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ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that leads to renal failure in the
majority of patients. The very first pharmacological treatment, tolvaptan, received Food and Drug Administration approval
in 2018 after previous approval in Europe and other countries. However, tolvaptan is moderately effective and may
negatively impact a patient’s quality of life due to potentially significant side effects. Additional and improved therapies are
still urgently needed, and several clinical trials are underway, which are discussed in the companion paper Müller and
Benzing (Management of autosomal-dominant polycystic kidney disease—state-of-the-art) Clin Kidney J 2018; 11: i2–i13. Here,
we discuss new therapeutic avenues that are currently being investigated at the preclinical stage. We focus on mammalian
target of rapamycin and dual kinase inhibitors, compounds that target inflammation and histone deacetylases, RNA-targeted
therapeutic strategies, glucosylceramide synthase inhibitors, compounds that affect the metabolism of renal cysts and
dietary restriction. We discuss tissue targeting to renal cysts of small molecules via the folate receptor, and of monoclonal
antibodies via the polymeric immunoglobulin receptor. A general problem with potential pharmacological approaches is that
the many molecular targets that have been implicated in ADPKD are all widely expressed and carry out important functions
in many organs and tissues. Because ADPKD is a slowly progressing, chronic disease, it is likely that any therapy will have
to continue over years and decades. Therefore, systemically distributed drugs are likely to lead to potentially prohibitive
extra-renal side effects during extended treatment. Tissue targeting to renal cysts of such drugs is one potential way around
this problem. The use of dietary, instead of pharmacological, interventions is another.
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INTRODUCTION

There is no shortage of ‘promising’ molecular drug targets for
the treatment of polycystic kidney disease (PKD). Work in many
laboratories over the years has led to the identification of a vast
number of signaling pathways, kinases, transcription factors,

metabolic pathways, etc. that are aberrantly up- or down-
regulated in PKD. Many of these could be targeted with existing
or novel drugs, which very often lead to amelioration of renal
cyst growth and slowing down of functional deterioration of the
kidneys. The caveat is that whereas these drugs are effective in
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animal models of PKD, mostly mice and rats, the translation of
these findings into clinical success is a hurdle that has proved
very difficult to overcome.

The main reason for this translation problem is that virtually
all of the molecular drug targets that have been implicated in
PKD are not unique to polycystic kidneys. In fact, most of them
are ubiquitously expressed and serve important functions in
many extra-renal tissues and organs. Therefore, drugs that af-
fect PKD targets may be effective in inhibiting renal cyst growth
but they also tend to cause adverse effects in both the kidneys
and even more importantly extra-renal tissues that would be
prohibitive in clinical practice.

A prime example is the mammalian target of rapamycin
(mTOR) inhibitors. mTOR is a key signaling kinase that receives
inputs from several upstream pathways and regulates funda-
mental cellular behaviors including cell growth, proliferation,
survival and energy metabolism [1]. mTOR is aberrantly acti-
vated in cyst-lining cells in human autosomal dominant poly-
cystic kidney disease (ADPKD) and most rodent models of PKD
[2, 3]. This was an exciting finding because mTOR inhibitors,
such as rapamycin, were already clinically approved as immu-
nosuppressive drugs. Indeed, rapamycin proved to be highly ef-
fective in numerous PKD rodent models [3–7] in which it can be
used at high doses during the relatively short treatment periods
that are required, usually around 2 weeks. The high doses en-
sure that mTOR in the target organ, the polycystic kidneys, is
indeed inhibited. The short treatment period ensures that long-
term side effects become irrelevant. For example, immunosup-
pression as an unwanted effect of mTOR inhibition is generally
not a problem for a mouse living for 2 weeks in a nearly
pathogen-free animal facility. The problem is that ADPKD in
humans is a very slowly progressing, chronic disease that leads
to renal deterioration and eventually renal failure during the
course of decades. To observe any beneficial effects in clinical
trials, a study has to extend for at least a year and ideally longer.
All the while, these patients live in environments that are noth-
ing like a mouse cage. In hindsight, it may not have been sur-
prising that clinical trials to test the efficacy of mTOR inhibitors
in ADPKD failed to show beneficial effects [8–10]. The long-term
tolerable doses of these drugs in humans are much lower than
those that can be administered in the short term in rodents. It is
likely that these low, tolerable doses have relatively little effect
on mTOR in polycystic kidneys, but they still cause significant
extra-renal adverse effects in patients. Simply increasing the
dose is therefore not an option.

