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Abstract

Identifying essential proteins is very important for understanding the minimal requirements

of cellular life and finding human disease genes as well as potential drug targets. Experi-

mental methods for identifying essential proteins are often costly, time-consuming, and

laborious. Many computational methods for such task have been proposed based on the

topological properties of protein-protein interaction networks (PINs). However, most of

these methods have limited prediction accuracy due to the noisy and incomplete natures of

PINs and the fact that protein essentiality may relate to multiple biological factors. In this

work, we proposed a new centrality measure, OGN, by integrating orthologous information,

gene expressions, and PINs together. OGN determines a protein’s essentiality by capturing

its co-clustering and co-expression properties, as well as its conservation in the evolution

process. The performance of OGN was tested on the species of Saccharomyces cerevisiae.

Compared with several published centrality measures, OGN achieves higher prediction

accuracy in both working alone and ensemble.

Introduction

Essential proteins are cellular functional molecules that are indispensable to the survival or

reproduction of a living organism. Essential protein identification is crucial for understanding

the minimal requirements of basic cell functions, and identifying human disease genes [1] and

new drug targets [2]. Experimental methods for the discovery of essential proteins are often

time-consuming, laborious, and costly. Computational methods can help to rank the genes

based on publicly available biological resources and so greatly reduce the experimental cost

needed for finding a novel gene target.

With the accumulation of high-throughput experimental data, it’s now possible to predict

protein essentiality in network level. Many researchers have explored the correlations between

network topological features and protein essentiality, and found that proteins highly connect-

ing with other proteins in PIN are more likely to be essential than those of low connections.
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This so-called centrality-lethality rule [3] has been observed in several species, such as Saccha-
romyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster [4–5]. Many centrality

measures have been proposed to capture the correlations between network topological proper-

ties and protein essentiality, including degree centrality (DC) [5], betweenness centrality (BC)

[6], closeness centrality (CC) [7], eigenvector centrality (EC) [8], and subgraph centrality (SC)

[9]. Since the existing PINs for many species are not complete and very noisy, the identifica-

tion of essential proteins solely based on network topology is still very challenging. In addition,

protein essentiality is expected to be affected by multiple biological factors, while network

topological properties only capture some of its characteristics. Most centrality measures that

are only based on PINs could be sensitive to the noise in each PIN, even though they have

been found to correlate with the essentiality of proteins.

We need to find out more robust and accurate centrality measures for predicting essential

proteins. Recently, several new centrality measures have been proposed by combining topolog-

ical properties with other biological information. For example, CoEWC [10] and PeC [11]

integrated PINs with gene expression data and showed significant performance improvement

compared to methods only based on PINs. SON [12] integrated subcellular localization,

orthology, and PINs. LBCC [13] integrated local density, betweenness centrality and in-degree

centrality of protein complex. GOS [14] integrated gene expression, orthology, subcellular

localization and PINs together to predict essential proteins. Besides, Zhang et al proposed an

ensemble framework that can significantly improve the prediction accuracy of traditional cen-

trality measures by combining gene expression data and PINs [15]. In general, the integration

of network topological properties and additional biological information can improve the pre-

diction accuracy due to the increased robustness by considering multiple biological factors.

The advances and challenges in identifying essential proteins using computational methods

were reviewed in [16–17].

Essential proteins tend to form highly connected protein clusters rather than function inde-

pendently [18]. Some recently proposed prediction methods aimed to capture the relationship

between essentiality and their cluster property [10–14]. Han et al. found that network hubs in

the yeast interactome can be classified into date and party hubs based on their partners’ expres-

sion profiles [19]. These two types of hubs are both likely to be essential, although they have

very different clustering properties with their neighbors. CoEWC [10] tried to capture the

common topological properties of both date and party hubs by focusing on the clustering

property of its neighbors rather than the protein itself, and got improved prediction accuracy

compared to those for measuring the clustering property of each single protein.

Essential genes tend to be persistent during the long-term evolution [20]. Based on this

assumption, Geptop was developed to offer gene essentiality annotations for bacterial organ-

isms using phylogeny weighted orthology information [21]. Some other studies also showed

that the integration of orthologous information with topological properties improved the pre-

diction accuracy [12,14].

