
Synthetic and Systems Biotechnology 6 (2021) 224–230

2405-805X/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Classification of protein domains based on their three-dimensional 
shapes (CPD3DS) 

Zhaochang Yang a,1, Mingkang Liu a,1, Bin Wang b, Beibei Wang a,c,* 

a School of Life Science and Technology, University of Electronic Science and Technology of China, China 
b School of Information and Software Engineering, University of Electronic Science and Technology of China, China 
c Centre for Informational Biology, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu, Sichuan, 611731, China   

A R T I C L E  I N F O   

Keywords: 
3D-zernike descriptors 
K-means 
Shape similarity 
Domain surface shapes 
Structural similarity 

A B S T R A C T   

Protein design has become a powerful method to expand the number of natural proteins and design customized 
proteins according to demands. Domain-based protein design spares the need to create novel elements from 
scratch, which makes it a more efficient strategy than scratch-based protein design in designing multi-domain 
proteins, protein complexes and biomaterials. As the surface shape plays a central role in domain-domain and 
protein-protein interactions, a global map of the surface shapes of all domains should be very beneficial for 
domain-based protein design. Therefore, in this study, we characterized the surface shapes of protein domains, 
collected from CATH and SCOP databases, with their 3D-Zernike descriptors (3DZDs). Then similarities of 
domain shape features were identified, and all domains were classified accordingly. The preferences of the 
combinations of domains between different clusters were analyzed in natural proteins from the Protein Data 
Bank. A user-friendly website, termed CPD3DS, was also developed for storage, retrieval, analyses and visuali-
zation of our results. This work not only provides an overall view of protein domain shapes by showing their 
variety and similarities, but also opens up a new avenue to understand the properties of protein structural do-
mains, and design principles of protein architectures.   

1. Introduction 

Being involved in almost all of the physiological processes in living 
cells, proteins are nano-machines whose functions are determined, in 
principle, by their three-dimensional (3D) structures [1]. Proteins 
consist of structural domains, which are evolutionarily and functionally 
conserved units, and fold their tertiary structures independently from 
the rest of the protein chains [2]. Duplication, deletion or recombination 
of the genes of domains are the dominant mechanisms to increase the 
protein repertoire in the process of evolution [3–5]. Domain-based 
protein design, such as domain swapping [6,7], has been used to make 
chimeric proteins. In principle, domain-based protein design requires 
much less work than scratch-based protein design, and is more suitable 
for designing multi-domain protein systems and biomaterials [8]. 

Numerous domain databases have been developed to identify do-
mains, such as CATH (Class, Architecture, Topology, Homology) [9], 
Structural Classification of Proteins (SCOP) [10], Pfam [11], DALI [12], 

3Dee [13], SMART [14], CDD [15] and ProDom [16]. Among these 
databases, SCOP, CATH, and Pfam are the best in the maintenance and 
update. So far, there are more than 500,000 domains in CATH, more 
than 700,000 domains in SCOP and about 6400 domains in Pfam. 
Apparently, the number of domains [17] is far more than the number of 
amino acids, which is only 20. What is more, the understanding of 
properties of domains is far less than that of amino acids, which have 
been best characterized. Except for a few well-known domains (such as 
the PH, SH3, and PDZ domains), however, most of the domains were 
poorly understood [18]. It is very challenging to characterize such a 
large number of domains systematically. Consequently, the large num-
ber and complexity of domains make domain-based protein design more 
difficult to perform than scratch-based protein design currently. 
Therefore, an overall understanding of the properties of domains may 
make the domain-based protein design easier and more efficient. 

Classification is a commonly used method to reduce the dimension-
ality of data. The domains were classified according to their sequences in 
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Pfam and folds (secondary structural elements) in CATH and SCOP. The 
advantage of the sequence-based approach is that no structural infor-
mation is required, but sequence similarities can be extremely low be-
tween proteins that share very similar structures [1]. The fold-based 
approach provides the structural similarity, but the conservation of folds 
makes it difficult to do a fine classification and to provide a global map 
of the domain universe. 