This example illustrates perhaps the most significant hurdle
in finding a feasible pharmacological therapy for ADPKD. Due to
the chronic, slowly progressive nature of the disease, any drug
treatment for ADPKD would likely have to occur continuously
over the course of years and decades. Treatment would also
likely have to be initiated early in relatively nonsymptomatic
patients to avoid permanent renal function loss as much as pos-
sible. This puts an extremely high burden on any drug to be
used for ADPKD therapy to exhibit an extremely low long-term
side effect profile.

Since many of the molecular targets implicated in ADPKD
have already been pursued for other indications, primarily can-
cer, many drugs have already been developed or are even in
clinical use for those other indications. The re-purposing of
these compounds for ADPKD therapy is a promising avenue. To
accomplish the lowest possible side effect profile, a pharmaceu-
tical compound would ideally be highly specific to its intended
molecular target. This is often difficult to achieve with small
molecule drugs such as tyrosine kinase inhibitors. Biologics

such as monoclonal antibodies (mAbs) are a more specific ap-
proach, but there have been few attempts, and no success, so
far in preclinical PKD studies. The targeting of compounds, both
small molecules and antibodies, specifically to polycystic kid-
neys is a novel approach that has the potential to reduce extra-
renal effects and to make the re-purposing of many compounds
for long-term therapy in ADPKD potentially feasible. We will
discuss tissue targeting further below. First, we will discuss se-
lect, molecular targets that have recently emerged in preclinical
studies. The names of drugs or drug classes are shown in bold
at first mention.

MOLECULAR TARGETS ON THE HORIZON
Catalytic mTOR inhibitors and dual kinase inhibitors

As mentioned above, rapamycin and its analogs (rapalogs) are
highly effective in PKD rodent models. These drugs specifically
target the activity of mTORC1 (see Figure 1), one of the two com-
plexes in which the kinase mTOR acts. The other complex,
mTORC2, has different functions but is also activated in PKD as
deduced from the high levels of one of its downstream targets,
phospho-Akt (Ser473), compared with wild-type kidneys [4, 11].
Since mTORC2 is not directly targeted by rapamycin, it has been
investigated whether combined inhibition of both mTORC1 and
mTORC2 may be beneficial. This was achieved in vivo utilizing a
catalytic mTORC1/mTORC2 kinase inhibitor, PP242, in the
Han:SPRD Cy/þ rat model of PKD [12]. This approach led to inhi-
bition of the progression of renal cystic disease. However, in the
absence of a head-to-head comparison with mTORC1-specific
inhibition, it is difficult to conclude whether the added inhibi-
tion of mTORC2 was beneficial over inhibition of mTORC1
alone. A concern is that combined mTORC1 and -2 inhibitions
may lead to increased extra-renal toxicity in the clinic com-
pared with rapalogs, especially during long-term treatment.

In another study, the effect of dual inhibition of mTORC1/2
and phosphoinositide 3-kinase (PI3K) was tested utilizing NVP-
BEZ235 in the Han:SPRD Cy/þ rat model and a mouse Pkd1
model [13]. The authors demonstrated that inhibition of
mTORC1 with a rapalog activated both mTORC2 and ERK via
two feedback loops. Dual inhibition of mTORC1/2 and PI3K with
NVP-BEZ235 was more effective than rapalog-mediated
mTORC1 inhibition in terms of reducing cystic disease progres-
sion. Although this study highlights the theoretical utility of
dual mTOR/PI3K inhibition in PKD, the main concern is the tox-
icity of this compound, which led to early termination of a
Phase I trial [14].