Having acquired all these recent achievements, we proposed a new centrality measure,

OGN, by integrating orthologous information, gene expressions, and PINs together. We

implemented OGN to combine the topological properties common to both date hubs and

party hubs, the probability of co-expression with the neighboring proteins, and the orthologs

in reference organisms. We examined the performance of OGN on data of a well-studied spe-

cies, Saccharomyces cerevisiae. Compared to several previously proposed centrality measures,

OGN achieved higher prediction accuracy. Furthermore, we proposed an ensemble method by

adjusting the parameter in OGN, which could make OGN usable to other organisms for pre-

dicting essential proteins without the trouble of searching optimal parameter for the corre-

sponding organism.
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Methods

In this paper, we use Pearson correlation coefficient (PCC) to capture the co-expression prop-

erty of a protein with its neighbors, use local clustering coefficient to capture the high connec-

tivity and co-clustering property of a protein, and use orthologous score to capture a protein’s

conservation in evolutionary process.

The PPI network is represented by an undirected graph G(V, E), where a node v2 V repre-

sents a protein and an edge e(u, v) denotes an interaction between two proteins u and v. For a

protein u, its OGN (u) is defined in Eq (1). PCC(u, v) is the Pearson correlation coefficient

between two proteins, u and v, which is calculated based on their gene expression profiles [10].

Co(v) is the local clustering coefficient of protein v which quantifies how close its neighbors

are to being a clique (complete graph). The local clustering coefficient of a protein v in PPI net-

work is defined in Eq (3), where (v, i) is the edge weight with definition in Eq (4). OS(u) is the

normalized orthologous score of protein u, which is defined as the number of reference organ-

isms which have orthologs of u divided by the total number of reference organisms, and is

then normalized by dividing the maximal orthologous score across all proteins. Nu is the set of

all immediately connected neighbors of node u in the PIN, and kv denotes the number of

neighbors of protein v. Parameter α is used to adjust the contributions of the network topolog-

ical properties of a node (TPN) and its conservation (OS), where ?2[0, 1].

OGN uð Þ ¼ a� OS uð Þ þ 1 � að Þ �
TPNðuÞ

maxðTPNðxÞÞ
; x 2 V ð1Þ

TPNðuÞ ¼
P

v2Nu
PCCðu; vÞ � CoðvÞ ð2Þ

Co vð Þ ¼
2
P

i2Nv
wðv; iÞ

kv � ðkv � 1Þ
ð3Þ

wðv; iÞ ¼
1; eðv; iÞ 2 E

0; eðv; iÞ =2 E
ð4Þ

(

From the definition of OGN, we can expect that its performance would be affected by dif-

ferent parameter α. In order to make it easy to apply OGN to different organisms to identify

essential proteins and to minimize the selection pressure of parameter α, we also propose a

simple ensemble method by utilizing the parameter α. The ensemble method works as follows.

For each αi2[0, 1], i = 1,2, . . ., M, we can get an OGNi(u) for each protein u in the PIN and its

corresponding rank. Then we can get M ranks for each protein. According to each ranking

OGNi, we select the top n ranked proteins, denoted as Xi, and combine them as the total candi-

dates set X. We then use ensemble score (ES) and majority voting strategy to further predict

essential proteins from X.

For each protein u in X, if it’s a member of top n ranked proteins based on ranking OGNi,
that is, u2 Xi, then its ensemble score ES(u) increases by 1 (see Eq (5)). Ii(u) equals to 1 if u2
Xi, otherwise 0. In majority voting strategy, the threshold T should be equal or larger than half

of M. According to the ensemble score and the threshold T, we further select proteins whose

ensemble scores are larger than T as the essential candidates of the ensemble method, among

which the number of true essential proteins can be determined according to the known protein

essentiality. The proposed ensemble method enables us to predict essential proteins for differ-

ent organisms based on OGN without knowing whether the optimal value for α is same or not
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for different organisms.

