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Abstract
The use of “heavy” isotope-labeled arginine for stable isotope labeling by amino acids in cell

culture (SILAC) mass spectrometry in the fission yeast Schizosaccharomyces pombe is hin-
dered by the fact that under normal conditions, arginine is extensively catabolized in vivo,
resulting in the appearance of “heavy”-isotope label in several other amino acids, most nota-

bly proline, but also glutamate, glutamine and lysine. This “arginine conversion problem”

significantly impairs quantification of mass spectra. Previously, we developed a method to

prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in

arginine catabolism. Here we show that although this method is indeed successful when
13C6-arginine (Arg-6) is used for labeling, it is less successful when 13C6

15N4-arginine (Arg-

10), a theoretically preferable label, is used. In particular, we find that with this method,

“heavy”-isotope label derived from Arg-10 is observed in amino acids other than arginine,

indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates

both MS and MS/MS analysis, is further confirmed by the presence of 13C5
15N2-arginine

(Arg-7) in arginine-containing peptides from Arg-10-labeled cells. We describe how all of

the problems associated with the use of Arg-10 can be overcome by a simple modification

of our original method. We show that simultaneous deletion of the fission yeast arginase

genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise

result from the use of Arg-10. This solution should enable a wider use of heavy isotope-

labeled amino acids in fission yeast SILAC.

Introduction
Stable isotope labeling by amino acids in cell culture (SILAC; [1]) combined with high-resolu-
tion mass spectrometry (MS) facilitates accurate and reliable relative quantification of large
numbers of proteins from two or more samples and thus has become an important technique
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for quantitative proteomics. In SILAC, proteins are metabolically labeled using isotopically-
labeled amino acids, typically arginine and lysine. Samples grown in “light” and “heavy”media
(i.e. containing naturally-occurring or isotopically-labeled amino acids, respectively) are mixed
together and analysed simultaneously by MS, and pairs of chemically identical peptides origi-
nating from the “light” and “heavy” cultures can be distinguished in the mass spectrometer on
the basis of their mass difference. For such pairs of peptides (often referred to as peptide “isoto-
pologues”, i.e. peptides that have the same sequence and differ only in their isotopic composi-
tion), MS intensity ratios are used to determine peptide and/or protein relative abundance.
However, as a result of metabolic conversion of arginine to proline and other amino acids,
SILAC studies can be compromised by errors in peptide quantification and/or peptide identifi-
cation [2–6]. For example, for a given peptide, incorporation of “heavy” label into amino acids
other than arginine will lead to the appearance of additional, higher-molecular-mass peaks in
the mass spectrum of the peptide, producing an isotopic cluster that may differ considerably
from the expected conventional isotopic envelope or, indeed, appear as two independent enve-
lopes. Such additional peaks may not contribute to quantification of the labeled peptide, thus
leading to underestimation of relative abundance of that peptide. Moreover, the “broadening”
of isotopic clusters that results from additional peaks may lead to overlap of these clusters with
the isotopic envelopes of neighboring peptides possessing similar mass-to-charge (m/z) ratios,
further complicating analysis. In addition, as a consequence of arginine conversion, an MS
peak chosen for fragmentation and MS/MS analysis may actually be a superposition of two dif-
ferent isotopic forms of the same peptide, which could negatively affect peptide identification.
Finally, it is possible that, as a result of arginine conversion, different isotopologues of the same
peptide may be selected for fragmentation multiple times, decreasing the overall sensitivity of
global MS analysis.

Fission yeast Schizosaccharomyces pombe is easy to grow, highly amenable to genetic manip-
ulations, and an excellent model organism for the investigation of a broad range of eukaryotic
cellular processes [7–12] many of which can be studied on a proteome-wide scale [2, 13–15].
Given the growing importance of quantitative proteomics, generation of generic tools allowing
for efficient SILAC application in fission yeast is of great importance.