Targeting inflammation

Numerous lines of evidence suggest an important role of in-
flammation in the progression of PKD. This is supported by the
presence of pro-inflammatory markers in ADPKD urine and re-
nal cyst fluid [15], accumulation of inflammatory cells and the
role of renal macrophages in PKD progression [16, 17]. The in-
flammatory cytokine tumor necrosis factor (TNF-a) is present in
ADPKD cyst fluid and can promote cyst growth with ex vivo and
in vivo administration [18]. TNF-a was reported to disrupt the lo-
calization of polycystin-2 to the plasma membrane and primary
cilia [18]. A TNF-a inhibitor, etanercept, is a Food and Drug
Administration-approved biologic drug used for the treatment
of autoimmune disorders. Etanercept acts as a decoy receptor
for TNF-a and has been shown to inhibit renal cyst growth in
Pkd2þ/�mice [18].
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The natural polyphenolic compound resveratrol exerts anti-
inflammatory, antioxidant and anti-proliferative effects
through targeting of mTOR and nuclear factor (NF)-jB [19, 20]
and has been shown to slow disease progression through damp-
ening inflammatory pathway activity in animal models of PKD
[21]. Treatment of the Han:SPRD Cy/þ rat model with resveratrol
led to a decrease in the pro-inflammatory cytokines MCP-1, CFB
and TNF-a, and reduction in macrophage infiltration and some
amelioration of renal cystic disease [21]. Although there is ex-
tensive in vitro and in vivo evidence that resveratrol could be
used therapeutically in a wide array of diseases, a major chal-
lenge for clinical trials has been its poor bioavailability [22].

Histone deacetylase inhibitors

Histone deacetylases (HDACs) are a family of enzymes that
modulate gene expression by removing acetyl groups from his-
tones and regulate a diverse array of intracellular pathways by
acting on nonhistone proteins [23]. A chemical modifier screen
revealed the positive effect of HDAC inhibition in a Pkd2-defi-
cient zebrafish model. In this study, a pan-HDAC inhibitor, tri-
chostatin A and a Class I HDAC inhibitor, valproic acid (VPA),
were shown to affect both body curvature and laterality, two
pathological changes associated with cystogenesis in zebrafish
[24]. It was further demonstrated that VPA treatment decreased
renal cyst progression and preserved kidney function in an
orthologous mouse model (Pkd1flox/flox; Pkhd1-Cre) [24].

The histone deacetylase, HDAC6, has heightened expression
and activity in Pkd1 mutant renal epithelial cells [25]. HDAC6 is
predominantly localized to the cytoplasm and uniquely inter-
acts with nonhistone proteins [26]. In ADPKD models, blocking
HDAC6 with specific inhibitors, ACY-1215 and tubacin, slows
cyst growth in vivo and prevents cyst formation in vitro [27, 28].
Both ACY-1215 and tubacin are thought to inhibit proliferation

of cyst-lining epithelia by preventing deacetylation of a-tubulin,
where deacetylation would typically promote cell cycle progres-
sion. In addition, both ACY-1215 and tubacin were found to
downregulate cyclic adenosine monophosphate (cAMP); how-
ever, the exact mechanism underlying this finding requires fur-
ther investigation [27, 28]. HDAC6 inhibition may also function
by blocking EGF-mediated b-catenin nuclear localization, result-
ing in suppression of epithelial proliferation and an increase in
EGF receptor (EGFR) degradation [29].