In this study, we tried to characterize the surface shapes of all do-
mains and classify domains with their global surface shape similarity. 
Protein surface shapes are more relevant to their functions and protein- 
protein interactions than their sequences and folds. The 3D surface 
shapes of proteins have been characterized and classified into a simi-
larity space [19]. Protein functional surfaces, the surfaces of 
ligand-bound regions, have also been classified using their attributes, 
such as hydrophobic strength, charge concentration, and sphericity 
[20]. To our knowledge, there is no attempt to use the 3D surface shape 
for domain classification so far. 

We presented the surface shapes of domains with the 3D-Zernike 
descriptors (3DZDs) [21], which has been used to compare protein 
shapes [22] and electron microscopy maps [23] efficiently. After 
de-redundancy, domains from SCOP and CATH databases were catego-
rized based on their 3DZDs. The distribution of all clusters may provide a 
global map of the domain shapes. The frequencies of domain combina-
tions in natural proteins were also analyzed to understand principles of 
natural protein architectures. A webserver, termed CPD3DS, was also 
developed to store, retrieve, and visualize our results. 

2. Methods 

2.1. Data acquisition 

About 130,000 entries of domain information were collected from 
CATH [9], SCOP and SCOP 2 [10]. Since the dataset is highly redundant, 
we firstly removed invalid data, and then removed redundant domains 
with a similarity threshold of 80% using Cd-hit [24]. The procedure 
finally yielded 33,455 domains. 

2.2. Extracting domain surface features 

The domain surfaces were characterized by 3DZDs [21], performed 
by the 3D-surfer webserver [25]. Fig. 1 shows the principle of 3DZD. 
Firstly, the domain surface was voxelized and discretized. Then, 3D 
Zernike transformation was carried out and resulted in a 121 dimen-
sional vector, which is independent of the translation and rotation of the 
domain. The 121 dimensional vector was used to describe the geomet-
rical shape and group domains with similar shapes. The traditional 
Euclidean distance (dE) was calculated to compare the domain surface 
shapes: 

dE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑i=120
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2

√
√
√
√ ,

where xi and yi are the ith components of the extracted 121 dimensional 
vectors of domains x and y. 

2.3. Clusterability 

Clustering requires that the data are not evenly distributed. The 
Hopkins statistic (H) is used to test the randomness of the n dimensional 
dataset: 

H =

∑n
i=1zi

∑n
i=1di +

∑n
i=1zi

,

where di is the distance between i and its nearest neighbor in the dataset, 
and zi is the distance between i and its nearest neighbor in an artificially 
generated n dimensional dataset, in which the data are randomly 
distributed across the test data space. If the data are evenly distributed, 
H is close to 0.5 and clustering is not recommended. If H is close to 0, it 
indicates that the data are clustered and clustering is recommended. For 
our dataset, the calculated H is 0.14, indicating that clustering is 
feasible. 

2.4. Clustering 

The widely used clustering algorithms, K-means [26], was employed 
in this study to group domains with similar shapes. K-means calculates 
the distances between each sample and K cluster centers, and groups 
them into the clusters with the minimal distances. The number of clus-
ters K is the most important parameter, directly determining the clus-
tering quality. The “elbow” rule [27] was used to estimate the most 
appropriate K. 

SSE=
∑K

i=1
e

∑
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2
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2

,

where Ci is the set of all samples in the current cluster, ci is the cluster 
center of the current cluster. Sum of squared errors (SSE) represents the 
degree of dispersion of all clusters when the number of cluster is K. The 
smaller the SSE value, the better the clustering effect. As K increases, SSE 
firstly decreases sharply, then stabilizes. The inflection point is consid-
ered as the most appropriate K. So K = 100 was used in our clustering 
analysis (Fig. 2A). The clustering analysis was carried out using the 
sklearn module of Python [28]. 