We previously reported a genetic engineering method for preventing conversion of 13C6-
arginine (Arg-6) in fission yeast SILAC [2], and this general approach was later successfully
applied to nematodes [3] and budding yeast [16]. In that previous work, we showed that
prevention of Arg-6 conversion into glutamate, glutamine and proline can be achieved either
by deletion of the single fission yeast ornithine transaminase gene, car2+, or by simultaneous
deletion of the two arginase genes, car1+ and aru1+. Here we show that when car2Δ cells are
labeled with 13C6

15N4-arginine (Arg-10), heavy-isotope label is converted into
13C6

15N1-
arginine (Arg-7) as well as other metabolic products, leading to the appearance of highly
complex isotopic clusters that would significantly hinder SILAC experiments. Detailed analysis
of results from Arg-10 labeling of car2Δ cells led us to hypothesize that the problems associated
with Arg-10 labeling may be due to arginase activity in these cells. Accordingly, we confirm
experimentally that these Arg-10-specific problems can indeed be overcome by using car1Δ
aru1Δ double mutant cells instead of car2Δ single mutants. This modified genetic engineering
solution should allow more effective use of both Arg-6 and Arg-10 labels in fission yeast
SILAC.

Results and Discussion
Historically, many SILAC experiments have involved the use of Arg-6 and 13C6-lysine (Lys-6),
because these were among the most readily-available heavy-isotope versions of arginine and
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lysine, and they are well-separated from unlabeled arginine and lysine [2, 4, 17, 18]. More
recently, Arg-10 and 13C6

15N2-lysine (Lys-8) have become widely available and indeed are now
usually less expensive than Arg-6 and Lys-6. Use of Arg-10 and Lys-8 offers several potential
advantages over Arg-6 and Lys-6, including: 1) better separation of “light” (Lys-0, Arg-0) vs.
“heavy” spectra; 2) better identification of isotopically-labeled peptides, because of the different
numbers of “heavy” atoms on arginine vs. lysine; and 3) the possibility for use in triple-label
SILAC [19, 20]. With this in mind, we sought to expand the range of isotopically-labeled
amino acids suitable for use in fission yeast SILAC experiments.

As part of a proteomics study of fission yeast microtubule nucleation protein Mto2 [21–23],
we analyzed a GFP-tagged mutant form of Mto2, Mto2[17A]-GFP, expressed in car2Δ arg1-
230 lys3-37 auxotrophic cells grown in “light” unlabeled medium (Arg-0, Lys-0) or in two dif-
ferent types of “heavy” labeled medium (Arg-6, Lys-8; and Arg-10, Lys-8). LC-MS/MS analyses
of equal amounts of anti-GFP immunoprecipitates derived from these three cultures yielded
significantly different numbers of tryptic peptides identified in each sample (6677, 4609 and
1681 unique peptides detected with MASCOT scores>20 from (Arg-0, Lys-0), (Arg-6, Lys-8),
and (Arg-10, Lys-8) cultures, respectively; data not shown).

To investigate this, we examined MS spectra of individual tryptic peptides from the different
samples; for simplicity, we first describe spectra of peptides containing lysine but not arginine
residues (Fig 1; see S1 and S2 Figs for corresponding MS/MS fragmentation spectra). For these
peptides we observed a striking difference in MS spectra from cells grown in Arg-10 vs. Arg-0
or Arg-6. In the Arg-10 sample, peptide isotopic clusters contained several unexpected higher-
molecular-mass peaks relative to the monoisotopic peak, such that the breadth of entire isoto-
pic cluster was much greater than that of the equivalent isotopic envelopes seen in Arg-0 and
Arg-6 samples (Fig 1A and 1B; compare panels i and ii vs. iii). Similar higher-molecular-mass
peaks were also seen when cells were grown in medium containing Arg-10 and Lys-0, but not
in medium containing Arg-0 and Lys-8 (data not shown). Based on these results, we conclude
that the use of Arg-10, but not of Lys-8, increases the complexity of MS spectra, and that
“heavy”-isotope label (i.e. label derived from Arg-10) is present in other amino acids. In other
words, significant “conversion” of Arg-10 must be occurring. As mentioned above, and con-
sistent with our previous work [2], such broadened isotopic clusters were not observed in sam-
ples grown in Arg-6 (Fig 1ii), suggesting that the proposed conversion may specifically involve
15N-labeled atoms. We also note that in these experiments, we used a concentration of arginine
(30 mg/L) that is limiting for growth; thus, decreasing the arginine concentration would not be
expected to ameliorate the problem.

