverty and/or 30 percent 
or more of the population is minority), and the region 
has been consistently ranked among the most challeng-
ing places to live with asthma by the Asthma and Allergy 
Foundation of America [35, 36]. In this study, we aimed 
to: 1) understand the acceptability and preferences for 
using personal pollution sensors among adults with per-
sistent asthma who reside in the Greater Philadelphia 
Area, 2) assess the feasibility of using sensors to measure 
PM2.5 exposure, and 3) compare sensor PM2.5 measure-
ments to standard estimates obtained using measure-
ments taken by regulatory monitors.

Methods
Study population
Individuals were eligible for the study if they were Penn 
Medicine asthma patients aged 18 years or older with a 
prescription for inhaled corticosteroids and residence 
in the Greater Philadelphia Area (Philadelphia, Dela-
ware, Chester, Montgomery, Bucks, Camden Glouces-
ter or Burlington counties). Patients were contacted by 
phone, screened to determine if they met eligibility crite-
ria, and invited to enroll. Fifteen patients were recruited 
and asked about their demographic characteristics and 

resolution. Improvements to currently available sensors, including more reliable Bluetooth connectivity, increased 
portability, and longer battery life would facilitate their use in a general patient population.
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asthma history. To determine each patient’s level of 
asthma control, interviewers administered the asthma 
control questionnaire (ACQ) during a phone inter-
view. The ACQ is a validated measure of asthma con-
trol derived from questions regarding patient-reported 
symptoms during the day and night, limitations on daily 
activities, rescue bronchodilator use, and lung function 
(i.e., forced expiratory volume in 1  s [FEV1]) [37–39]. 
Due to the infeasibility of assessing lung function over 
the phone, interviewers administered a shortened ver-
sion of the ACQ, which included all items except FEV1, 
although previous studies have found good agreement 
between full and shortened versions of the ACQ [38, 39]. 
All versions of the ACQ yield a score ranging between 
0 (totally controlled) and 6 (severely uncontrolled), and 
level of asthma control was defined using previously vali-
dated cut-points: [40] patients with an ACQ score ≤ 0.75 
were classified as having well-controlled asthma, patients 
with an ACQ score between 0.75–1.5 (not inclusive) 
were classified as having partially controlled asthma, and 
patients with an ACQ score ≥ 1.5 were classified as hav-
ing inadequately controlled asthma.

Semi‑structured interviews
Experienced interviewers from the University of Penn-
sylvania Mixed Methods Laboratory conducted all inter-
views using a standardized script developed for this study 
(Supplementary Materials). Semi-structured interviews 
were conducted over the phone and recorded to identify 
preferences and acceptability of use of personal pollution 
sensors. Participants were asked about their attitudes and 
preferences towards using a personal pollution sensor, as 
well as their privacy preferences regarding the dissemi-
nation of personal sensor data. Recordings of interviews 
were transcribed, de-identified, and thematically ana-
lyzed in accordance with a grounded theory framework 
using the qualitative software program NVivo 11. A code-
book representing the key ideas that emerged from the 
interviews was developed after eight interviews had been 
conducted and was iteratively refined in the coding of an 
additional five interviews. Content saturation appeared to 
have been reached after coding interviews 1–12: partici-
pant responses were well clarified by existing codes, and 
no new themes were emerging. To ensure saturation, an 
additional three interviews were conducted, in which no 
new themes were identified. Two reviewers established 
strong interrater reliability, κ = 0.98, with four (26%) of 
the interviews. Of the remaining eleven interviews, eight 
were recorded by one reviewer and three were recorded 
by the other. Because English was the preferred language 
of all participants, interviews were conducted in English 
only.