With the promising results of HDAC inhibition in animal
models of ADPKD, there has been a focus on the role of histone
acetylation, which by modifying chromatin structure can recruit
DNA-binding factors such as bromodomain and extra-terminal
proteins (BET) [30, 31]. It has been shown that an inhibitor of the
Brd4 BET protein, JQ1, was effective in suppressing cyst growth
and kidney size, and maintaining kidney function in two Pkd1-
mutant mouse models [32].

RNA-targeted therapeutic strategies

The two primary pharmacological approaches to target RNA that
have emerged over the past decades are antisense oligonucleoti-
des (ASOs) and RNA-mediated interference, including micro-RNA
(miRNA) [33], which we will discuss in the context of PKD.

Antisense oligonucleotides. ASOs are short oligonucleotides
with complementary sequence to a specific mRNA designed to
reduce the expression of a target mRNA and its protein product.
Antisense strategies against certain targets have been exploited
in a number of diseases [34], leading to the approval of four
ASO-based therapies as of 2017 [35].

As has already been noted above, the mTOR pathway is
highly activated in PKD. To determine whether downregulation
of mTOR is an effective treatment strategy, an ASO targeting

FIGURE 1: Targeted metabolic regulation in ADPKD. A highly simplified cartoon of some of the major pathways that relate to the pathogenesis of PKD and that are are

affected by some of the compounds discussed in this article. Rosiglitazone treatment activates PPAR-c, causing heterodimeric binding to retinoid x receptor (RXR) fol-

lowed by translocation to the nucleus, activating gene transcription of PPAR response element-regulated genes. This in turn leads to a decrease in TGF-b signaling and

a subsequent reduction in fibrosis. Rosiglitazone also acts independently of PPAR-c to inhibit p70S6K activation and ribosomal protein S6 phosphorylation. Treatment

with 2DG leads to a reduction in glycolysis by inhibition of phosphoglucoisomerase. Decreased glycolytic activity in turn may cause the activation of AMPK and subse-

quent inhibition of mTORC1, cell growth and proliferation with an increase in fatty acid oxidation. Metformin activates AMPK that directly represses mTORC1 signaling

via phosphorylation. Treatment with BPTES inhibits glutaminase (GLS1) disrupting the breakdown of glutamine to glutamate preventing it from being used in the TCA

cycle to produce a-ketoglutarate. Fenofibrate treatment activates PPAR-a to bind to PPAR response elements and increase transcription of genes involved in fatty acid

utilization, oxidative phosphorylation and mitochondrial biogenesis. Rapamycin inhibits the ability of mTORC1 to activate the S6-Kinase branch of its downstream

pathway but has less effect on the 4E-BP1 branch. In contrast, mTOR kinase inhibitors or mTOR ASOs would affect both downstream branches. Dietary restriction sim-

ulates the effects of targeted drug therapies by reducing nutrient intake, leading to reductions in key regulatory pathways. Pointed arrowheads indicate activating

effects. Blunt arrowheads indicate inhibitory effects. Dashed arrows indicate indirect or multistep effects.
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mTOR expression has been investigated in the Pkd2WS25/�

mouse model [36]. The mTOR ASO effectively reduced mTOR
levels and reduced the activity of mTORC1 and mTORC2, as
assessed by surrogate markers. This resulted in a significant im-
provement of various aspects of the renal cystic phenotype [36].

The renin–angiotensin system has been shown to be upregu-
lated in PKD [37, 38], and clinical trials utilizing angiotensin-
converting enzyme (ACE) inhibitors have been conducted in
ADPKD patients [39, 40]. Although ACE inhibitors did not affect
the decline in renal function in these clinical studies [41], the
feasibility of targeting angiotensinogen (AGT) levels directly
with ASOs has been investigated in preclinical studies [42–44].
In all three studies, the AGT ASO was shown to accumulate in
the kidney and reduce AGT mRNA and protein in kidney, serum
and urine. In terms of therapeutic efficacy, AGT ASOs, but not
scrambled ASOs, significantly ameliorate several aspects of the
renal cystic disease phenotype in both the PKD2WS25 model
[42] and a global, tamoxifen-inducible knockout model of PKD
(Pkd1flox/flox: CAGG-CreER) [43, 44].