When we examined MS spectra of peptides containing arginine residues (i.e. with or with-
out lysine; Fig 2; see S3, S4 and S5 Figs for corresponding MS/MS fragmentation spectra), we
found that in the Arg-10 sample, peptide isotopic clusters contained not only higher-molecu-
lar-mass peaks of the same type as mentioned previously, but also additional lower-molecular-
mass peaks, corresponding to isotopologues up to 3 Da lighter than the expected monoisotopic
masses for Arg-10-labeled peptides (Fig 2Aii and 2Bii). The appearance of these peaks, which
we will refer to as “pre-peaks”, was even more pronounced in peptides containing two Arg-10
residues; in this case, isotopic clusters contained pre-peaks up to 6 Da lower than the monoiso-
topic mass (Fig 2Cii). As a consequence, monoisotopic peaks for peptides from Arg-10 samples
were effectively “buried” within broad isotopic clusters (Fig 2ii). This would be expected to
reduce success in identification of monoisotopic peaks for fragmentation, leading to an overall
decrease in MS sensitivity.

Because peptides containing a single arginine residue displayed masses up to 3 Da lower
than the expected monoisotopic mass of an Arg-10-containing peptide, while peptides contain-
ing two arginine residues displayed masses up to 6 Da lower, we hypothesized that in vivo in

Fission Yeast SILAC

PLOSONE | DOI:10.1371/journal.pone.0129548 June 15, 2015 3 / 14



fission yeast, a portion of Arg-10 molecules may lose three out of their ten “heavy”-labeled
atoms while retaining the remaining seven. Based on characterized metabolic pathways in the
related fungi Neurospora crassa and Saccharomyces cerevisiae [24], such a loss of three “heavy”
atoms could be due to activity of arginases, which hydrolyze arginine at the guanidinium group
to produce ornithine and urea (Fig 3) [2]. In Arg-10-labeled cells, ornithine generated by argi-
nase-dependent hydrolysis of Arg-10 would contain seven “heavy” atoms (13C5

15N2-ornithine;
Fig 3). Because 13C5

15N2-ornithine can be converted back into arginine via citrulline and
arginino-succinate intermediates, this would ultimately give rise to 13C5

15N2-arginine (i.e.
“Arg-7”; Fig 3). When incorporated into newly synthesized proteins, Arg-7 would produce
peptide isotopologues 3 Da lighter than the “Arg-10 monoisotopic mass” when the peptide

Fig 1. “Heavy”-isotope label from 13C6
15N4-arginine (Arg-10) is converted into other amino acids in fission yeast.Mass spectra of tryptic peptides

(TIFFKDDGNYK and GIDFKEDGNILGHK in (A) and (B), respectively) from S. pombeMto2[17A]-GFP fusion protein isolated from car2Δ arg1-230 lys3-37
cells grown in either (i) unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), (ii) 13C6-arginine (Arg-6) and 13C15N2-lysine (Lys-8), or (iii) 13C6

15N4-arginine
(Arg-10) and 13C6

15N2-lysine (Lys-8), as indicated. In peptides from cells grown in Arg-10, additional higher-molecular-mass peaks are observed (iii),
indicating conversion of “heavy”-isotope label into other amino acids. Such peaks are not observed from cells grown in Arg-6. To simplify comparison,
peptides shown here do not contain arginine residues, so the masses of monoisotopic peaks of peptides from cells grown in Arg-6 and Arg-10 are identical
(see Fig 2). Mass-to-charge (m/z) ratios of monoisotopic peaks and inferred peptide charge-states are indicated in magenta.

doi:10.1371/journal.pone.0129548.g001
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contains a single arginine residue, and 6 Da lighter when the peptide contains two arginine
residues. This would provide a simple yet precise explanation for the pre-peaks observed in
arginine-containing peptides from cells grown in Arg-10.

Similarly, the presence of higher-molecular-mass peaks in peptide isotopic clusters in Arg-
10 samples can be explained by the metabolism of the other product of arginase activity,
namely urea. Urea is hydrolyzed by urease to produce carbon dioxide (mainly as bicarbonate
ion) and ammonium ion. Accordingly, urea generated by arginase-dependent hydrolysis of
Arg-10 would contain three “heavy” atoms (13C1

15N2-urea), which would then appear in the
form of 13C1-bicarbonate and

15N1-ammonium (Fig 3). In S. cerevisiae, pyruvate carboxylases
Pyc1 and Pyc2 catalyse carboxylation of pyruvate to oxaloacetate [25], a precursor of aspartate
as well as asparagine, methionine, lysine and threonine [26]. A comparable process is likely to
occur in S. pombe, via the uncharacterised pyruvate carboxylase Pyr1 (SPBC17G9.11c); thus, in
car2Δ arg1-230 lys3-37 cells grown in Arg-10, this would ultimately give rise to 13C1-amino
acids. In addition, in wild-type (i.e. prototrophic) S. pombe, both urea and ammonium can
serve as the sole source of nitrogen [27–29]. This implies that “heavy” nitrogen atoms from
labeled ammonium should be incorporated into virtually all amino acids. Collectively, the
incorporation of small-metabolite “heavy” atoms into amino acid pools would be expected to
produce isotopologues with a broad, heterogeneous range of higher-than-expected molecular
masses, as observed in all peptides from Arg-10 samples (Fig 1iii, Fig 2ii).