Low‑cost sensor field trials
The AirBeam, developed by the non-profit environ-
mental health organization HabitatMap, is a low-cost 
portable air monitoring device that measures PM2.5, 
temperature and humidity (Supplementary Figure  1). 
Its performance has been validated by the EPA, the 
South Coast Air Quality Management District and 
other research groups who have demonstrated mod-
erate-to-good agreement (R2 = 0.43–0.71) between 
uncalibrated AirBeam PM2.5 measurements and EPA 
reference methods across a diverse range of outdoor 
environmental conditions [41–45]. In addition, the Air-
Beam offers a visual interface that provides users with 
real-time feedback on air quality via the Android Air-
Casting app. In the summer (Jun-Aug) of 2018, student 
research assistants used AirBeam devices to take PM2.5 
measurements while walking in the West Philadelphia 
and Center City neighborhoods of Philadelphia. Walk-
ing routes were selected to cover geographical areas 
with diverse characteristics, but also with considera-
tion for route accessibility with start/end point at the 
University of Pennsylvania and safety of research per-
sonnel. Walks were taken primarily in the cooler morn-
ing and evening hours and avoided on excessively 
hot, humid or rainy days. After AirBeam sensors were 
synced to an Android mobile device via Bluetooth, sen-
sor measurements were recorded using the Habitat-
Map AirCasting app and subsequently exported to a 
local data server. Before they were deployed outdoors, 
sensors were tested indoors to assess basic function-
ality and evaluate the correlation of PM2.5 measure-
ments recorded by different sensors while a controlled 
source (i.e., stick of burning incense) emitted particles 
for 1–3 h; measurements were highly correlated (Pear-
sons’ r > 0.98) for all between-sensor comparisons (Sup-
plementary Figure 2). No formal sensor calibration was 
performed. Sensor measurements were recorded at 1-s 
intervals and included the following variables: PM2.5, 
temperature, and relative humidity, along with times-
tamp and GPS coordinates (latitude and longitude) 
obtained from the paired Android smartphones.

Regulatory monitor PM2.5 measures
Sensor PM2.5 measurements were compared to contem-
poraneous PM2.5 measurements recorded at three nearby 
regulatory monitoring stations that comprise a part of 
the EPA’s ambient air monitoring network; measure-
ments taken by these regulatory monitors are henceforth 
referred to as EPA measurements. EPA measurements 
were obtained from the EPA Air Quality System (AQS) 
database as raw JSON files via the AQS API and subse-
quently imported into R for analysis [46, 47].
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Sensor and PM2.5 measure data analysis
In contrast to sensor measurements, which were taken 
once per second, EPA measurements were reported on 
an hourly basis. Sensor measurements were thus time-
matched according to the hour of measurement. For 
example, all sensor PM2.5 measurement taken between 
9:00:00 and 9:59:59 EDT were matched to EPA meas-
urements recorded for 9:00 EDT on the same day such 
that a single measurement reported by an EPA moni-
tor may correspond to many sensor measurements. For 
each sensor PM2.5 measurement, an “EPA estimate” was 
derived for the GPS location associated with the sensor 
measurement using time-matched EPA measurements 
via inverse-distance-squared-weighted interpolation. 
Maps of individual sensor deployments were created by 
depicting sampling routes as points shaded according to 
timestamp, temperature, relative humidity, and PM2.5, 
as well as EPA-interpolated PM2.5 estimates for the same 
time and location. Points were 10-s binned averages 
mapped at 50% opacity to optimize visibility of spatially 
proximate data points. A summary map of sensor PM2.5 
measurements averaged at the block level for data col-
lected across all deployments was created by “snapping” 
all GPS coordinates to the nearest road segment (block), 
thereby assigning each data point to the block where 
sampling was presumed to have taken place. Mean PM2.5 
for all sensor measurements recorded for each block was 
subsequently computed and block-level averages were 
visualized on a map. The same process was repeated for 
EPA estimates. Block-level sensor means were compared 
to the block-level means computed using EPA estimates 
by calculating the difference between these two means 
for each block to determine whether there were regions 
where local PM2.5 levels were above or below the globally 
interpolated levels. Analyses were conducted in R [47].