Taken together, these studies suggest that targeting AGT
with ASOs may be superior to ACE inhibitors. These studies also
suggest that the utilized second-generation ASOs accumulate in
kidneys and/or cysts, but this is unlikely to be a specific effect.
Nevertheless, such ASOs could be considered to target the ex-
pression of other proteins implicated in PKD. For example,
AZD9150, an ASO that targets STAT3, has shown promising ini-
tial activity in lymphoma patients in a Phase 1 clinical trial [45].
Given that STAT3 is activated in ADPKD and multiple preclinical
models of PKD [46–49], the potential efficacy of ASOs targeting
STAT3 may be of interest.

Targeting miRNAs. miRNAs are a class of endogenous small
(�22 nt) noncoding RNAs that regulate the expression of target
mRNAs and their protein product [50]. In the context of PKD,
several miRNAs have been shown to be expressed and modu-
lated in the disease state [51–53]. Kidney-specific, collecting
duct knockout of key miRNA pathway genes has been shown to
result in epithelial-to-mesenchymal transition and fibrosis [54],
suggesting that these miRNAs may also play a role in fibrosis in
PKD. A number of studies have demonstrated that the miR-17–
92 cluster [55, 56], which encodes six miRNAs (miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1 and miR-92a-1), is upregulated in
several models of PKD [57–59], and Pkd1 has been shown to be a
direct target of miR-20 [60]. Overexpression or knockdown of
the miR-17–92 cluster influences the development of PKD [58].
Utilizing the slow-progressing Pkd1RC/RC mouse model, a kidney-
targeted anti-miR-17 oligonucleotide proved to be effective in
reducing kidney growth, decreasing proliferation and fibrosis
and extending animal survival [57].

Outside of the miR-17–92 cluster, several other miRNAs have
been associated with PKD. These include miR-21 [61], miR-20b-
5p and miR-106a-5p [62], miR-199a-5p [63] and miR-501-5p [64]
and suggest that targeting miRNAs pharmacologically may rep-
resent a new paradigm in PKD treatment [50].

Glucosylceramide synthase inhibitors

Glycosphingolipids (GSLs) play fundamental roles in a variety of
cellular processes [65, 66], and their dysregulation leads to a
number of diseases, including Gaucher, Fabry [67, 68] and renal
diseases [69]. A potential role for GSLs in PKD has been sug-
gested based on upregulation of certain GSLs in preclinical mod-
els and ADPKD samples [70–73]. The glucosylceramide synthase
(GCS) inhibitor Genz-123346 was tested in multiple animal

models of PKD and showed remarkable efficacy in terms of re-
ducing kidney size, cystic index and improving renal function
[71]. Genz-123346 treatment led to inhibition of glucosylcera-
mide (GlcCer), lactosylceramide (LacCer) and GM3 production,
and was shown to inhibit key cellular pathways known to be ac-
tivated in PKD, including Akt-mTOR and various cell cycle pro-
teins. Genetic ablation experiments revealed that deletion of
GM3 synthase or sphingokinase 1 either ameliorated or exacer-
bated the renal cystic phenotype in jck mice, respectively, sug-
gesting that specific GSLs, or combinations of multiple GSLs, are
important modifiers of renal cyst growth [74]. The GCS inhibitor,
venglustat, has recently entered a Phase 3 clinical trial in
which its efficacy will be tested in ADPKD patients with
rapidly progressing disease (see ClinicalTrials.gov Identifier:
NCT03523728). In future work, it will be important to better un-
derstand the biological mechanisms underlying the upregula-
tion of GSLs in PKD and the consequences this may have on
signaling pathways [75], membrane properties and trafficking
[76–78].

