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Abstract

Background: Alterations in autonomic nervous function are common in hemodialysis (HD) patients. Sympathetic as
well as parasympathetic activation may be associated with immune and inflammatory responses. We intended to
confirm a role of autonomous dysregulation for inflammation in HD patients.

Methods: 30 HD patients (including 15 diabetics) and 15 healthy controls were studied for heart rate variability
(HRV) using 5 min ECG recordings. Heart rate variability was estimated by time-domain parameters (the standard
deviation of the RR intervals (SDNN) and the percentage of pairs of adjacent RR intervals differing by >50 ms
(pPNN50)) and frequency-domain-analysis (high- and low-frequency variation of RR intervals, HF and LF).
Inflammation was detected as serum C-reactive Protein (CRP), IL-6 and circulating monocyte subpopulation
numbers. Immune cells were characterized by ACh receptor expression.

Results: Patients differed from controls in terms of age (68.0 [14.8] yrs vs. 58.0 [13.0] yrs, p < 0.001; Median [IQR])
and sex. However, HRV parameters were different in controls and HD patients (SDNN controls 34.0 [14.0] ms, HD
patients 15.5 [14.8] ms, p < 0.01). This finding was not restricted to patients with diabetes mellitus (diab), although
diabetes is an important cause of autonomous dysfunction (SDNN, diab 13.0 [14.0] ms, non-diab 18.0 [15.3] ms,
p=0.38). LF and HF were reduced by the same magnitude to 1/3 of those in controls. Patients suffered from chronic
inflammation (CRP 9.4 [12.9] mg/I, controls 1.6 [2.4] mg/l, p < 0.001) and expanded proinflammatory monocyte
subpopulations (CD14++/CD16+ cells: patients 41 [27]/ul, controls 24 [18]/ul, p < 0.01). ECG parameters did not
correlate with inflammation in patients, but monocyte ACh receptor expression was enhanced, indicating
potentially elevated responsiveness of this cell type to parasympathetic regulation.

Conclusions: HD patients have strongly impaired HRV. Chronic inflammation is not related to autonomous
dysfunction, although monocytes express the ACh receptor at enhanced density making them potentially more
sensitive to parasympathetic effects.

Trial registration: This study was listed with ClinicalTrials.gov (NCT00878033).
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Background
Cardiovascular mortality in end-stage renal disease
(ESRD) patients is high while classical (Framingham) risk
factors are insufficient to fully explain the event rates [1].
The high level of inflammation was established as an
additional risk factor [2, 3] and may be a metabolic conse-
quence of uremia. Several immune-active proteins are
eliminated through the kidneys and retained in chronic
renal failure. Nevertheless, the pathogenesis of inflamma-
tion in renal failure is not fully understood and monocytes
of the peripheral blood are important contributors. Sizes
of several functionally and morphologically defined sub-
populations differ from healthy individuals with elevated
circulating numbers of pro-inflammatory cells. Monocyte
subpopulation numbers are predictive for cardiovascular
event rate and all-cause mortality [4]. Three functionally
distinct cell populations, Mo1l, Mo2 and Mo3 (Fig. 1) can
be distinguished, differing in expression density of
the endotoxin receptor CD14 and the immunoglobu-
lin Fc segment receptor CD16. Mo2 have particular
pro-inflammatory properties and are linked to ad-
verse outcome in dialysis patients [4].

The autonomic nervous system might directly influ-
ence activation of monocytes through f3-adrenoceptors
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or receptors for acetylcholine (AchR). Stimulation of
3-adrenoceptors downregulates the production of cyto-
kines such as IL-12, IL-18 [5] and MIP-1 [6], and adhesion
molecules ICAM-1, CD40 and CD14 [7] while other se-
cretion products (IL-8,[8]) or functional enzymes (matrix
metalloproteinases,[9]) are upregulated. Stimulation of the
AchR inhibits the pro-inflammatory response of macro-
phages [10] and monocytes [11]. This suggests that the
function of monocytes is tightly controlled by the auto-
nomic nervous system.