Fig 2. Arginine-containing peptides from cells grown in 13C6
15N4-arginine (Arg-10) exhibit lower-molecular-mass peaks that suggest partial loss of

“heavy” atoms from a portion of the Arg-10 pool.Mass spectra of tryptic peptides (RGILTLK, VSTADNNLVLQELENLR, and
VSTADNNLVLQELENLRER in (A), (B), and (C), respectively) from S. pombe (A) actin and (B, C) Mto2[17A]-GFP, isolated from car2Δ arg1-230 lys3-37 cells
grown in either (i) unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or (ii) 13C6

15N4-arginine (Arg-10) and 13C6
15N2-lysine (Lys-8), as indicated. In

peptides from cells grown in Arg-10, several “pre-peaks” are observed (indicated in blue), with molecular masses significantly lower than the expected
monoisotopic masses for Arg-10-labeled peptides. The number of pre-peaks is proportional to the number of arginine residues in the peptide (compare (B)
and (C)). Mass-to-charge (m/z) ratios of monoisotopic peaks for each growth condition (i.e., assuming no conversion of labeled arginine) and inferred peptide
charge-states are indicated in magenta.

doi:10.1371/journal.pone.0129548.g002
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The mechanism that we propose here implies that in car2Δ arg1-230 lys3-37 cells labeled
with Arg-6, a similar arginine conversion should be observed; in this case, however, one would
expect a portion of the Arg-6 pool to be converted to Arg-5, because the amino(imino)methyl
group from Arg-6 contains only a single “heavy” 13C carbon atom (by contrast, the same group
from Arg-10 contains one 13C carbon atom and two 15N nitrogen atoms). In the MS spectrum
of a peptide containing an arginine residue, this should therefore result in the presence of a
“pre-peak” with a molecular mass exactly 1 Da lower than the expected monoisotopic mass for
an Arg-6-containing peptide (i.e., a “minus 1 pre-peak”). Interestingly, in MS spectra of
arginine-containing peptides from Arg-6 samples, we observed a minus 1 pre-peak of precisely
this nature (Fig 4; see S6, S7 and S8 Figs for corresponding MS/MS fragmentation spectra).
Indeed, in our previous report [2], comparable minus 1 pre-peaks were also observed (see Fig
4E in [2]); however, at that time, these were attributed to impurities in commercially available
“heavy” amino acids. In this context it is worth noting that Arg-6 conversion to Arg-5 does not
actually have as significant an impact on peptide identification or quantification as does Arg-

Fig 3. Anabolic and catabolic reactions from 13C6
15N4-arginine (Arg-10) leading to formation of “heavy” ammonium and “heavy” bicarbonate, and

resynthesis of 13C5
15N2-arginine (Arg-7). Two S. pombe arginases, Car1 and Aru1, catalyze the conversion of Arg-10 into 13C5

15N2-ornithine (“heavy”
ornithine; “heavy” atoms are shown in red). This also produces “heavy” urea, which can be hydrolyzed by urease Ure1 to produce “heavy” ammonia and
“heavy” carbon dioxide (shown here as ammonium and bicarbonate ions, respectively), which can subsequently be incorporated into additional amino acids.
Ornithine can be converted back into arginine through citrulline and arginino-succinate intermediates, ultimately leading to formation of Arg-7.

doi:10.1371/journal.pone.0129548.g003
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10 conversion to Arg-7. This is because isotopic envelopes of peptides labeled with Arg-6 and
Arg-5 almost completely overlap (Fig 4), whereas this is clearly not the case for Arg-10 and
Arg-7 (see Fig 2Aii, 2Bii and 2Cii).