The protocol was approved by the University of Penn-
sylvania Institutional Review Board. All participants pro-
vided informed consent over the phone.

Results
The characteristics of the 15 adults with asthma who 
were interviewed about their preferences and attitudes 
regarding the use of personal pollution sensors are 
summarized in Table  1. Reflecting the demographics 
of patients with persistent asthma who receive care at 
Penn Medicine, participants were predominantly female 
and non-Hispanic Black [48] Most patients were mid-
dle aged and had either commercial or a combination of 
commercial and Medicare health insurance. Ten patients 
resided in Philadelphia County, while five resided in sur-
rounding counties within the Greater Philadelphia Area 
(Fig. 1). Sixty percent of patients (n = 9) had asthma that 

was inadequately controlled, while forty percent (n = 6) 
had asthma that was either well-controlled or partially 
controlled.

All participants stated they would use a personal air 
pollution sensor, though the consensus was that the 
device should be small (watch- or palm-sized), incon-
spicuous and light. Some of the participants wanted the 
device to resemble jewelry, while others preferred a small 
standalone device for in-home use only. One-third of 
participants wanted the device to augment an existing 
technology that they habitually used and had on them 
(e.g., a mobile phone or smartwatch) so that they would 
not have to carry around an additional device. In terms 
of device features, participants wanted to receive real-
time actionable information regarding the air quality they 
were being exposed to, and to be able to program the 
device to help them avoid their personal asthma triggers.

With regard to privacy preferences, participants were 
generally unconcerned about sharing sensor data, includ-
ing their GPS coordinates. Specifically, eight participants 
expressed a lack of concern about sharing their location 
data, recognizing that they would need to share their 
location history to determine where pollution exposure 
took place. Five patients expressed hesitation in shar-
ing their location data but stated they would consider 
doing so under certain conditions, such as if they could 
limit sharing of their data to researchers and healthcare 

Table 1  Characteristics of study participants (N = 15)

Characteristic n (%)

Sex
  Female 13 (87)

  Male 2 (13)

Age in years
  18–34 3 (20)

  35–54 9 (60)

  55–74 3 (20)

Mean (range) 46 (23–74)

Race/ethnicity
  Non-Hispanic Black 11 (73)

  Non-Hispanic White 2 (13)

  Hispanic White 1 (7)

  Declined to answer 1 (7)

Health insurance
  Medicaid 8 (53)

  Commercial ± Medicare 5 (33)

  Medicare only 2 (13)

Asthma control status (ACQ score)
  Well-controlled (≤ 0.75) 3 (20)

  Partially controlled (> 0.75 and < 1.5) 3 (20)

  Inadequately controlled (≥ 1.5) 9 (60)
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providers or if they could turn location sharing on and 
off at their discretion. Two patients stated they would not 
share their GPS coordinates under any circumstances.

Research staff used AirBeam sensors to take outdoor 
measurements of PM2.5 concentration on 34 walks of 
1-to-3-h duration, collecting 117,510 total sensor PM2.5 
measurements, which were subsequently time-matched 
to 135 unique measurements of PM2.5 concentra-
tion measured by nearby regulatory monitors (41–52 
measurements per site; Table  2). Sensor PM2.5 meas-
urements ranged 0.6–97.6  μg/m3 (mean 6.8  μg/m3), 
compared to 0–22.6 μg/m3 (mean 9.0 μg/m3) measured 
by nearby monitors. Outdoor sensor measurements 
showed moderate correlation with estimates derived 
from EPA measurements (Pearson’s r = 0.509; Supple-
mentary Figure 3).