ESðuÞ ¼
PM

i¼1
IiðuÞ ð5Þ

Results and discussion

Test data

To evaluate the performance of the proposed OGN centrality measure and the ensemble

method, the PIN and gene expression data of Saccharomyces cerevisiae were used, as it has

been well characterized by knockout experiments and widely used in the evaluation of

methods for essential protein discovery. The PPI data was downloaded from BioGRID [22]

(version 3.4.143). Gene expression data was retrieved from [23], containing 6,777 gene

products and 36 samples. 5,427 proteins were common to the PPI data and gene expression

data, which were used for performance evaluation. If a protein/gene had multiple gene

expression profiles, the one with maximal mean expression level across the 36 samples was

selected. About the selection of gene expression data for predicting essential proteins, we

think the following aspects should be considered: 1) sample size; 2) experimental condition;

3) time serials. Generally speaking, larger sample size is preferable because it can more

effectively capture gene expression patterns; the experiments that are devoted to specific

special treatments would not be suitable since they usually can only get limited number of

expressed genes (low coverage); the gene expression profiles are collected from same sample

under multiple time points. The collection of gene expression data from [23] spans three

cell cycles and has a large coverage of yeast genes, which is suitable for the task of identifying

essential proteins.

Essential proteins were collected from several databases, such as SGD [24], DEG [25], and

SGDP [26]. 1,194 proteins (S1 Table) are essential among the 5,427 proteins. Orthologous

information was collected from InParanoid database (version 7), which contains 100 whole

genomes (99 eukaryotes and 1 prokaryote) [27].

Compare OGN with eight other centrality measures

To validate the performance of OGN, we compared it with several other centrality measures:

DC, BC, CC, EC, SC, CoEWC, SON, and LBCC. The five traditional centrality measures (DC,

BC, CC, EC, and SC) were used as the baseline since they are solely based on the topological

properties of PINs. CoEWC, SON, and LBCC are all utilizing other biological information to

improve the prediction accuracy in addition to the network topological characteristics of PINs.

We used the reported optimal parameters for SON and LBCC. For SON, we set α = 0.3.

We ranked the proteins in descending order according to each method, and chose the top

100 to top 600 proteins as essential candidates for each method. Then the number of true

essential proteins were calculated according to known protein essentiality. The comparison

results were shown in Fig 1. We can see that OGN outperforms the other seven methods (DC,

BC, CC, EC, SC, CoEWC, and LBCC) significantly. OGN also outperforms SON for top 100 to

top 400 predicted essential protein candidates. SON slightly outperforms OGN when consider-

ing larger number of predicted candidates. Taking top 100 predicted essential proteins as an

example, 88 essential proteins are correctly predicted by OGN, and SON ranks 2nd by correctly

predicting 74 essential proteins, while CC performs worst by correctly predicting 39 essential

proteins. That is to say, for top 100 predicted essential candidates, OGN obtains about 66%

improvements over the 5 traditional centrality measures (BC, CC, DC, EC, and SC), about

24% improvements over CoEWC, about 31.3% improvements over LBCC, and about 19%

improvements over SON. For predicting no more than 600 essential candidates, OGN achieves

Predicting essential proteins by integrating orthology, gene expressions, and PPI networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0195410 April 10, 2018 4 / 13

https://doi.org/10.1371/journal.pone.0195410


Fig 1. The number of essential proteins predicted by OGN, BC, CC, DC, EC, SC, CoEWC, SON, and LBCC. (a)-(f) show the results of these

methods when select top 100 to 600 ranked proteins as candidate essential proteins.

https://doi.org/10.1371/journal.pone.0195410.g001
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more than 25% improvements compared with the 5 common used centrality measures (BC,

CC, DC, EC, and SC), and about 10% improvements over CoEWC.

Fig 2 shows the comparison results of OGN and the other eight compared centrality mea-

sures using Jackknife method. In Fig 2, the horizontal axis represents the top n ranked essential

candidates and the vertical axis represents the accumulation quantity of the correct predictions

for each method. From Fig 2 we can see that OGN always performs better than the other six

methods (BC, CC, DC, EC, SC, and CoEWC). In addition, OGN outperforms SON when

n< 450 and outperforms LBCC when n< 700. Note that, LBCC is very time consuming

which took over 1 day to get the results on our PIN, while OGN only took several minutes. It

demonstrates that OGN is effective to predict yeast essential proteins and superior to the other

compared centrality measures.