In our original development of SILAC in fission yeast [2], we showed that conversion of
Arg-6 to other amino acids could be prevented either by deletion of ornithine transaminase
car2+ or by double-deletion of arginases car1+ and aru1+. At that time, use of the car2Δ
mutant was preferred primarily for reasons of simplicity (i.e. only one gene-deletion is
required, instead of two). However, given the results described above, and our proposed mech-
anism to explain them, we reasoned that using a car1Δ aru1Δ double mutant instead of the
car2Δ single mutant might solve the problems associated with Arg-10 labeling (see Fig 3). We
therefore compared peptides after Arg-10 labeling in car2Δ arg1-230 lys3-37 cells vs. car1Δ
aru1Δ arg1-230 lys3-37 cells. Strikingly, and in agreement with our hypothesis, in car1Δ aru1Δ
arg1-230 lys3-37 cells, conversion of Arg-10 was completely prevented; that is, we observed nei-
ther higher-molecular-mass peaks, attributed to 15N and 13C incorporation into additional
amino acids via bicarbonate and/or ammonium, nor the “minus 3 pre-peaks”, attributed to
Arg-10 conversion to Arg-7 (Fig 5; see S9 and S10 Figs for corresponding MS/MS
fragmentation spectra). This was the case not only when arg1-230 was used for arginine
auxotrophy, but also when arg3-D4 was used (data not shown). Thus, by deleting genes
encoding arginases rather than the gene encoding ornithine transaminase, the problems
associated with Arg-10 can be overcome.

Fig 4. Arginine-containing peptides from cells grown in 13C6-arginine (Arg-6) exhibit a single lower-molecular-mass peak that indicates loss of a
single “heavy” atom from a portion of the Arg-6 pool.Mass spectra of tryptic peptides (SLAELCLGLVQEAIDASILSQQESSNSLDLVR, LNQVELQLSER,
and IWHHTFYNELR, in (A), (B) and (C), respectively) from S. pombe (A, B) Mto2[17A]-GFP and (C) actin, isolated from car2Δ arg1-230 lys3-37 cells grown
in either (i) unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or (ii) 13C6-arginine (Arg-6) and 13C6

15N2-lysine (Lys-8), as indicated. In peptides from
cells grown in Arg-6, the single “pre-peak” (indicated in blue) indicates conversion of a portion of Arg-6 to 13C5-arginine (Arg-5). Masses of monoisotopic
peaks for each growth condition (i.e., assuming no conversion of labeled arginine) and inferred peptide charge-states are indicated in magenta.

doi:10.1371/journal.pone.0129548.g004

Fission Yeast SILAC

PLOSONE | DOI:10.1371/journal.pone.0129548 June 15, 2015 7 / 14



In summary, here we have shown that the use of car1Δ aru1Δ double mutants allows Arg-
10 to be used for “heavy”-isotope labeling of fission yeast. As large-scale proteomics studies are
becoming increasingly common in fission yeast, having tools to enable the best use of SILAC is
of considerable importance. During preparation of this manuscript, an alternative method
allowing use of Arg-10 in fission yeast was described by Carpy et al., in the context of triple-
label SILAC [30]. In triple-label SILAC, a “light” (Arg-0, Lys-0) sample is mixed with a
“medium” sample grown in D4-lysine (deuterated lysine; Lys-4) and Arg-6, and a “heavy” sam-
ple grown in Lys-8 and Arg-10. Because there is only a 4 Da mass difference between Lys-4 and
Lys-8 as well as between Arg-6 and Arg-10, isotopic envelopes of peptides grown in the
“medium” and “heavy” conditions are very close to each other. Therefore, for efficient analysis
and quantification of triple-SILAC data, no conversion of either arginine or lysine should

Fig 5. Arg-10 conversion is prevented in arginase-deficient cells.Mass spectra of tryptic peptides (DAEGMSHIWQLR and AIQLELENLSSQAFR in (A)
and (B), respectively) from S. pombeMto1 protein (SPCC417.07c) isolated from (i, ii) car2Δ arg1-230 lys3-37 or (iii) car1Δ aru1Δ arg1-230 lys3-37 cells,
grown in either (i) unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or (ii, iii) 13C6

15N4-arginine (Arg-10) and 13C6
15N2-lysine (Lys-8), as indicated. In

peptides isolated from car2Δ cells grown in Arg-10, extensive conversion is observed, resulting in both higher-molecular-mass peaks and lower-molecular-
mass “pre-peaks” (ii; see also Figs 1 and 2). These are not observed in peptides from car1Δ aru1Δ cells grown in Arg-10 (iii). Mass-to-charge (m/z) ratios of
monoisotopic peaks for each growth condition (i.e., assuming no conversion of labeled arginine) and inferred peptide charge-states are indicated in magenta.
Pre-peaks are indicated in blue.

doi:10.1371/journal.pone.0129548.g005
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occur, in order to avoid overlap of the isotopic envelopes originating from these two different
labeling states (which normally represent two completely different biological samples).