Renal failure strongly influences the autonomic ner-
vous system even in early stages of chronic kidney dis-
ease (CKD). Several studies documented a sympathetic
overstimulation (reviewed in [12]) in dialysis patients
that reduces the expression of adrenoceptors on target
cells in addition to uremia that reduces the expression of
3-adrenoceptors [13] itself. The function of the parasym-
pathetic axis is less well studied. Work from the 1980s
indicated parasympathetic dysfunction, however, these
studies used only classical cardiovascular reflex mecha-
nisms (baroreceptor reflex, valsalva-technique) [14].

Few studies addressed autonomous nervous dysfunction
in chronic dialysis patients by assessing the variability of
heart frequency [7, 15, 16]. In general, heart rate variability
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Fig. 1 Monocyte subpopulations in a flow cytometry read-out. All cells showed monocyte characteristics, however, the populations differ in their
expression density of CD14 and CD16. The Mo2 cell type is linked to enhanced inflammation and adverse clinical outcome in dialysis patients [4]
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(HRV) is sensitive to extracorporeal treatment. The reduc-
tion of intravascular volume by ultrafiltration modulates
the frequency domain parameters low frequency power
(LF) and high-frequency (HF) power [17] which might be
a consequence of sympathetic counterregulation of vol-
ume depletion. Recently, it was shown in CKD patients,
that HRV is a predictor of adverse outcomes [18, 19] and
is associated with left ventricular hypertrophy [20, 21].

Effects of the autonomic nerve system on cardiac
function can be diagnosed using time-domain (SDNN
and pNNb50), frequency-domain (HF and LF) and non-
linear (erratic) HRV [22]. Recently, the interpretation of
LF and LF/HF ratio as indices of sympathetic cardiac
control and autonomic balance, respectively, has been
challenged and it was suggested that the HRV power
spectrum, including its LF component, is mainly deter-
mined by the parasympathetic system. LF power may ra-
ther provide an index of baroreflex function [23].

This study addresses the role of autonomous dysregula-
tion for inflammation in ESRD. Autonomous neuropathy
is common in diabetic patients [24, 25] and the prevalence
of diabetes mellitus is high in German dialysis populations
[26]. Therefore, we included a comparison group with dia-
betic hemodialysis patients to evaluate autonomous neur-
opathy in relation to the presence of diabetes mellitus. We
investigated the susceptibility of different cell populations
to signals mediated by acetylcholine and the relation be-
tween autonomous nerve dysfunction measured by ECG
analysis and the systemic inflammation measured by
humoral and cellular markers.

Methods

Study subjects

We studied 30 ESRD patients on hemodialysis (HD) and
15 healthy control individuals. Among the patients, 15
were diabetic (self-reported diabetes mellitus and antidi-
abetic oral (20 %) or parenteral (80 %) medication). All
subjects were studied cross-sectionally at one visit. The
patients were selected from a single German non-profit
out-patient dialysis center with ESRD for at least
3 months and an age above 18 years with stable sinus
rhythm. Exclusion criteria were clinical signs of acute in-
fection, active malignancy, CRP above 50 mg/L, presence
of a cardiac pacemaker, atrial fibrillation, heart trans-
plantation and immunosuppressive medication. Healthy
controls had no known history of renal or heart disease
and values within the normal range for serum creatinine,
urea, CRP, BNP, pH and bicarbonate.

Study procedures

Patients and control individuals were assessed for age,
body height, body weight and waist-to-hip ratio. A rest-
ing blood pressure was determined using an automated
oscillometric system (dinamap, GE Systems). Patients
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were interviewed for dialysis vintage and residual diuresis
and data were consolidated using the patient’s files. Ultra-
filtration volume was taken from the dialysis monitor
readings and the ultrafiltration rate was calculated from
the ultrafiltration volume and the effective dialysis time.

The following parameters were measured by routine
laboratory methods in an accredited diagnostic labora-
tory from blood samples drawn before the first dialysis
of the week: creatinine, urea, cholesterol, HbAlc, CRP,
interleukin-6 (IL-6), Bicarbonate, brain natriuretic pep-
tide (BNP) and an automated blood differential count.
HRYV analysis was performed once within 2 weeks before
to 2 weeks after the blood samples.