2.5. Domain combination frequencies in natural proteins 

All available domain annotations in the protein data bank (PDB) [29] 
were used to calculate the frequencies of the domain combinations (pij). 

Fig. 1. A schematic of the 3DZD extraction.  
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pij =
Nij(i∈Ci ,j∈Cj)

Nmax
× 10,

where Nij is the number of times that two domains from clusters Ci and Cj 
respectively are present in one protein, and Nmaxis the maximum Nij. So 
the value of pij is in the range of 0–10. 

2.6. Database construction and interface 

A webserver, CPD3DS (http://175.24.69.122:8880), was developed 
with HTML, CSS, and JavaScript on a Windows platform, for the storage, 
retrieval, and visualization of our results. Swagger2 (https://swagger. 
io/), a standard and complete framework for generating, describing, 
invoking and visualizing restful style web service, was used for all 

Fig. 2. The results of clustering analysis. (A) Variation of SSE values with the increase of K. (B) The cluster sizes of 100 clusters. (C–D) Nine randomly selected 
domain surface shapes in clusters 1 and 2. The surfaces were colored in blue for pockets, in red for protrusions, and green for flat regions respectively. The figures 
were generated by VisGrid [30]. The labels below the domains identify the source of the domains. For example, 1xmk-A-288_366 denotes the domain was taken from 
chain A of the protein with the PDB ID of 1xmk and the range of residue indices 288–366. (E) Projections of representative domains of 100 clusters on RMSDs of 
3DZD with reference to the representative domains of clusters 1 and 2. 
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Application Programming Interfaces (APIs). Spring Cloud (https 
://spring.io/) was used in the back end. Bootstrap (https://v3.bootcss. 
com/) and Vue (https://v3.cn.vuejs.org/) were mainly used to build 
interactive pages of the front end. 3Dmol (http://3dmol.csb.pitt.edu) 
was implemented to show the domain structures. The data were stored 
in a MySQL database. We also packed all data, programs, and the 
operating environment, and uploaded the package to GitHub (https:// 
github.com/igemsoftware2020/Team_UESTC_Software). 

3. Results 

To make a global view of domain shapes possible, clustering analysis 
based on the 3D surface shape was performed to reduce the dimen-
sionality of large amounts of domains to a reasonable amount. 

3.1. Classifying domain surface shapes 

All nonredundant 33,455 domains were grouped base on their 
3DZDs using the K-means clustering algorithm with the number of 
clusters K = 100 (Fig. 2A). The 100 clusters were used to build a basic set 
of domain surface shapes. The cluster size (the number of members in a 
cluster, Nc) varies greatly in the range of 10–550 (Fig. 2B). Among the 
100 clusters, only 3 clusters have Nc ≤ 100, 10 clusters have 100<Nc ≤

200, 23 clusters have 200<Nc ≤ 300, 36 clusters have 300<Nc ≤ 400, 22 
clusters have 400<Nc ≤ 500, and 6 clusters have Nc > 500. The distri-
bution of the cluster sizes basically conforms to the normal distribution. 

The surfaces of selected domains in clusters 1 and 2 (Fig. 2C–D) are 
characterized by pockets, protrusions and flat regions using VisGrid 
[30]. The overall shape of the domains in a cluster is relatively consis-
tent. The structural domains in the cluster1 generally present a trian-
gular shape with a small bulge, while the structural domains in the 
cluster2 are relatively elongated with a long protrusion. Therefore, in 
general, the clustering algorithm could group similar shapes into a 
cluster. 