In their method, Carpy et al. combined car2Δ [2] with deletion of the nic1+ gene, which
encodes a Ni2+ transporter (Nic1) required for full activity of Ni2+-dependent urease Ure1 (see
Fig 3) under physiological conditions [31]. However, use of nic1Δ cells for Arg-10 labeling did
not completely eliminate the appearance of higher-molecular-mass peaks, presumably because
low levels of Arg-10 were still being converted into 15N-ammonium [30]. Therefore, Carpy
et al. also modified the nitrogen source of their SILAC media, replacing sodium glutamate as
sole nitrogen source with a combination of sodium glutamate and (unlabeled) ammonium
chloride, under the presumption that this unlabeled ammonium could outcompete 15N1-
ammonium during amino acid anabolism. Use of this unconventional combination of nitrogen
sources could be viewed as a disadvantage for physiological studies, but at the same time it
should be acknowledged that in our own labeling method, although we use only ammonium as
nitrogen source, it is used at a much lower concentration (6–9 mM) than is used in
conventional S. pombeminimal medium (96 mM). Our change in medium formulation was
introduced because high ammonium concentrations inhibit arginine uptake, while low
ammonium concentrations are in fact sufficient for robust growth [2]. It is also not completely
clear whether use of a nic1Δmutant may alter cell physiology or metabolism in unforeseen
ways [30, 31], but the same criticism could in principle be applied to any approach involving
genetic mutation. Finally, we note that in their work, Carpy et al. used an arg3-D4 arginine
auxotrophic mutant. Although they do not mention this in their paper, it is likely that in the
context of their method, use of arg1-230, another commonly used arginine-auxotrophic
mutation, would not have prevented Arg-10 conversion (i.e., to Arg-7) to the same extent. The
reason for this is that ornithine carbamoyl transferase Arg3 is part of the “arginine re-synthesis
pathway” (see Fig 3), and thus the arg3-D4mutation effectively prevents the formation of
13C5

15N2-citrulline from
13C5

15N2-ornithine. By contrast, use of arg1-230 would allow
formation of 13C5

15N2-citrulline, and thus “re-synthesis” of Arg-7.
Overall, our method is complementary to the one proposed by Carpy et al. It addresses the

problem of conversion of both Arg-6 and Arg-10, and based on this we would argue that the
car1Δ aru1Δ genetic background should be preferred over car2Δ not only for Arg-10 labeling
but also for Arg-6 labeling. Moreover, our method prevents not only the metabolism of 15N-
labeled ammonium, but also the formation of labeled urea itself. The choice of which of these
two labeling methods to use may depend on the exact experimental details involved, as well as
the desired growth conditions. These issues highlight the fact that regardless of what specific
approach is taken for “heavy”-isotope labeling, it is important to appreciate why a given
approach works, and how various anabolic and catabolic processes may contribute to, or
counteract, its success.

Materials and Methods

Yeast strain growth
Schizosaccharomyces pombemethods were as described [32]. “Heavy” isotope-labeled amino
acids were: L-13C6

15N2-lysine (Lys-8), L-
13C6-arginine (Arg-6) and L-

13C6
15N4-arginine (Arg-

10) (Sigma Isotec). Cells were grown in SILAC medium (EMM2 using 6 mMNH4Cl as
nitrogen source, supplemented with 40 mg/L L-arginine (either Arg-0, Arg-6, or Arg-10, as
indicated) and 30 mg/L L-lysine (either Lys-0 or Lys-8, as indicated)) [2]. Cells were harvested
at OD595 = 2, which on our spectrophotometer corresponds to ~2.5x107 cells/mL (late log
phase).

Fission Yeast SILAC
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To ensure all proteins are isotopically labeled, a small “heavy” pre-culture was used to inoc-
ulate the “heavy” culture, and the total number of generations grown in “heavy”media was typ-
ically more than 10. MS analysis was performed on immunoprecipitated samples.