Targeting metabolism

A series of recent findings [79–82] have suggested that cysts in
PKD exhibit an altered energy metabolism characterized by a
high rate of glycolysis and a low rate of mitochondrial oxidative
phosphorylation similar to the Warburg effect in many cancer
cells. A concrete mechanistic explanation for the Warburg effect
in cancer is still lacking and, not surprisingly, it is lacking for
PKD as well. Similar to many cancer cells, PKD cells exhibit an
increased need for glycolysis [79], a defect in fatty acid oxidation
[83] and increased mitochondrial damage [80, 84]. Persistent
mTORC1 activity in PKD (see above) could play a role in mito-
chondrial damage because it would antagonize autophagy [85],
which would thwart the removal and replacement of defective
mitochondria [86]. Even though the metabolic changes in PKD
have been described as ‘aerobic’ glycolysis, renal cystic tissue
has been found to be hypoxic [87, 88]. Therefore, these meta-
bolic changes may be a survival adaptation of cyst-lining cells
to the hypoxic environment. Just as in cancer, increased glycol-
ysis with reduced oxidative phosphorylation is also expected to
lead to increased generation of glycolytic intermediates that
form the building blocks for anabolic pathways needed to sus-
tain cell growth and proliferation.

AMP-activated protein kinase (AMPK), a metabolic sensor
that negatively regulates mTORC1 and affects many other path-
ways, has been reported to be less active in some PKD models
[79, 81, 89], but not in all [90], and may play a role in mediating
the metabolic changes in PKD [91]. Metformin, a widely used di-
abetes medication and a known AMPK activator, was shown to
inhibit disease progression in PKD mouse [92] and zebrafish
models [90] and is currently being tested in a Phase II clinical
trial in ADPKD patients [93]. Numerous other compounds
exist—including widely used ones—that function at least partly
as AMPK activators, and it could be contemplated to investigate
their efficacy in PKD [91].

Due to the presumed glucose dependency of cystic cells, tar-
geting glucose utilization has been attempted in PKD models
with promising results. 2-deoxy glucose (2DG) is a potent inhibi-
tor of glycolysis [94] by inhibiting conversion of glucose-6-
phosphate by phosphoglucoisomerase in the second step of gly-
colysis [94] with resultant inhibition of hexokinase [95]. Mouse
embryonic fibroblasts (MEFs) lacking functional PC1 display in-
creased levels of ATP, ERK and mTORC1 signaling [79].
Increased levels of ATP and lactate have also been observed in
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human ADPKD cell cultures and are reduced following treat-
ment with 2DG [89]. Upon glucose withdrawal, Pkd1�/�MEFs
were unable to activate autophagy and displayed increased apo-
ptosis [79]. Treatment of a Pkd1 mouse [79, 96] and the
Han:SPRD Cy/þ rat models [89] of PKD with 2DG led to reduced
cystic burden and kidney volume [89, 96]. Timing of the knock-
out of Pkd1 in mice at either postnatal day 12 or 25 using a
tamoxifen-inducible transgene leads to differences in the rate
of disease progression, and in both rapidly and slowly progress-
ing PKD, 2DG treatment was effective in retarding disease pro-
gression [96]. 2DG is reasonably well tolerated based on clinical
trials in the cancer setting [97]. Whether long-term therapy in
ADPKD is feasible remains an open question.

Besides increased reliance on glycolysis, cystic cells appear
to have altered metabolic pathways that may be due to mito-
chondrial defects. Cells from the cpk mouse model have an al-
tered tricarboxylic acid cycle (TCA) cycle and overproduce
citrate and the oncometabolite 2-hydroxyglutarate, most likely
due to increased utilization of glutamine that requires the activ-
ity of glutaminase for entry into the TCA cycle [98]. The tumor
suppressor Lkb1 activates AMPK and has been shown to have
decreased activity in PKD [79]. Concomitant ablation of Lkb1
and the mTORC1 regulator TSC1 leads to PKD and glutamine de-
pendence [99]. Utilizing a primary human ADPKD cell line, inhi-
bition of glutaminolysis with Bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide (BPTES) and CB-839 prevented
forskolin-induced cystogenesis [100]. It has been suggested that
these cells are glutamine addicted and that glutaminase inhibi-
tors may be effective in PKD [98, 100].