For analysis of monocytes, lymphocytes and B-cells,
lithium heparinized whole blood was washed twice in
phosphate-buffered saline/2 mM EDTA/0.5 % bovine serum
albumin/0.07 % sodium azide. Monocyte staining was per-
formed using anti-CD86 PeCy5 (clone IT2.2, Beckman
Coulter, Krefeld, Germany), -CD14 PeCy7 (clone MPhi9,
Becton Dickinson, Heidelberg, Germany), —CD143 FITC
(clone 9B9, AbD Serotec, Diisseldorf, Germany), -CD16
APC (clone CBI16, eBioscience), —-CD19 (clone SJ24Cl,
eBioscience) and -CD15 eF450 (clone HI9S8, ebioscience)
antibodies. Lymphocyte and B-cell staining comprised anti-
CD3 FITC (clone BW264/56, Miltenyi Biotec, Bergisch-
Gladbach, Germany), —-CD56 V450 (clone B159, BD,
Heidelberg, Germany), -CD19 APCeF780 (clone HIB19,
ebioscience). For identification of AChR on peripheral
blood leucocytes nicotinic acetylcholine receptor alpha sub-
unit (clone G10, Biozol, Eching, Germany) was used. Speci-
ficity of this antibody has been evaluated earlier [27-29].
The FACS staining protocols included fluorescence-minus-
one-controls. To take unspecific binding by IgG into ac-
count, isotype controls were used to allow for better cor-
rection of gating. Specifity of staining was confirmed
by use of isotypic IgG1 staining (Biozol, Eching, Germany).
R-Phycoerythrin labelling of AChR as well as the corre-
sponding Isotype control (IgG) was done using the LYNX
RAPID RPE Antibody Conjugation Kit® (Abd Serotec,
Diisseldorf, Germany).

By flow cytometry (MACSQuant, Miltenyi Biotech,
Bergisch-Gladbach, Germany), monocytes were defined as
CD15-CD19-CD86+. Subpopulations were divided accord-
ing to the expression of CD14 and CD16 (CD14++CD16-:
Mol, CD14++CD16+: Mo2, CD14 + CD16+: Mo3). Abso-
lute cell numbers were calculated from the relative num-
bers detected by flow cytometry and the absolute
monocyte numbers detected by automated blood dif-
ferential count. Expression density of ACE (CD143) was
analyzed by measuring the median fluorescence intensity
on Mo2 cells. Expression density of the AChR was ana-
lyzed by measuring the median fluorescence intensity on
all cells that were positive for either CD14, CD3, or CD19.
The gating strategy included doublets exclusion and
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characterisation of leukocyte subsets by staining with spe-
cific markers, i.e. anti-CD3 for T-cell, anti-CD19 for B-cell
and anti-CD86 for monocyte gating (Figs. 2, 3 and 4).

A 12-lead resting 20-min ECG was recorded on a
CardioControl Working Station (Welch Allyn, Delft, the
Netherlands) after a resting period in the supine position
of 220 min. Throughout the ECG, subjects were asked
to breathe at 15 breaths/min guided by a visual metro-
nome to standardize the influence of the respiratory rate
on spectral HRV parameters. It is known that naturally
occurring fluid shifts in dialysis patients within the inter-
dialytic interval may influence ECG recordings. For ex-
ample, it has been demonstrated that the LF/HF ratio
changes over time when measured before, during, or
after a dialysis session [16]. Therefore, ECG recordings
were executed after the hemodialysis sessions with all
patients being at dry weight. For the same reason,
20-min ECG-duration was chosen instead of conven-
tional 24 h recordings. Although the use of time domain
parameters has been recommended by the Task Force of
The European Society of Cardiology and The North
American Society of Pacing and Electrophysiology for
long-term ECGs only [22], several studies found good
ability of SDNN for prediction of mortality also from
short-segment ECGs [30, 31].