Immunoprecipitation
Fission yeast soluble extracts were made by freezing cell pellets in liquid nitrogen followed
by grinding to a fine powder while frozen. Lysis buffer (25 mM sodium phosphate pH 7.5,
100 mM KCl, 0.5 mM EDTA, 0.2% Triton X-100, protease inhibitor cocktail (10 μg/mL of
each: chymostatin, leupeptin, antipain, pepstatin, E64, 2 mM AEBSF, 2 mM benzamidine,
2 mM PMSF), and phosphatase inhibitors (50 mM Na β-glycerophosphate, 1mMNaF, 0.1 mM
Na3VO4, 50 nM calyculin A, 50 nM okadaic acid) was then added to the cell powder and the
cell powder was kept on ice until fully resuspended. Lysates were cleared by 2x15 minute
centrifugation at 4000 rpm, and the total protein concentration was determined by Bradford
assay. 1–10 mL of extract was used for immunoprecipitation. 3x107 Protein G Dynabeads,
previously covalently coupled with dimethyl pimelimidate to 1.2 μg of homemade sheep anti-
GFP antibody was added per each 1 mL of extract. Beads were incubated with the lysate for
90 minutes, and then washed 6 times with 1 mL of the lysis buffer. Protein was eluted from
beads by 15 min incubation at 50°C in Laemmli sample buffer, run on 10% SDS-PAGE gel and
stained with Coomassie Blue.

Sample processing for MS analysis
A protein band of Mto2[17A]-GFP was excised from a Coomassie Blue–stained gel. The pro-
tein was reduced, alkylated and digested with trypsin at an enzyme-to-protein ratio of 1:50, as
described [33]. Peptides obtained during trypsin digestion were desalted using C18 StageTips
[34, 35].

C18 material (ReproSil-Pur C18-AQ 3 μM; Dr Maisch GmbH, Ammerbuch-Entringen,
Germany) was packed into an analytical column with a spray emitter (75-μm inner diameter,
8-μm opening, 250-mm length; New Objectives) using an air pressure pump (Proxeon Bio-
systems). Mobile phase A consisted of water and 0.1% formic acid and mobile phase B con-
sisted of 80% ACN and 0.1% formic acid. Peptides were loaded onto the column with 2% B at
500 nL/min flow rate. Elution was performed at 300 nL/min flow rate with two gradients: linear
increase from 2% B to 40% B in 79 minutes; then increase from 40% to 90% B in 11 minutes.

The eluted peptides were analysed either by Q-Exactive mass spectrometer (car2Δ) or by
Orbitrap Velos (car1Δ aru1Δ).

Full MS Scans were acquired on the Q-Exactive mass analyser over the range m/z 300–1750
with a mass resolution of 70 000 (at m/z 200), with target value of 1.0E+06. From each MS sur-
vey scans, the ten most intense peaks with charge state�2 were fragmented in the HCD colli-
sion cell with normalized collision energy of 25%, and MS/MS scans were acquired with a mass
resolution of 35,000 at m/z 200 and target value of 5.0E+05. The ion selection threshold was
2.1E+04 counts, and the maximum allowed ion accumulation times were 20 ms for full MS
scans and 120 ms for FT MS/MS spectra. The dynamic exclusion time: 45 seconds, repeat
count equal to 1.

The data acquisition was performed in a data-dependent manner over the range m/z 300–
1800 on the Orbitrap Velos. The ten most intense precursor ions with charge state�2 were
selected for fragmentation. MS and MS/MS scans were acquired in an Orbitrap mass analyser,
and the peptides were fragmented by HCD with normalized collision energy of 40%. MS scans
were acquired at a resolution of 100,000 at 400 m/z, while MS/MS spectra were acquired with a
mass resolution of 7500. The automatic gain control for full FT MS was set to 5.0E+05 ions and
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for FT MS/MS was set to 1.0E+05 ions. The maximum allowed time for ion accumulation were
500 ms and 200 ms, respectively.

The generated peak lists were searched against protein databases using Mascot 2.0. XiSPEC
Spectrum Viewer (http://spectrumviewer.org/) was used to visualize MS/MS spectra for figure
presentation. Due to XiSPEC software design, occasionally b or y ions that are indicated in the
peptide sequence (and shown as red peaks in MS/MS spectra) are not annotated; this is most
likely to occur when peaks are very low intensity (especially if multiply charged) and/or very
close to neighboring peaks.

Supporting Information
S1 Fig. Fragmentation spectra of peptides shown in Fig 1A.MS/MS spectra of a tryptic pep-
tide (TIFFKDDGNYK) from S. pombeMto2[17A]-GFP fusion protein isolated from car2Δ
arg1-230 lys3-37 cells grown in either unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0),
13C6-arginine (Arg-6) and

13C6
15N2-lysine (Lys-8), or

13C6
15N4-arginine (Arg-10) and

13C6
15N2-lysine (Lys-8), as indicated.