The representative domains of 100 clusters are mapped on the plane 
defined by Root-mean-square deviations (RMSDs) of 3DZD (RMSD3DZD) 
with reference to representative domains of clusters 1 and 2 (Fig. 2E), to 
give an overview of the distribution of 100 clusters. The RMSDs3DZD of 
most clusters in both dimensions are less than 10. They all present a 
relatively compact structure, but the specific shapes are different. For 
example, the domain in the cluster11 appears a more spherical shape, 
while the domain in the cluster91 is closer to a rectangular shape. The 
RMSDs3DZD of clusters 15 and 54 are more than 10, especially the 
RMSD3DZD of the cluster15. The domain shape in the clusters54 is 
slender, while the domain shape in the cluster15 is similar to that of the 
cluster2, but with a rolled up protrusion. Therefore, in general, the 
cluster analysis based on the 3DZD could distinguish different shapes, 
and is also sensitive to local surface shapes. 

3.2. Evaluation by comparison with CATH 

To access the performance of the K-means clustering based on the 
3DZD, we randomly selected 1000 domains to form a subset, and after 
de-redundancy, 727 were left. These 727 domains were assigned into 

Table 1 
The intra-cluster structural similarity comparison of our clustering results and 
CATH classes.   

TMscoreic  SFATCATic (%)  

Our clustering results 0.305 ± 0.012 14.9 ± 0.6 
CATH classes 0.432 ± 0.013 16.8 ± 0.7  

Table 2 
Correlation (upper right, in blue) and Reliability (lower Left, in orange) be-
tween the TM-score, RMSDCα and RMSD3DZD. 

Fig. 3. Domain combination frequencies in the protein repertoire. Examples of domain combinations with large pij was denoted by their cluster indices and PDB IDs.  

Z. Yang et al.                                                                                                                                                                                                                                    

https://spring.io/
https://spring.io/
https://v3.bootcss.com/
https://v3.bootcss.com/
https://v3.cn.vuejs.org/
http://3dmol.csb.pitt.edu
https://github.com/igemsoftware2020/Team_UESTC_Software
https://github.com/igemsoftware2020/Team_UESTC_Software


Synthetic and Systems Biotechnology 6 (2021) 224–230

228

different clusters according to our clustering results and CATH classes 
respectively. Then pairwise structural similarities within clusters were 
calculated by TM-align [31] and FATCAT [32]. TM-align uses the tem-
plate modeling score (TM-score) rotation matrix [33], instead of the 
RMSD rotation matrix, to superimpose protein structures, and the 
TM-score is more sensitive to the global structural topology than local 
structural changes. The value of TM-score is between 0 and 1, with the 
larger value indicating the higher structural similarity. FATCAT has 
good performance for structure alignment of flexible proteins. FATCAT 
identifies the flexible regions in the protein before minimizing the 
overall RMSD. 

The average intra-cluster TM-score (TMscoreic) of our clustering re-
sults is 0.305 ± 0.012. The P-value of a TM-score > 0.3 is less than 0.001, 
indicating that the similarity between structures is significantly different 
from randomly selected structures [34]. Comparatively,  the  TMscoreic 
of CATH is 0.432 ± 0.013, about 0.13 larger than that of ours (Table 1). 
This is not surprising, as both the calculation of TM-score and the clas-
sification of CATH are based on folds of proteins. For a further com-
parison, we calculated the uncorrelated FATCAT similarity. It is found 
that the average intra-cluster FATCAT similarity (SFATCATic) is only 

slightly (about 2%) lower than that of CATH (Table 1). 
The results of the comparisons indicate that the 3DZD-based clus-

tering analysis is able to reflect the overall shape as well as the global 
topology. It also suggests that the shape-based classification could also 
reflect structural similarity to a large extent. 

3.3. Correlations between RMSD3DZD, TM-score and RMSDCα 

TM-score scores domain similarity according to their global topology 
[33], 3DZD describes the domain surface shape, and the RMSD of all Cα 
atoms (RMSDCα) reflects local conformational changes. We calculated 
the pairwise TM-score, RMSD3DZD and RMSDCα of all 727 domains. Their 
correlations are listed in Table 2. The correlation between RMSD3DZD 
and RMSDCα is the strongest with a reliability of 1.97× 10− 9, while 
TM-score has weak correlations with the other two. It indicates that 
3DZD is sensitive to the local structural variations on the surface. It 
further demonstrates that the surface shape descriptor 3DZD could also 
reflect the structure details. 