A visual summary of all sensor deployments and 
the three most proximate EPA monitoring sites is pre-
sented in Fig. 2. Sensors were deployed in a rectangular 
area encompassing portions of the West Philadelphia 
(i.e., University City, Spruce Hill, Cedar Park and King-
sessing) and downtown Center City (located east of the 
Schuylkill River) neighborhoods of Philadelphia (Fig. 2A). 
The most frequently sampled streets were those located 
closest to the research lab, followed by those located in 
neighborhoods to the north (University City) and west 
(Spruce Hill, Cedar Park and Kingsessing; Fig. 2B). Block-
level average PM2.5 concentration measured by sensors 
varied considerably across the study area: areas of low 
PM2.5 concentrations extended through the southwest-
ern regions of West Philadelphia and south Center City 
and areas of high concentration were located in north 

Fig. 1  Residential zip code of study participants mapped over the entire Greater Philadelphia Area (left panel) and zoomed in over Philadelphia 
county (right), with Philadelphia county outlined in grey

Table 2  Comparison of outdoor PM2.5 measurements taken by AirBeam sensors vs. time-matched measurements taken by nearby EPA 
monitors

AirBeam EPA-55 EPA-57 EPA-76

Federal equivalent method No Yes Yes Yes

Measurement method Optical sensor Beta attenuation monitor Beta attenuation 
monitor

Beta attenuation monitor

Measurement interval 1 s 1 h 1 h 1 h

Number of measurements 117,510 52 41 42

PM2.5, μg/m3, mean (range) 6.8 (0.6, 97.6) 10.3 (2.9, 22.6) 7.1 (0, 11.9) 9.2 (0.1, 19.7)

Data missingness, % 0 1.8 22.6 20.8
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University City and north Center City (Fig. 2C). In con-
trast, block-level average PM2.5 concentration estimated 
using time-matched EPA measurements showed con-
siderably less spatial variation (Fig.  2D). Sensor aver-
ages differed from EPA averages by -13 to + 15  μg/m3 
and mapping the difference between these averages 
highlighted small areas in Center City and University 
City with higher-than-expected PM2.5 concentrations 
(Fig. 2E).

Figure  3 shows an example sampling route taken by 
research staff carrying an AirBeam sensor on the morn-
ing of July 12, 2018. GPS coordinates and timestamps 
collected during the deployment show that departure 
from lab was at 9:52 AM, then the researcher headed 
north through the university campus, east toward the 
Schuylkill River, before looping back and returning to 
their starting location at 10:55 AM (Fig.  2A-B). During 

this walk, the sensor took continuous measurements of 
temperature, relative humidity, and PM2.5 concentration, 
capturing distinct trends for each variable (Fig. 2C-E). In 
contrast to temperature, which incrementally increased 
from 27 °C to a plateau of 30–31 °C and relative humid-
ity, which incrementally decreased from 52% to a plateau 
of 45–46%, PM2.5 concentrations fluctuated during this 
period (Supplementary Figure  4). Notably, while most 
PM2.5 measurements collected during this deployment 
ranged between 10–17  μg/m3, concentrations spiked 
(exceeding 20  μg/m3) at three timepoints correspond-
ing to when research staff crossed busy street intersec-
tions (Fig.  2E; Supplementary Figure  4). In contrast to 
PM2.5 concentrations that were measured directly by the 
sensor, PM2.5 concentrations that were interpolated for 
the same GPS locations from time-matched EPA meas-
urements showed virtually no variation over time and 