(EPS)

S2 Fig. Fragmentation spectra of peptides shown in Fig 1B.MS/MS spectra of a tryptic pep-
tide (GIDFKEDGNILGHK) from S. pombeMto2[17A]-GFP fusion protein isolated from
car2Δ arg1-230 lys3-37 cells grown in either unlabeled arginine (Arg-0) and unlabeled lysine
(Lys-0), 13C6-arginine (Arg-6) and

13C6
15N2-lysine (Lys-8), or

13C6
15N4-arginine (Arg-10) and

13C6
15N2-lysine (Lys-8), as indicated.

(EPS)

S3 Fig. Fragmentation spectra of peptides shown in Fig 2A.MS/MS spectra of a tryptic pep-
tide (RGILTLK) from S. pombe actin, isolated from car2Δ arg1-230 lys3-37 cells grown in either
unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or 13C6

15N4-arginine (Arg-10) and
13C6

15N2-lysine (Lys-8), as indicated.
(EPS)

S4 FIg. Fragmentation spectra of peptides shown in Fig 2B.MS/MS spectra of a tryptic pep-
tide (VSTADNNLVLQELENLR) from S. pombeMto2[17A]-GFP, isolated from car2Δ arg1-
230 lys3-37 cells grown in either unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or
13C6

15N4-arginine (Arg-10) and
13C6

15N2-lysine (Lys-8), as indicated.
(EPS)

S5 Fig. Fragmentation spectra of peptides shown in Fig 2C.MS/MS spectra of a tryptic pep-
tide (VSTADNNLVLQELENLRER) from S. pombeMto2[17A]-GFP, isolated from car2Δ arg1-
230 lys3-37 cells grown in either unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or
13C6

15N4-arginine (Arg-10) and
13C6

15N2-lysine (Lys-8), as indicated.
(EPS)

S6 Fig. Fragmentation spectra of peptides shown in Fig 4A.MS/MS spectra of a tryptic pep-
tide (SLAELCLGLVQEAIDASILSQQESSNSLDLVR) from S. pombeMto2[17A]-GFP, isolated
from car2Δ arg1-230 lys3-37 cells grown in either unlabeled arginine (Arg-0) and unlabeled
lysine (Lys-0), or 13C6-arginine (Arg-6) and

13C6
15N2-lysine (Lys-8), as indicated.

(EPS)

S7 Fig. Fragmentation spectra of peptides shown in Fig 4B.MS/MS spectra of a tryptic pep-
tide (LNQVELQLSER) from S. pombeMto2[17A]-GFP, isolated from car2Δ arg1-230 lys3-37
cells grown in either unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or 13C6-arginine
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(Arg-6) and 13C6
15N2-lysine (Lys-8), as indicated.

(EPS)

S8 Fig. Fragmentation spectra of peptides shown in Fig 4C.MS/MS spectra of a tryptic pep-
tide (IWHHTFYNELR) from S. pombe actin, isolated from car2Δ arg1-230 lys3-37 cells grown
in either unlabeled arginine (Arg-0) and unlabeled lysine (Lys-0), or 13C6-arginine (Arg-6) and
13C6

15N2-lysine (Lys-8), as indicated.
(EPS)

S9 Fig. Fragmentation spectra of peptides shown in Fig 5A.MS/MS spectra of a tryptic pep-
tide (DAEGMSHIWQLR) from S. pombeMto1 protein (SPCC417.07c) isolated from car2Δ
arg1-230 lys3-37 or car1Δ aru1Δ arg1-230 lys3-37 cells, grown in either unlabeled arginine
(Arg-0) and unlabeled lysine (Lys-0), or 13C6

15N4-arginine (Arg-10) and
13C6

15N2-lysine (Lys-
8), as indicated.
(EPS)

S10 Fig. Fragmentation spectra of peptides shown in Fig 5B.MS/MS spectra of a tryptic pep-
tide (AIQLELENLSSQAFR) from S. pombeMto1 protein (SPCC417.07c) isolated from car2Δ
arg1-230 lys3-37 or car1Δ aru1Δ arg1-230 lys3-37 cells, grown in either unlabeled arginine
(Arg-0) and unlabeled lysine (Lys-0), or 13C6

15N4-arginine (Arg-10) and
13C6

15N2-lysine (Lys-
8), as indicated.
(EPS)
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