All ECGs were processed by the Modular ECG Analysis
System (MEANS) [32] to automatically obtain the location
and type of the QRS complexes of the 20-min ECG. A
visual check was performed by a medical student which
was supervised by a cardiologist. For further analyses,
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HRYV derived from the best 5-min segment of the 20-min
ECG was used according to the following quality criteria:
proportion of abnormal beats; mean and variance station-
arity score of the tachogram. Information on QRS com-
plexes was used to compute standard time and frequency
domain parameters of HRV for 5-min segments of the
ECG according to the current guidelines for the analysis
of HRV [22]. Artefacts and ectopic beats were replaced by
interpolated normal sinus beats. We used the standard de-
viation of normal intervals (SDNN in ms) and the number
of pairs of adjacent NN intervals differing by more than
50 ms divided by the total number of all NN intervals
(pPNN50 in %) — both time domain parameters — and the
frequency domain parameters low frequency power
(LF) (0.04 to <0.15 Hz), high-frequency (HF) power
(0.15-0.4 Hz), the ratio of LF to HF (LF/HF) and very
low frequency (VLF) power (<0-04 Hz). To calculate fre-
quency domain parameters, tachograms of RR intervals
were adjusted for linear trends, tapered and zero-padded
and a Fast Fourier transformation was employed.

Statistical analysis

Data were analysed using the IBM SPSS Statistics 22
software package (IBM Corporation 2013, Somer, NY,
USA). Univariate analyses of metric outcomes were
performed with the Kruskal-Wallis test with Dunn-
Bonferroni post hoc test. Contingency tables were tested
using Chi” tests. Results were adjusted for multiple test-
ing. Data are presented as median [Inter quartile range

(IQR)].
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Table 1 Demographic and anthropomorphometric information on study participants
Controls Diabetic HD Nondiabetic HD All HD
N 15 14 14 28
Age (years) 580 [13.0] 70.5 [9.75]*** 62.0 [17.25] 68.0 [14.75]
Gender (w/m) 10/5 5/9 717 12/16
Dialysis vintage (years) n/a 35 [3.2] 52 [5.9] 43 [5.8]
BMI 26.8 [5.2] 30.1 [6.0] 24.5 [64] 27.5[8.2]
(kg/m?)
Waist-to-hip-ratio (WTH) 1.0 [0.28] 1.02 [0.14] 097 [0.18] 1.0 [0.16]

Blood pressure s/d (mmHg) 130.0 [10.0)/83.0 [15.0]

1215 [42.8]/70.5 [28.0]**

120.5 [44.8]/68.5 [13.3** 120.5 [39.01/68.5 [23.5]

**=p <0.01 vs. controls; ***=p < 0.001 vs. controls; by nonparametric Kruskal-Wallis and Dunn’s test. Statistical tests were done for the three groups controls,

diabetic and nondiabetic patients. The column “all HD” remained untested

We further calculated gender-, age- and heart rate-
adjusted means (95 % confidence interval (CI)) of HRV
parameters by diabetic HD, nondiabetic HD and healthy
controls using linear regression models. The F-test was
used to test the difference in adjusted means of HRV
between diabetic HD, nondiabetic HD and healthy con-
trols. Multifactorial analyses were undertaken using SAS
9.3 (SAS Institute, Cary, NC, USA).

Sample size estimation was based on the putative dif-
ference of SDNN between ESRD patients and healthy
controls. According to previous findings a difference of
66 ms was established [33]. The study should be able to
show this difference at a sample size of > 6 in each ob-
servation group (controls, diabetic and non-diabetic HD
patients) with a power of 0.95 and an « error probability
of 0.05. For sample size estimation, G*Power Version
3.1.9.2 [34, 35] was used.

Results

Study subjects

Causes of ESRD were: 15 patients: diabetic nephropathy,
4: glomerulonephritis, 3: nephrosclerosis, 3: interstitial
disease, 3: unknown origin, 1: polycystic kidney disease,
1: thrombotic microangiopathy. One diabetic patient had
to be excluded from analysis as his ECG registrations

Table 2 Treatment associated parameters of the dialysis patients

could not be evaluated for technical reasons. We ex-
cluded one further patient from HRV analyses because
of erratic heart rhythm, which was detected by poincaré
plot analysis [36]. Subject demographics are listed in
Table 1. All patients were treated thrice weekly for at
least 4 h with similar single-use synthetic high-flux dia-
lyzers and ultrapure dialysate and heparinate anticoagu-
lation. Further treatment parameters and cardiovascular
assessments are reported in Table 2.

