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Introduction

Much of the public media discussion of

genetics of common diseases has centered

on opportunities for targeted preventive

actions. At the same time, in the specialist

literature, there has been extensive discus-

sion of ‘‘interaction,’’ both between genes

and between genes and environment.

These two topics concern the use and

interpretation of statistical models for risk

of diseases with several, perhaps many,

etiological risk factors, and were both the

subject of lively debate some 30 to 40 years

ago when such models first came into

widespread use in epidemiology. Here

these debates are revisited and illustrated

with results from an analysis of the

genetics of type 1 diabetes (T1D). Details

of this analysis are provided in section 1 of

Text S1.

Prediction

Attempts to predict risk of disease from

multiple risk factors began in the early

1960s, mainly in the context of coronary

heart disease [1]. The logistic regression

model soon became the method of choice,

an early example being the five-year

coronary disease risk score calculated from

the Framingham cohort study data [2].

Predictive power of such models is often

summarized by a receiver operating char-

acteristic (ROC) curve; subjects are ranked

in descending order of their predicted risk

and the cumulative proportion of subjects

who eventually succumb (cases) is plotted

against the corresponding cumulative pro-

portion of the population. Figure 1 illus-

trates such a plot using the Framingham

data as an example; 29.6% of cases fell in

the highest decile of predicted risk in the

population, 46.6% fell in the top quintile,

and so on. In terms of the use of the

prediction score in a screening test, the

ROC curve plots the sensitivity against

(one minus) the specificity [3] for all

possible thresholds for the score. A third

measure of the accuracy of a screening test

is the positive predictive value (PPV), the

proportion of screen-detected patients who

will go on to develop disease. For a rare

event such as serious disease incidence, the

ratio of true positives to false positives,

PPV/(12PPV), is given by multiplying the

population risk by the ratio of the ordinate

to the abcissa of the ROC curve. Although

there have been many attempts to repre-

sent predictive efficacy in terms of a single

number [4], such indices are often mis-

leading, and it will generally be necessary

to consider the whole curve when assessing

the usefulness of prediction for clinical or

public heath purposes.

Initial hopes that multivariate risk scores

could form the basis of a prevention

program based on targeted intervention

in high-risk subjects quickly foundered

owing to inadequate prediction. Rose [5]

eloquently described the difficulty as the

‘‘prevention paradox,’’ in which ‘‘a large

number of people at low risk may give rise

to more cases of disease than the small

number who are at high risk.’’ In terms of

the ROC curve, the problem is that the

ratio of ordinate to abcissa is usually only

high enough to achieve an acceptable PPV

at the very high end of the spectrum of

risk, and this contributes a relatively small

proportion of total cases. With the excep-

tion of screening for presence of early-

stage disease, these arguments led to a

swing away from the strategy of targeted

intervention in favor of preventive strate-

gies aimed at entire populations.

Interest in the possibility of individual-

ized approaches to prevention and treat-

ment has recently been reawakened in the

context of advances in genetics. For

example, Sir George Radda, then chief

executive of the Medical Research Coun-

cil, stated: ‘‘In 20 years’ time, we may see

individualized approaches to disease pre-

vention and treatment’’ [6]. Ironically,

such public pronouncements came at a

time when complex disease genetics

seemed to be making little headway [7].

Recent successes of genome-wide associa-

tion studies have established a more

optimistic climate of opinion, but it

remains unclear whether such advances

have the potential to deliver sufficiently

accurate predictions to make targeted

intervention a realistic possibility. In

common with many such statements,

Radda’s remarks bracket prevention and

treatment, but there are important differ-

ences, notably in the frequency of out-

comes and in the need for high PPVs.

While, in the treatment of disease, inaction

is rarely an option and any prediction,

however imperfect, may lead to benefit to

patients, a preventive strategy based upon

targeting high-risk subgroups will usually

require more accurate prediction in order

to be both ethical and effective from a

public health standpoint.