Fig 2. Comparison of OGN, CoEWC, SON, LBCC, and five common used centrality measures (BC, CC, DC, EC, and SC) using Jackknife

method.

https://doi.org/10.1371/journal.pone.0195410.g002
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S2 Table shows the top 100 predicted essential candidates by OGN with alpha = 0.3. We

also give the corresponding OGN, OS, and DC values as well as the protein essentiality. For

the 12 nonessential proteins, they tend to have lager DC values (the degrees range from 53 to

2002 in the PIN) and/or larger OS values, which may in part explain why they are predicted as

essential by OGN. Fig 3 shows the subnetwork of the top 100 predicted essential candidates by

OGN. From Fig 3 we can see that all the 100 proteins are connected to form one subnetwork,

and most of the nonessential proteins have larger degrees which accords with the results

shown in S2 Table. In addition, the interaction with multiple essential proteins may play an

important role to make these 12 nonessential proteins showing similar characteristics with

those of essential proteins. We further examined the 12 nonessential proteins by text mining

and database search. YNL255C (GIS2) was confirmed as nonessential gene, but it may have a

role in translation regulation under stress conditions [24]. YNL209W (SSB2) is a member of

an essential subfamily of hsp70 genes in S. cerevisiae [28]. YLL013C (PUF3) is a nonessential

gene, but the null mutant shows abnormal mitochondrial morphology and movement, in

addition, both the null mutation and overexpression confer respiratory growth defects [24].

YKL009W (MRT4) involves in rRNA processing (GO process term); null mutant exhibits slow

Fig 3. The protein interaction network for the top 100 selected proteins by OGN (alpha = 0.3).

https://doi.org/10.1371/journal.pone.0195410.g003
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growth [24]. YER151C (UBP3) is a nonessential gene; null mutants grow slowly, have large cell

size, are defective in vacuolar fragmentation, impaired in use of various nitrogen sources [24].

YNR051C (BRE5) is a ubiquitin protease cofactor; null is sensitive to brefeldin A [24].

Table 1. The number of true essential proteins identified by OGN with different α.

topn α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

100 71 77 86 88 87 87 87 82 78 71 70

200 130 159 164 170 165 157 152 148 146 141 138

300 198 234 232 230 232 227 217 215 205 198 196

400 254 282 290 289 284 280 277 271 269 266 257

500 301 339 338 337 332 328 326 320 316 314 313

600 347 385 382 381 377 376 368 367 363 361 362

https://doi.org/10.1371/journal.pone.0195410.t001

Fig 4. Precision-recall curves of OGN with different α.

https://doi.org/10.1371/journal.pone.0195410.g004
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YDR496C (PUF6) is required at post-transcriptional step for efficient retrotransposition;

absence results in decreased Ty1 Gag:GFP protein levels; null causes increased cold sensitivity,

decreased nuclear export, protein/peptide accumulation, and transposable element transposi-

tion [24]. YGR220C (MRPL9) is component of the large subunit of the mitochondrial ribo-

somal, which mediates translation in the mitochondrion; null causes absent respiratory

growth, decreased competitive fitness [24]. YDR012W (RPL4B, unclear essentiality status) is

subunit of the cytosolic large ribosomal subunit; involved in translation. YBL072C (RPS8A) is

subunit of the cytosolic small ribosomal subunit; involved in maturation of the subunit rRNA

and translation; null causes decreased resistance to chemicals and decreased competitive fit-

ness [24]. YHL004W (MRP4) is component of the small subunit of the mitochondrial ribo-

some, which mediates translation in the mitochondrion; null causes decreased innate

thermotolerance and decreased resistance to chemicals [24]. YPL178W (CBC2) involves in

mRNA splicing, via spliceosome; null causes decreased competitive fitness [24]. For the 12

nonessential genes, some of them may be fitness genes.

Influence of parameter α on OGN

From the definition of OGN, we can see that the parameter α adjusts the effect of ortholo-

gous information and topological properties. Larger α means that we put more emphasis on

orthologous information rather than on topological properties to determine protein essenti-

ality. To analyze the effect of the parameter α on the performance of OGN, we set α2[0, 1]

and observe the number of true essential proteins identified by OGN for top n ranked essen-

tial candidates. The results are shown in Table 1. We can see that OGN performs worst

when α = 0 or 1, which indicates that both the orthologous information and the topological

properties contribute to the final results. OGN gets similar performance when α varies from

0.2 to 0.6 while it performs best when α = 0.3. Fig 4 shows the precision-recall curves for

OGN with different parameter α. From Fig 4, we can get similar conclusions with those

from Table 1.

Table 2. Performance of ensemble method with different top n and threshold T.