Routine laboratory data

As expected, there was a large difference in creatinine
and urea values. However, also CRP and IL-6 values
were significantly higher in dialysis patients. Further-
more, a large range was noted for BNP values but none
of the patients had clinical signs of heart failure. Of note,
the diabetic dialysis patients had a balanced glucose me-
tabolism and HbAlc was within the goal range in most
of the participants. All results are listed in Table 3.

ECG analysis

Time-domain parameters (SDNN, pNN50) and frequency-
domain parameters (VLE, LF, HF as well as the LF/HF
ratio) are reported in Table 4. There were marked differ-
ences in all ECG parameters between patients and healthy

Diabetic HD Nondiabetic HD All HD
Patients with diuresis < 200 ml/d (n) 5/14 8/14 13/28
Residual diuresis (ml/d) 400 [563] 100 [525] 250 [500]
Ultrafiltration volume (per session) 3000 [1000] 1800 [2750] 2750 [1600]
Ultrafiltration rate (ml/h) 506 [427] 416 [452] 431 [425]
Reduction in body weight (kg) 23 1[0.7] 16 [2.1] 225 [1.47]
Predialysis blood pressure (mmHg) 121.5 [42.8]/70.5 [28.0] 120.5 [44.8]/68.5 [13.3] 120.5 [39.01/68.5 [23.5]
Predialysis heart rate (/min) 745 [13.5] 72.0[21.3] 74 [15.8]
Postdialysis blood pressure (mmHg) 126.5 [40.8]/67.0 [17.8] 115.0 [35.5]/66.0 [16.0] 120.0 [43.0]/66.0 [15.0]
Postdialysis heart rate (/min) 73 [14] 76 [21.3] 76 [16.3]

There were no statistically significant differences between diabetic and nondiabetic dialysis patients. [Chi*-test, Mann-Whitney test]
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Table 3 Routine laboratory results
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Controls Diabetic HD Nondiabetic HD All HD

N=15 N=14 N=14 N=28
Creatinine (umol/I) 71.0 [23.0] 531.0 [298.01** 887.0 [246.5]*** 726.5 [400.5]
Urea (mmol/l) 50[1.5] 18.2 [8.6]*** 17.9 [9.3]*** 179 [8.7]
Cholesterol (mmol/l) 49 [1.3] 46 [2.2] 47 1.7] 46 [1.7]
HbA1c (%) 5.5 [04] 59 [21] 55[05] 56 1[08]
CRP (mg/I) 1.6 [24] 12.6 [9.6]*** 48 [13.0] 94 [129]
IL-6 (pg/ml) 1.1 [1.1] 9.7 [12.8]*** 4.7 [6.77%* 6.9 [12.6]
Bicarbonate (mmol/l) 259 [3.5] 228 [1.71* 222 [3.9]** 223 [2.6]
BNP (pg/ml) 260 [35.0] 287.0 [695.8]*** 113.0 [420.8]** 262.0 [401.3]

In some individuals, CRP levels were reported by the lab as < 1 mg/l and IL-6 levels as < 0.5 pg/ml. These data points were entered as 0.5 mg/l and 0.3 pg/ml, respectively.
*=p <0.05 vs. controls; ** =p < 0.01 vs. controls; ***=p < 0.001 vs. controls by Kruskal-Wallis and Dunn’s test. Statistical tests were done for the three groups

controls, diabetic and nondiabetic patients. The column “all HD” remained untested

controls. However, diabetic and non-diabetic hemodialysis
patients did not differ with regard to the ECG parameters.
After correction for age and gender, differences in heart
rate, SDNN and VLF remained significant (Additional
file 1: Table S1). Also, after additional correction for heart
rate, results were unchanged (Table 5).

Monocyte parameters

Results of total monocyte number, monocyte subpopula-
tion quantification (Mol, Mo2, Mo3) and monocyte
expression density of CD143 (angiotensin converting en-
zyme) are reported in Table 6. Mo2 and Mo3 popula-
tions were expanded in diabetic and non-diabetic
dialysis patients. There was a higher expression of
CD143 on Mo2 and Mo3 cells in dialysis patients com-
pared to healthy individuals, albeit it did not reach stat-
istical significance.