It now seems that most genetic associ-

ations for common diseases currently

being discovered are weak and, taken

alone, would provide limited prediction

[8–10]. However, a more open question is
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whether prediction would be adequate if

all relevant genetic loci were eventually

identified. This depends on the heritability

of the condition and the model for risk. In

the special case of many loci acting

multiplicatively as in the logistic regression

model, the ROC curve for prediction

from a set of loci can be deduced from

the sibling recurrence risk ls [11] (see also

section 2 of Text S1). Figure 2 shows a

series of such curves. The most extreme

curve corresponds to ls = 15, typical of

values quoted for autoimmune diseases

such as T1D, multiple sclerosis, and

Crohn disease. This assumes that all

of the reported ls is attributable to

genetics rather than shared environment

and that all relevant loci have been

identified. Yet for diseases with cumulative

incidence below 1%, even this would

fail to deliver high PPV together with

high sensitivity. For diseases such as

type 2 diabetes and ischemic heart

disease, for which reported values of ls

are three or less, much of which may be

attributable to shared environment, the

ROC curves suggest that individual pre-

diction will be extremely poor, even if all

loci could be identified and taking account

of the rather greater frequency of such

conditions in the population. The more

extravagant claims for the utility of

genetics in targeted prevention would

therefore seem implausible, although it

has been suggested that genetic informa-

tion may have a more limited role in more

effective delivery of screening programs

[11].

T1D Analysis
Understanding of the genetic determi-

nants of T1D commenced with the

discovery, in 1973, of a strong HLA

association [12]. This was followed, in

1984, by discovery of the INS gene

association [13]. Subsequent progress was

slow, resulting in the discovery, by 2007, of

only three further associated loci in

candidate genes. However, the advent of

genome-wide association studies has re-

sulted in an explosion of new discoveries,

with more than 40 disease susceptibility

loci now identified [14]. The impact of

these discoveries on prediction are dis-

played in Figures 3, 4, and 5. Although the

new discoveries will have undoubted value

for our understanding of the disease, their

impact on prediction is modest.

Current known loci explain a ls of just

under five, as compared with the value of

15 often quoted. However, it is likely that

the latter figure is exaggerated, and the ls

attributable to inheritance is likely to be

less than ten. The heritability explained

will be increased to some degree when the

known regions are more fully studied, but

the bulk of the remaining heritability is

likely to be attributable to many small (or

rare) effects, most of which are unlikely to

be mapped. Thus, even for this highly

heritable disease, the prediction achievable

could fall some way short of that required

for a targeted prevention strategy.

Interaction

This topic has received much recent

attention, but with scant reference to the

lively debate of the early 1980s, which was

initiated in response to widespread over-

interpretation of ‘‘interaction’’ in logistic

regression models. It has been widely

noted that statisticians and biologists

attach different meanings to the word

‘‘interaction’’ [15–19]. Whereas a biologist

would use the word (often loosely) to

describe an aspect of biological mecha-

nism, for a statistician, interaction between

two factors represents deviation from some

mathematical model for joint effects of

several factors on risk. It only has an

Figure 1. ROC curve for the prediction score of Truett, Cornfield, and Kannel [2] (five-
year incidence of coronary heart disease in the Framingham cohort study).
doi:10.1371/journal.pgen.1000540.g001

Figure 2. Theoretical ROC curves for various values of ls under the polygenic
multiplicative model.
doi:10.1371/journal.pgen.1000540.g002
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interpretation for mechanism if the math-

ematical model tested has an interpreta-

tion. This is rarely the case; most mathe-

matical models are convenient fictions and

would certainly be rejected given sufficient

sample size. Writing in 1991, Thompson

[20] noted that, although much of the

debate had by then subsided, few clear

conclusions had emerged. His review

concluded: ‘‘[C]hoice among theories of

pathogenesis is enhanced hardly at all by

the epidemiological assessment of inter-

action…What few causal systems can be

rejected on the basis of observed results

would provide decidedly limited etiologi-

cal insight.’’ In following years, this has

been the consensus view among epidemi-

ologists—a fact that renders the recent re-

emergence of interest in genetic epidemi-

ology somewhat surprising.