Top n T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

100 #predicted 90 69 49 34 15 4

#true 78 62 45 31 14 4

Precision 0.867 0.899 0.918 0.912 0.933 1

200 #predicted 192 153 115 92 62 29

#true 150 125 99 81 55 26

Precision 0.781 0.8175 0.861 0.88 0.887 0.897

300 #predicted 295 257 222 172 121 65

#true 222 194 168 133 102 56

precision 0.753 0.755 0.757 0.773 0.843 0.862

400 #predicted 399 373 330 282 202 116

#true 279 264 235 207 157 102

precision 0.699 0.708 0.712 0.734 0.777 0.879

500 #predicted 504 471 436 384 293 167

#true 328 312 294 266 218 144

precision 0.651 0.662 0.674 0.693 0.744 0.862

#: the number of. #predicted: the number of predicted essential proteins; #true: the number of true essential proteins.

https://doi.org/10.1371/journal.pone.0195410.t002

Predicting essential proteins by integrating orthology, gene expressions, and PPI networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0195410 April 10, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0195410.t002
https://doi.org/10.1371/journal.pone.0195410


Ensemble performance of OGN with different parameter α
We further evaluate the ensemble performance of OGN with different parameter α. For conve-

nience, we use OGNi to indicate the OGN method with parameter α = i with i2[0,1]. For α =

0, 0.1,. . ., 0.9, 1, we get 11 rankings for each protein u, OGN0[u], OGN1[u],. . ., OGN10[u].

Based on each OGNi, we select the top n ranked proteins and combine them as the total candi-

dates set X. According to the ensemble score and the majority voting threshold T, a set of pro-

teins whose ensemble scores are larger than T are selected as the essential candidates of the

ensemble method, among which the number of true essential proteins can be determined

according to the known protein essentiality.

Table 2 gives the performance of the ensemble method with different top n and thresholds

T. For example, when n = 100 and T = 5, 90 proteins are predicted as essential candidates by

the ensemble method, among which 78 proteins are true essential, so the precision is 0.867.

Fig 5. Comparison of the ensemble method with different threshold T and OGN (α = 0, 0.3, and 1) using Jackknife method.

https://doi.org/10.1371/journal.pone.0195410.g005
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According to Table 2, the precision increases with the increase of threshold T for each n, while

the number of selected candidates decreases. We further compared the performance of the

ensemble method with different threshold T using jackknife method. For each ensemble

method, its base method OGNs select their top n (n ranges from 1 to 1200) ranked proteins as

the essential candidates, among which the number of predicted essential candidates and the

number of true essential proteins predicted by the ensemble method were calculated. Fig 5

shows the performance comparison of the ensemble method with different threshold T using

Jackknife method. According to Table 1, OGN with α = 0.3 performs best, while OGN with

α = 0 or 1 performs worst. We also include the performance of OGN when α = 0, 0.3, and 1 in

Fig 5 for comparison convenience. From Fig 5 we can see that the ensemble methods with T
from 5 to 9 perform similarly; when T = 10, it performs best (better precision), but it can only

obtain 503 candidates when its base OGN with top n = 1200. The ensemble method outper-

forms OGN with α = 0 and 1. The ensemble method with T = 10 performs similarly or slightly

better than OGN with α = 0.3 when the number of selected candidates is less than 200.

Conclusion

In this paper, we proposed a new method for identifying essential proteins, OGN, and tested it

on yeast PIN and the related gene expression data as well as orthologs. We compared it with

five commonly used centrality measures, BC, CC, DC, SC, and EC, and three integrated meth-

ods, CoEWC, SON, and LBCC. The comparison results showed that OGN significantly out-

performed these six methods (BC, CC, DC, EC, SC, and CoEWC) for predicting essential

proteins. OGN also outperformed SON when n< 450 and outperformed LBCC when

n< 700. In addition, OGN showed similar performance by varying α from 0.2 to 0.6, which

indicated that OGN is quite robust to the selection of parameter α.

We also proposed an ensemble method using OGN with different parameter α, which out-

performed the best performed OGN (α = 0.3) when the number of selected essential candi-

dates was less than 200, and outperformed the worst performed OGNs with α = 0 or 1. This

indicated that the ensemble method is a reasonable alternative when we don’t know the opti-

mal parameter α. Note that, the ensemble method only used the simple majority voting strat-

egy, there would be more performance improvement by integrating multiple features using

more sophisticated machine learning methods [16, 29–30].
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