Table 7 reports AChR density on monocytes (as
defined by the coexpression of CD86 and CD14), B-
lymphocytes (CD19+) and T-lymphocytes (CD3+).
Monocytes showed a higher expression of the AChR
in dialysis patients compared to controls. In contrast,

the expression of AChR was not different on B- or T-
lymphocytes.

Correlation analysis

Dialysis treatment parameters as well as hemodynamic
parameters before and after a dialysis session were not
related to the ECG analysis results. Also, ECG-derived
markers of autonomous regulation were only weakly
correlated to the monocyte subpopulation measure-
ments (Table 8).

Discussion
Heart rate variability
ECG analysis revealed strong signs of autonomous
dysfunction. In both diabetic and non-diabetic dialysis
patients the time-domain parameters of HRV analysis
were severely impaired. This means that there is strong
autonomous neuropathy that seems to be independent
from the presence of diabetes mellitus.

In addition, the frequency-domain parameters were also
strongly impaired. Customarily, LF was thought to reflect
sympathetic influence on cardiac function whereas HF

Table 4 Raw means + SD of ECG analysis parameters in healthy controls and dialysis patients

Controls Diabetic HD Nondiabetic HD All HD

(N=15) (N=14) (N=14) (N=28)
Heart rate (/min) 69.0 [12.0] 780 [14.01* 785 [283] 785 [19.5]
SDNN (ms) 340 [14.0] 130 [14.01% 180 [15.3]* 15.5 [14.8]
PNN50 (%) 30 [80] 05 [1.3] 0.0 [1.3)* 00 [1.0]
VLF (s° x107) 0.72 [0.87] 0.12 [0217** 0.20 [0.35]** 0.12 [0.29]
LF (s* x107) 0.39 [0.29] 0.035 [0.21]* 0.076 [0.20]* 0.052 [0.18]
HF (s> x107%) 0.27 [0.22] 008 [0.17%* 0.06 [0.117% 0.07 [0.09]
LF/HF 1.1 013] 08 [1.0] 07 122 08012]

*=p <0.05 vs. controls; **=p < 0.01 vs. controls; ***=p < 0.001 vs. controls; by nonparametric Kruskal-Wallis and Dunn’s test. Statistical tests were done for the
three groups controls, diabetic and nondiabetic patients. The column “all HD” remained untested
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Table 5 Gender-, age and heart rate adjusted means (95 % Cl) of ECG analysis parameters in healthy controls and dialysis patients

Controls
(N=15)

Diabetic HD
(N=14)

Nondiabetic HD
(N=14)

Heart rate (/min) 65.37 (57.50-73.25)

SDNN? (ms) 31.11 (22.53-42.96)
PNN50 (%) 6.13 (0-12.57)
VLF? (52 x107) 0.57 (0.30-1.08)
LF® (s* x1079) 032 (0.13-0.76)
HF? (s> x1072) 0.27 (0.14-0.52)
LF/HF® 119 (065-2.17)

79.89 (71.69-88.10)
17.03 (12.34-2349)
5.36 (0-11.78)

0.14 (0.07-0.27)*
0.08 (0.03-0.19)
0.10 (0.05-0.20)
0.76 (041-1.38)

78.79 (71.89-85.70)*
17.75 (13.55-23.25)*
2.28 (0-7.67)

0.20 (0.12-0.34)
0.09 (0.04-0.18)
0.07 (0.04-0.12)*
1.27 (0.77-2.11)

*=p <0.05 vs. controls; 95 % Cl: 95 % Confidence Interval.

“Because of skewness of the distribution of the HRV parameters we calculated geometric means (+ 95 % Cl)

variation should be a marker of parasympathetic influ-
ences. Therefore, the ratio of LF to HF was considered to
reflect the balance between sympathetic and vagal activity.
Recently, this interpretation has been challenged and it
was suggested that the HRV power spectrum is mainly de-
termined by the parasympathetic system [37]. LF power
may rather provide an index of baroreflex function [23].
Earlier studies showed that patients with chronic renal
failure have a strong sympathetic overactivity [12] but
little is known about parasympathetic activity in these
individuals. Our data indicate that parasympathetic acti-
vation seems to be strongly diminished. Most likely, our
findings result from the unexpectedly strong autono-
mous neuropathy, which renders the frequency-domain
analysis inconclusive. Of note, the LF/HF ratio was not
different between dialysis patients and controls, not even
when analyzing only diabetic dialysis patients. This sup-
ports the notion that the global changes by renal failure
disable the frequency-domain analysis. However, it has
been revealed in a validation study with pharmacological
blocking that LF/HF ratio is only weakly correlated with
robust measures of autonomic tone [38]. Therefore,
these results should be interpreted with caution. Add-
itionally, the use of frequency-domain parameters has