In genetics, the confusion between

statistical and biological notions of inter-

action goes back to Fisher’s 1918 paper

[21] in which he used the term ‘‘epistacy’’

to describe statistical interaction between

different loci—a use to which a referee, R.

C. Punnett, objected [22]. The confusion

of which Punnett warned was further

increased as Fisher’s term ‘‘epistacy’’

became widely replaced by Bateson’s term

[23], ‘‘epistasis,’’ which inspired it [24–

27]. The difference between Fisher’s and

Bateson’s use of these terms illustrates a

distinction that statisticians draw between

‘‘quantitative’’ interaction and ‘‘qualita-

tive’’ interaction. In a quantitative inter-

action, presence of one factor is associated

with a larger or smaller effect of a second

factor, but the direction of effect is

unchanged. The presence of interaction

then depends on the way ‘‘effects’’ are

measured; if there is no interaction when

effects are measured by relative risks (as in

the logistic regression model), there would

be interaction if effects were to be

measured by differences in risk (as in an

additive risks model). And vice-versa.

This ambiguity contrasts with qualitative

interaction, where one factor reverses the

direction of effect of the other or, as in

Bateson’s epistasis, when presence of

one factor simply negates the effect of

another.

While qualitative interaction has clear

implications for mechanism, conventional

statistical tests for interaction do not test

for this. A test for reversal of direction of

effect has been proposed [28], but is rarely

used, and it is anyway arguable whether

such effects will be widespread in the

epidemiology of common diseases. Mask-

ing of effect is perhaps more plausible, but

it could be argued that formal proof of this

is impossible since this would require proof

of the hypothesis of no effect in a

subgroup. However, Berrington de Gon-

zález and Cox [29] argued that to take the

position that only effect reversal provides

evidence of biological interaction risks

overlooking important findings. In prac-

tice, the size of effects is crucial. In

experiments with congenic strains of mice,

observed effects are often so large that it

can be reasonable to infer their absence

when they are not observed. In the context

of T1D, such work has recently been

reviewed by Ridgway et al. [30], who

concluded: ‘‘Using congenic mice, gene–

gene interactions and gene masking effects

have been observed that make large

impacts on the T1D frequency whereas

these effects are mostly hidden in a

genetically segregating population such as

a backcross one or an F2 generation, or in

Figure 3. ROC curves prediction from loci in the MHC region. Prediction using six single
nucleotide polymorphisms (SNPs) is shown in red, while prediction using HLA-DRB1 is shown in
green. These curves (and those in Figures 4 and 5) were obtained by fitting logistic regression
models as described in Text S1 and calculating the proportions of cases and controls with
prediction scores exceeding each possible value. The dashed curve corresponds to the theoretical
curve for the polygenic multiplicative model with ls = 3.13.
doi:10.1371/journal.pgen.1000540.g003

Figure 4. ROC curve prediction from the SNPs outside the MHC region listed in
Supplementary Table 1 in Text S1 (in blue). The dashed curve corresponds to a polygenic
multiplicative model with ls = 1.48.
doi:10.1371/journal.pgen.1000540.g004
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conventional genetic association studies in

humans.’’

A model, it has been claimed, that does

allow a biological interpretation of quan-

titative interaction is the additive model

for risk, which corresponds (to a close

approximation) with the model of inde-

pendent sufficient causes [31] (for an

alternative view of this model see [32]).