Fig. 2  Summary of sensor field trials and comparison with EPA estimates. A Regions sampled by AirBeam sensors are indicated in red and 
circumscribed by the black rectangle, and Philadelphia county is outlined in grey. The locations of EPA monitoring stations are denoted by pale 
yellow diamonds, with the three closest stations labeled by their site ID’s. Surveyed streets shaded according to B the number of sensor PM2.5 
measurements taken on each block, C block-level mean PM2.5 measured by sensors, D block-level mean PM2.5 estimated from time-matched EPA 
measurements, and E difference between PM2.5 measured by sensors vs. estimated using EPA measurements. The black star indicates the location of 
the research lab in panels B-E 
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Fig. 3  Sample walking route taken by a student research assistant carrying an AirBeam sensor on July 12, 2018. A The sampling route is 
circumscribed by the black rectangle, and the locations of nearby EPA monitoring stations are labeled according to site ID. Close-ups of the 
route colored according to B timestamps, C temperature (°C), D relative humidity (%), and E PM2.5 (μg/m3) recorded by the sensor, as well as F 
PM2.5 (μg/m3) estimates derived from EPA measurements via inverse-distance-squared-weighted interpolation. G Comparison of sensor and EPA 
measurements recorded during the sampling frame. The black star indicates the location of the research lab in panels A-F 
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space (Fig.  2F). This lack of fine-scale resolution can be 
attributed to the temporal coarseness of EPA measure-
ments, which are only available as 1-h integrated aver-
ages (Fig.  2G), and sparsity of regulatory monitoring 
sites, such that interpolation depended on measurements 
made by monitors located 4–8 km from where exposure 
took place (Fig. 2A).

Discussion
Portable air pollution sensors can be used to measure 
personal exposures directly and at relatively low cost, 
making them an attractive tool to overcome some of 
the limitations posed by traditional methods of expo-
sure assessment. In our semi-structured interviews with 
adults with persistent asthma, all participants stated they 
would be willing to use a sensor to measure their per-
sonal exposure to air pollution, and most expressed will-
ingness to share sensor data with healthcare providers, 
researchers and the general public. In addition, our field 
trials deploying pollution sensors for real-time mobile 
monitoring of PM2.5 demonstrated their utility for cap-
turing personalized air quality information at high spati-
otemporal resolution. In contrast to EPA measurements, 
which were only available as 1-h integrated averages at 
discrete monitoring sites, mobile sensor measurements 
were taken every second, allowing them to resolve fine-
scale fluctuations in PM2.5 concentrations over time and 
space.

While personal exposure to air pollution is moder-
ately correlated with proxy measures obtained using 
outdoor monitors over large timescales (e.g., 24-h 
averages) [49, 50], indirect measures are unlikely to 
capture short-term fluctuations in personal exposures 
given individual activity and mobility patterns and the 
significant spatiotemporal variability of air pollution 
concentrations [51]. Even acute air pollution exposure 
has been shown to decrease lung function and increase 
airway inflammation among healthy adults and adults 
with asthma [52, 53], and emerging research link-
ing personal sensor data to physiological and clinical 
outcomes suggest that periodic exposure to polluted 
microenvironments can impact health. For example, 
a recent study comparing schoolchildren’s particulate 
exposure in home, school and commute microenvi-
ronments determined that exposure experienced while 
commuting was most strongly associated with albuterol 
use and urinary leukotriene E4, a biomarker for airway 
inflammation [26].

Findings from our sensor field trials are consistent 
with other studies that have demonstrated the suitabil-
ity of sensors for personal pollution monitoring [25–31], 
though our interviews with adults with asthma high-
light some of the practical hurdles impeding their use in 

large-scale health exposure studies [15]. All interviewed 
participants stated they would be willing to use a port-
able pollution sensor, but the consensus was that this 
device should be unobtrusive and inconspicuous. Some 
preferred a device that resembled jewelry, while others 
wanted pollution sensing to be embedded directly into 
their existing smartphone or smartwatch. Contrary to 
these preferences, current commercially available sen-
sors are palm-sized or larger and relatively conspicuous 
(Supp. Table 1; Supp. Figure 5). Due to the cumbersome 
nature of most pollution sensors, participants of personal 
exposure studies are required to carry sensors in custom-
made backpacks [25–29] or vests [32]. Study participants 
who are allowed to carry sensors in their own bags must 
be instructed to keep sensor inlets exposed to air to 
ensure proper measurement [31].