Table 6 Monocyte and flow cytometry parameters
Controls  Diabetic HD Nondiabetic HD All HD

Monocytes (/ul) 480 [210] 600 [430] 535 [350] 565 [370]
Mo1 (/ul) 374 [187] 441 [249] 354 [290] 428 [260]
Mo2 (/ul) 24 18] 40 [59] 41 [21]* 41 [27]
Mo3 (/ul) 76 [43] 121 [104] 126 [69]* 126 [90]
CD143+/Mo1 (MFI) 1.1 [1.8]  1.5[6.0] 2.1 [86] 1.8 [7.5]
CD143+/Mo2 (MFl) 22[1.8] 29 [7.1] 4.3 [104] 3.7 [8.0]
CD143+/Mo3 (MFI) 27 [14] 4.2 [5.0] 50 [5.6]** 4.3 [5.0]

*=p <0.05 vs. controls; **=p < 0.01 vs. controls by Kruskal-Wallis and Dunn’s
test. Statistical tests were done for the three groups controls, diabetic and
non-diabetic patients. The column “all HD" remained untested. MFI: Mean
fluorescence intensity

been criticized recently. Time-domain parameters are
considered more robust since they can be estimated with
smaller bias and considerably smaller variability than
frequency domain parameters [39].

The conclusion that the specific balance between sym-
pathetic and vagal tone in hemodialysis patients cannot
be reliably measured by ECG analysis while reduced
heart rate variability is a useful measure of autonomic
dysfunction in general is compatible with recent publica-
tions on this topic. Kurata et al. [33] found high cat-
echolamine levels as signs of sympathetic overactivation
together with reduced heart rate variability (low SDNN).

A study by Fukuta et al. addressed heart rate variability
in 120 chronic hemodialysis patients with similar age
and dialysis vintage as in our patients [40]. They used a
different ECG analysis technique based on 24 h Holter
monitoring on the day between dialysis treatments.
Therefore, the absolute measurements for time- and
frequency-domain parameters cannot be compared to
our data. Nevertheless, their findings are important to
our study, since they demonstrated impaired R-R vari-
ation and low values for LF and HF variation in their
patients. Furthermore, patients with the strongest im-
pairment in heart rate variability were more likely to die
from cardiovascular causes within the observation
period of 26 months.

A recent study [41] showed that the initiation of
hemodialysis therapy in advanced stage 4-5 CKD pa-
tients improves several measures of heart rate variability.
Thus, uremic intoxication in general seems to play an
important role.

The lack of echocardiographic data might appear as a
significant limitation. However, none of the patients of
the study had any sign of heart failure. Additionally,
BNP measures in dialysis patients with echocardiogra-
phically diagnosed heart failure were more than 5 times
higher than in our population [42] and BNP levels in
our population are within a range that was identified as
beneficial in a prospective 2-year mortality analysis [43].
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Table 7 Expression density of acetylcholine receptor (AChR) on CD14+ monocytes, CD3+ T-cells, and CD19+ B-cells

Controls Diabetic HD Nondiabetic HD All HD
AChR/CD14+ Monocytes (MFI) 7.0 [1.8] 154 [6.9]* 15.3 [3.3** 154 [5.2]
AChR/CD3+ T-Lymphocytes (MFI) 14.3 [8.3] 159 [5.3] 117 [53] 13.1 [5.9]
AChR/CD19+ B- Lymphocytes (MFI) 10.8 [3.0] 133 [5.3] 14.3 [84] 14.2 [5.7]