It is worth to notice that the 3DZD is rotation invariant, and rotation 
optimization is not necessary during the calculation. So the 

Fig. 4. Snapshots of the webserver CPD3DS.  
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computational complexity of the 3DZD is much less than the commonly 
used RMSDCα. The 3DZD may be a better choice for processing large- 
scale data. 

3.4. The frequency of domain combination in the protein repertoire 

A substantial fraction of proteins are composed of multiple domains. 
Some domains are involved in diverse proteins, and some are only 
present in specific combinations. The domain combination frequencies 
(pij) between clusters were calculated for proteins from the PDB data-
base. The obtained 100 × 100 matrix was shown in Fig. 3 with examples 
of high frequency of combination mode. Most of the combinations have 
a pij< 5, consistent with the domain promiscuity and protein diversity 
[18]. Among all the possible combination modes, the combination be-
tween clusters 7 and 76 is most frequent. It is worth to note that domain 
combinations with large pij show good shape matching. 

3.5. The CPD3DS webserver 

All information of the 33,455 domains and our results were stored 
and can be searched on the webserver CPD3DS (http://175.24.69 
.122:8880). In the webpage of the domain list, information of all do-
mains is listed, including the cluster index (ClusterID) of our clustering 
results, domain name in CATH or SCOP, and the URL link of its source 
(Fig. 4A). One can click on a domain name to view the detailed infor-
mation of the domain (Fig. 4B), containing the possible functions taken 
from the gene product annotation in the PDB database and the picture of 
the domain surface shape which could be downloaded. The represen-
tative domains of 100 clusters are list to give a global view of the domain 
shapes (Fig. 4C). CPD3DS supports 3 search methods: cluster index, 
domain name, and function (Fig. 4D). The cluster index search (clusters 
00–99) yields a list of domains in the cluster, similar to the list in Fig. 4A. 
Searching for the domain name only returns one entry, as the domain 
name is unique. The function search (for example, anion binding) 
returns a list of domains that contain the searched function, also similar 
to the list in Fig. 4A. Finally, the domain combination frequencies (pij) 
could be searched as well (Fig. 4E), the search results are arranged in 
descending order of pij. All data can be downloaded in SQL format. 

Due to the using of K-means clustering analysis, its randomness 
makes the database difficult to extend and update automatically. If a 
new domain is identified, its RMSDs3DZD with reference to all cluster 
centers will be calculated first, it will be assigned to the cluster with the 
smallest RMSD3DZD. If there are lots of new domains, we will re-do the 
cluster analysis then. 

4. Conclusions 

In this study, we constructed a map of the domain surface shape 
space by clustering domains based on their 3DZDs, to explore the variety 
and similarity of domain shapes. Our approach is not only powerful in 
detecting the domain similarity of global structural topology, but also 
sensitive to local structural variations. Therefore, coupled with the 
feature of the fast calculation speed, 3DZD may be an ideal parameter 
for comparison and retrieval of large-scale structural information. We 
also tried to analyze the inter-cluster domain combination frequencies of 
proteins in the PDB database. The domain combination in natural pro-
teins may indicate a primary principle of protein organizations. All the 
results can be easily viewed through our CPD3DS webserver. 

As shape matching between domains is one of the most important 
factors in protein architectures, this study may be helpful to the domain- 
based protein design. A global view of all domain shapes could enhance 
the understanding of protein domains and the domain constitution of 
proteins, and make the selection of the desired domain easier. Of course, 
this study is just a coarse beginning. Lots of more detailed work needs to 
be carried out in the future. The physicochemical properties of the 

surface could be considered in future work, different clustering methods 
could be performed and compared, and inter-protein domain in-
teractions could also be analyzed with the data available in protein- 
protein interaction databases, such as STRING [35]. 
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