Often, however, the model of independent

causes will be implausible a priori, and its

rejection would provide a ‘‘decidedly

limited etiological insight.’’ It often pro-

vides a decidedly poor fit to empirical

data, and the model usually preferred is

the logistic regression model, in which the

odds in favor of developing disease

(proportional to the risk, for rare diseases)

is given by the product of multiplicative

effects or, equivalently, by additive effects

on the log odds scale. To avoid confusion,

the term ‘‘additive model’’ will henceforth

refer to the model in which effects are

additive in risk. Unlike the additive risks

model, the logistic model has no simple

biological interpretation and is useful only

in so far as it provides an empirical

description of real phenomena, and quan-

titative interaction in this model will rarely

have a biological interpretation.

Despite the problems of interpreting

tests for quantitative interaction, statisti-

cally significant results are often heralded

as ‘‘significant’’ in a wider sense. An

example is the much cited work concern-

ing interaction of life stress and a poly-

morphism of the 5-HTT gene on depres-

sion [33]; although only quantitative

interaction tests are quoted, the figures

shown are suggestive of qualitative inter-

action (even though these only show fitted

values from regression equations). It seems

unlikely that the model of independent

causes would have fitted these data, but

one might question whether the a priori

support for this model would render its

falsification anything other than a ‘‘deci-

dely limited etiological insight.’’ Additional

evidence for the widespread overinterpre-

tation of quantitative interaction can be

found in the literature describing calcula-

tion of sample sizes necessary for its

detection [34–36].

Another reason for recent interest in

gene–gene interaction concerns its impli-

cations for association studies. It is argued

that the genetic effects currently being

detected are small, but that interaction

between genes is likely to be ubiquitous.

From these tenets it is concluded that

larger effects (and better prediction) will be

seen if we study genes two or more at a

time. A similar argument has been influ-

ential in generating interest in gene–

environment interactions. The effects of

environmental and behavioral factors on

disease risk are typically stronger than the

effects of genetic loci, but measuring them

in free-living populations is difficult and

prone to the well-documented problems of

bias, confounding, and reverse causality. It

has been argued that research into such

influences has reached its limits, effect sizes

being small in comparison with methodo-

logical errors [37]. Again a powerful

intuition is that, since genes and environ-

ment must interact, larger effects will be

found in genetically at-risk subgroups of

the population. However, such arguments

confuse statistical and biological interac-

tion; the fact that gene–gene and gene–

environment interaction, in the mechanis-

tic sense, are probably widespread does

not mean that statistical interaction in the

logistic regression model will be equally

widespread.

The possible role of interaction in the

detection of new associations is stressed in

emerging writings of computer scientists.

These approaches use measures of ‘‘syn-

ergy’’ derived from information theory

[38,39]. Synergy/interaction is judged to

be present when higher dimensional

contingency tables carry more information

than their lower order margins. The

precise measure of information synergy

proposed by these authors can be criti-

cized, but is quite close to a measure of

deviation from multiplicative effects. It can

be argued that a more satisfactory treat-

ment [40] leads to a definition of infor-

mation theoretic synergy that is precisely

the same as interaction in the logistic

regression model (see section 3 of Text S1).

Thus, entropy measures of synergy differ

little from standard tests for statistical

interaction in the logistic model and suffer

the same problems of interpretation. But

advocates of this approach have not been

immune to the tendency to confuse

mathematical and biological notions of

interaction. For example, Moore et al.

wrote [38]: ‘‘It is the promise of systems

biology to deliver an etiological under-

standing of epistasis.’’ There is often a

strong implication that genes that act

synergistically in this information theoretic

sense act in the same causal pathway—an

assumption that cannot be justified rigor-

ously.

In complex disease genetics, models for

additive and multiplicative contributions

to risk have both been discussed in some

detail. In the context of affected relative

pair linkage studies, Risch [41] considered

the additive model for risks as a close

approximation to the idea of ‘‘genetic

heterogeneity.’’ In contrast, he proposed

the multiplicative model for risks as a

model for epistasis and demonstrated that,

under this model, recurrence risks fall

away much more rapidly with increasing

distance of relationship than under the

additive model—as is observed for most

common complex diseases. Confusingly,

in the literature on association studies,

epistasis is more commonly identified with

deviation from the multiplicative model.