*=p <0.05 vs. controls; **p < 0.01 vs. controls by Kruskal-Wallis and Dunn’s test. Statistical tests were done for the three groups controls, diabetic and nondiabetic

patients. The column “all HD” remained untested. MFI: Mean fluorescence intensity

Inflammation

Preliminary data from Psychari et al. [44] suggested a re-
lation between markers of autonomous dysfunction and
systemic inflammation. They demonstrated a correlation
between SDNN values and IL-6 plasma levels in patients
with CKD 3-4. In addition, the expression of adrenocep-
tors and AchRs on monocytes and the multiple effects
that sympathetic [5, 6, 8, 9, 45] as well as parasympa-
thetic [11] stimulation has on these cells, further sup-
ports this hypothesis. We could confirm earlier data on
chronic inflammation and its extent in dialysis patients
[4, 46, 47]. The inflammation markers CRP and IL-6
were greatly enhanced in both patient groups and the
pro-inflammatory monocyte subpopulations were ex-
panded. Furthermore, the expression of the angiotensin
converting enzyme ACE on the surface of monocytes
tended to be higher in dialysis patients compared to
healthy controls. This also confirms earlier findings on
subpopulation alterations and their enhanced expression
of ACE [48-50]. Since ACE expression on Mo2 cells is
related to adverse outcome and enhanced cardiovascular
disease in dialysis patients, these cells are thought to
play a causal role in the progression of atherosclerosis.
However, our study is limited by the different cardiovas-
cular medication in cases and controls. The high burden
of cardiovascular disease in ESRD makes it unlikely to
recruit dialysis patients without cardiovascular medica-
tion. Therefore, confounding immunomodulatory effects
can not be entirely ruled out. Also, heparinate anticoa-
gulation has been discussed to posess anti-inflammatory
effects. There is some low level clinical evidence in
asthma patients with mixed results. Effects in other in-
flammatory diseases have been equivocal [51, 52]. How-
ever, it cannot be entirely ruled out that heparinate
anticoagulation might influence the immune system, es-
pecially in vitro and in supraphysiological doses higher
than in the dialysis circuit.

Interestingly, expression of the AchR is significantly
elevated in CD14+ Monocytes in ESRD patients com-
pared to controls. This is not the case for other cell
populations such as CD3+ T-Lymphocytes and CD19+
B-Lymphocytes. It might appear as a limitation of our
study, that antibody specificity was not tested with
alternative approaches such as knockout cells/mice in
addition to previous investigations [27-29].

However, our analysis showed that there was no relation
between markers of autonomous dysfunction and the stud-
ied markers of systemic and cellular inflammation. Add-
itionally, we have at least no hint, that autonomic nerve
dysfunction might relevantly influence monocyte subpopu-
lation composition in dialysis patients. Although negative,
this is an important clarification in the scientific debate.
Monocyte subpopulation composition may be influenced by
several conditions in chronic renal failure. The altered bal-
ance of sympathetic and parasympathetic tone can now be
excluded as a major regulator of monocyte differentiation.

Conclusions
In conclusion, dialysis patients show signs of autonomic de-
rangement in their heart rate variability. Because their heart
rate is elevated, they are likely to have a sympathovagal bal-
ance that is shifted towards the sympathetic side. A possible
explanation of the low amount of heart rate variability is a
lowered baroreflex sensitivity. However, such an explan-
ation remains speculative because baroreflex sensitivity was
not measured in our study. Further studies that include
baroreflex measurements are needed to investigate this.
Second, there is no significant correlation to the studied
markers of cellular and humoral inflammation. However,
monocyte function might be associated to sympathetic
tone as indicated by the expression density of the acetyl-
choline receptor exclusively on these cells. Further studies
including functional assays are needed to further investi-
gate this possibility.

Table 8 Linear regression coefficients between ECG parameters and monocyte subpopulation counts in dialysis patients

Heart rate (/min) SDNN (ms) VLF (x107%/s) LF (x107%/s) HF (x107%/s)
Mo1 (/ul) 0.09* 0.07 0.07 002 005
Mo2 (/ul) 0.10* 0.14* 0.12 003 0.06
Mo3 (/ul) 0.11* 0.23* 0.06 002 0.15*

*=p <005
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