The need to keep sensors charged and connected to 
mobile devices via Bluetooth imposes an additional bur-
den on study participants. A recent pilot study using Air-
Beam2 devices to monitor particulate pollution exposure 
in women undergoing fertility treatment reported that 
most study subjects had trouble keeping devices charged 
and frequently lost connectivity during the 3-day study 
period [54]. Research staff operating AirBeam sensors 
in the present study reported similar issues with spotty 
Bluetooth connections, although battery life did not pose 
a problem due to shorter deployment times (1–3 h). Due 
to the high participant burden associated with personal 
monitoring, personal exposure studies have collected 
at most one week of continuous data per participant 
and have typically enrolled fewer than 100 participants, 
with the largest cohort to date comprising 167 pregnant 
women and 183 children [55].

Concerns related to data privacy and sharing, an 
important issue raised by reviews of personal sensing and 
other mobile health technologies [56, 57], were not found 
among our interview participants. Most (13 of 15) partic-
ipants were willing to share sensor data, including loca-
tion, with researchers and healthcare providers, while a 
subset (n = 8) was willing to share sensor data with the 
general public. Implicit in the preferences of those will-
ing to share sensor data with key personnel but not the 
general public is trust in the data security maintained by 
the research team or health care system. Especially given 
recent findings that many mobile health applications do 
not follow standard privacy and security practices [58, 
59], it is imperative that researchers maintain the trust 
of study participants by clearly communicating during 
the consent process what kind of data is collected, who 
will view the data and how it will be protected. Through-
out the study, patient-collected data must be transferred 
securely and kept on protected servers, with special care 
paid to location data.
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There are limitations to our study. Because we did not 
calibrate AirBeam sensors prior to each deployment, we 
are unable to quantify their accuracy relative to research-
grade sensors or adjust measures to ensure they more 
closely match true PM2.5 values. While the goal of our 
study was not to quantify pollution measures with preci-
sion, it is important to bear in mind that researchers who 
seek to do so must calibrate sensors before deployment 
and at regular intervals throughout use to ensure accu-
rate measurement [15, 60]. Consumer air quality moni-
tors like the AirBeam sensor used are nevertheless useful 
to capture relative spikes in PM2.5 concentration [44]. 
Additionally, because sensors are sensitive to climactic 
and environmental conditions, including humidity, tem-
perature and particulate composition, calibrating devices 
with respect to these variables – usually via collocation 
with a reference monitor – can considerably improve 
accuracy and reliability [43]. Careful consideration of 
these additional variables should be included in studies 
that link sensor measures to health outcomes.

Our interview participants were residents of relatively 
few zip codes in the Greater Philadelphia Area, and it is 
unclear whether attitudes and preferences regarding sen-
sor use might vary across different neighborhoods. In 
addition, participants consisted of relatively few adults 
with asthma, the majority of whom were female (13/15) 
and non-Hispanic Black (11/15), consistent with the 
characteristics of people with asthma encountered most 
frequently by our health system. Because studies con-
ducted in other patient groups and the general popula-
tion have found that men and people who were White, 
had higher educational attainment or earned higher 
incomes were more willing to share mobile health and 
geolocation data for research purposes than others [61–
63], we expect that our results on willingness to share 
sensor data would generalize to adults with asthma who 
are men and/or belong to other racial/ethnic groups. 
However, more work is needed to understand how pri-
vacy preferences regarding sensor data might differ 
among asthma patients across gender, racial/ethnic and 
socioeconomic strata.

Conclusions
Patients with persistent asthma expressed interest in 
using sensors to monitor their personal exposure to PM2.5 
and were generally willing to share personal sensor data 
with researchers and healthcare providers. Compared 
to traditional methods of personal exposure assessment, 
low-cost sensors captured personalized air quality infor-
mation at higher spatiotemporal resolution. Improve-
ments to currently available sensors, including more 
reliable Bluetooth connectivity, effortless portability, and 

longer battery life would facilitate their use in a general 
patient population.
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