Epistasis has also been defined in terms of

departure from the multiplicative model

Figure 5. ROC curve prediction from all the SNPs listed in Supplementary Table 1 in
Text S1 (in blue). The prediction curve using the six MHC SNPs alone is shown in red, and the
dashed curve corresponds to a polygenic multiplicative model with ls = 4.75.
doi:10.1371/journal.pgen.1000540.g005

PLoS Genetics | www.plosgenetics.org 4 July 2009 | Volume 5 | Issue 7 | e1000540



for fitness in population genetics [27],

motivated by the same mathematics that

underlies the case-only test for gene–gene

interaction [42]: i.e., that under this

model, loci that are statistically indepen-

dent in the population remain so in cases.

Estimation of the joint effects of multi-

ple genes, or of genes and environment,

remains an important aim, but interpreta-

tion of statistical tests for presence or

absence of interaction are problematic.

The T1D example discussed below dem-

onstrates this.

T1D Analysis
The interaction between HLA and

PTPN22 illustrates the problem of inter-

pretation. As in previous reports [14,43–

46], the effect of PTPN22, measured by

relative risks, is greatest in the low-risk

HLA group (shown as the first entry in

each section of Table 1). This variation in

relative risks defines interaction in the

context of the multiplicative model, and is

measured by the ‘‘interaction’’ parame-

ters—the ratios of relative risks shown as

the second entry in each section of the

table. However, when main effects are

included and the results converted to

absolute risks (the final two entries in each

section of the table), it can be seen that the

additional risk due to PTPN22 is largest in

the high-risk HLA group. Since the risk

differences are not constant, there would

also be said to be interaction in the context

of the additive model, but it is in the

reverse direction. Neither the additive nor

the multiplicative model describe the joint

action of these two loci. Whereas deviation

from the additive model can be interpret-

ed as rejection of the model of indepen-

dent sufficient causes, rejection of the

multiplicative model has no biological

interpretation of which the author is

aware.

In logistic regression analysis of the

T1D data, there are many interactions

that achieve nominal (p,0.05) levels of

significance. But, with the exception of

strong interactions within the major histo-

compatibility complex (MHC), these in-

teractions are small and have a modest

effect on prediction, and their omission

leads to scarcely perceptible loss of pre-

diction. For example, the area under the

ROC curve for prediction using non-HLA

loci and allowing for interactions (Figure 4)

is 0.738, and this falls only to 0.733 when

all interaction terms are omitted.

Further analysis shows that the model

for additive accumulation of genetic risks

for T1D can be rejected beyond doubt,

but the multiplicative model, while not

perfect, provides a remarkably good ap-

proximation.

Conclusion

Many authors have recently comment-

ed on the modest predictive power of the

common disease susceptability loci cur-

rently emerging. However, here it is

suggested that, for most diseases, this

would remain the case even if all relevant

loci (including rare variants) were ulti-

mately discovered. It must also be said that

similar difficulties are faced when making

predictions on the basis of environmental

risk factors, as was recognized by epide-

miologists more than 30 years ago.

Prediction at the individual level is an

ambitious aim, particularly in the context

of disease prevention.

Similarly, the recent interest in interac-

tion in genetics has also been character-

ized by exaggerated expectations for the

inferences that can be drawn from epide-

miological data. These, too, were widely

prevalent in epidemiology thirty or more

years ago, but have since given way to

more limited expectations; aside from

rejection of a model in which two factors

operate through wholly unrelated mecha-

nisms, little can be deduced about mech-

anism from the observation of statistical

interaction—particularly when effects are

not large.

Supporting Information

Text S1 Prediction and interaction in

complex disease genetics: experience in

type 1 diabetes.

Found at: doi:10.1371/journal.pgen.

1000540.s001 (0.15 MB PDF)
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Interpretation of interaction: A review. Ann Appl

Stat 1: 371–385.
30. Ridgway W, Peterson L, Todd J, Rainbow D,

Healy B, et al. (2008) Gene-gene interactions in
the NOD mouse model of type 1 diabetes. In:

Unanue ER, McDevitt HO, eds. Immunopatho-

genesis of type 1 diabetes mellitus. London:
Elsevier, Volume 100 of Advances in Immunol-

ogy, chapter 6. pp 151–175.
31. Rothman K (1974) Synergy and antagonism in

cause–effect relationships. Am J Epidemiol 99:
385–388.

32. Vanderweele T, Robins J (2007) The identifica-

tion of synergism in the sufficient-component-
cause framework. Epidemiology 18: 329–339.

33. Caspi A, Sugden K, Moffitt T, Taylor A, Craig I,
et al. (2003) Influence of life stress on depression:

Moderation by a polymorphism in the 5-HTT

gene. Science 301: 386–389.
34. Hwang SJ, Beaty T, Liang K, Coresh J,

Khoury M (1994) Minimum sample size estima-
tion to detect gene-environment interaction in

case-control designs. Am J Epidemiol 140:
1029–1037.

35. Elston R, Idury R, Cardon L, Lichter J (1999)

The study of candidate genes in drig trials:
Sample size considerations. Stat Med 18:

741–751.
36. Dempfle A, Scherad A, Hein R, Beckmann L,

Change-Claude J, et al. (2008) Gene-environment

interactions for complex traits: Definitions, meth-

odological requirements and challenges. Eur J

Hum Genet 16: 1164–1172.

37. Taubes G (1996) Epidemiology faces its limits.

Science 269: 164–169.

38. Moore J, Gilbert J, Tsai CT, Chiang FT,

Holden T, et al. (2006) A flexible computational

framework for detecting, characterizing, and

interpreting statistical patterns of epistasis in

genetic studies of human disease susceptibility.

J Theor Biol 241: 252–261.

39. Anastasssious D (2007) Computational analysis of

the synergy among multiple interacting genes.

Mol Syst Biol 3: 1–8.

40. Good I (1963) Maximum entropy for hypothesis

formulation, especially for multidimensional con-

tingency tables. Ann Math Stat 34: 911–934.

41. Risch N (1990) Linkage strategies for genetically

complex traits. I. Multilocus models. Am J Hum

Genet 46: 222–228.

42. Piegorsch W, Weinberg C, Taylor J (1994) Non-

hierarchical logistic models and case-only designs

for assessing susceptibility in population-based

case-control studies. Stat Med 13: 153–162.

43. Hermann R, Lipponen K, Kiviniemi M,

Kakko T, Veijola R, et al. (2006) Lymphoid

tyrosine phosphatase (LYP/PTPN22) Arg620Trp

variant regulates insulin autoimmunity and

progression to type 1 diabetes. Diabetologia 49:

1198–1208.

44. Steck AK, Liu SY, McFann K, Barriga KJ,

Babu SR, et al. (2006) Association of the

PTPN22/LYP gene with type 1 diabetes. Pediatr

Diabetes 7: 274–278.

45. Smyth D, Cooper J, Howson J, Walker N,

Plagnol V, et al. (2008) PTPN22 Trp620 explains

the association of chromosome 1p13 with type 1

diabetes and shows a statistical interaction with

HLA class II genotypes. Diabetes 57: 1730–1737.

46. Bjørnvold M, Undlien DE, Joner G, Dahl-

Jørgensen K, Njøstad PR, et al. (2008) Joint

effects of HLA, INS, PTPN22 and CTLA4 genes

on the risk of type 1 diabetes. Diabetologia 51:

589–596.

PLoS Genetics | www.plosgenetics.org 6 July 2009 | Volume 5 | Issue 7 | e1000540