Fatty acid beta oxidation, which also occurs in mitochondria,
has been found to be impaired in cystic cells [83, 101]. The mito-
chondria in these cystic cells may no longer function primarily
as energy centers but instead primarily produce metabolic
intermediates to supply anabolic pathways. Structural and
functional abnormalities of mitochondria as well as reduced
mitochondrial numbers have been found in human ADPKD and
animal models [80]. These mitochondrial defects may involve
dysregulation of the peroxisome proliferator-activated receptor
(PPAR) family of transcription factors that control a suite of
genes involved in fatty acid utilization, inflammation, lipid up-
take and lipogenesis [102]. Cells lacking Pkd1 also show altered
levels of the PPARs with either decreased PPAR-a [101] or in-
creased PPAR-c expression [103].

Of interest is the PPAR-a activator fenofibrate and the PPAR-
c activators rosiglitazone and pioglitazone. PPAR-a levels have
been reported to be reduced in human ADPKD cells and aggres-
sive models of mouse PKD [57]. Reduced fatty acid oxidation is
observed in the Pkd1RC/RC mouse model of PKD along with de-
creased levels of PPAR-a mRNA [101]. Use of fenofibrate restored
fatty acid oxidation and decreased the cystic phenotype follow-
ing 10 days of administration [101]. Fenofibrate-treated mice
also showed increased expression of pyruvate dehydrogenase
kinase 4—a negative regulator of glycolysis—and an increase in
the mitochondrial biogenic protein PPARGC1A and fatty acid b-
oxidation [101]. Additionally, a reduction in cell proliferation
and inflammation was observed following fenofibrate treat-
ment [101]. PPAR-c activators have been used in the treatment
of diabetes to promote glucose uptake via insulin sensitization
[104]. Use of the PPAR-c agonists rosiglitazone and pioglitazone
have each shown efficacy in treating animal models of PKD
[105, 106]. Rosiglitazone and pioglitazone treatment reduced
levels of the profibrogenic cytokine TGF-b [107–109], in turn de-
creasing fibrogenesis [108]. Rosiglitazone and pioglitazone also
affect the activity of several overactive pathways in PKD

including p70S6K [109, 110], phospho-S6 [109] and phospho-ERK
[108]. The reduction in p70S6k by rosiglitazone is not directly
mediated through mTOR as concomitant treatment with rapa-
mycin further reduced levels of p70S6K in rodents [110]. The
non-PPAR-mediated effects of rosiglitazone have been observed
previously in nonsmall-cell lung carcinoma and shown to acti-
vate AMPK [111]. This supports an additional mechanism by
which rosiglitazone may provide therapeutic potential.
Additionally, treatment with rosiglitazone was also able to in-
hibit proliferation in ADPKD cyst-lining cells by increasing lev-
els of the cell cycle regulators p21 and p27, decreasing levels of
cyclin D1 and Cdk4, causing G1-arrest [103]. This was coupled
with an increase in apoptosis by a reduction in Bcl-2 and in-
creased levels of Bax [103]. Taken together these studies provide
strong evidence for the use of PPAR agonists in the treatment of
PKD, with a clinical trial currently testing the efficacy of piogli-
tazone (see ClinicalTrials.gov Identifier: NCT02697617).
However, it is important to keep in mind that the safety of rosi-
glitazone has been controversial due to conflicting reports of
cardiovascular risks that led to suspension of this drug from
European markets [112].

Dietary restriction

As detailed above, mTORC1 is typically activated in PKD cysts
and is a driver of cyst growth. Given that mTORC1 is not only
regulated by growth factor signaling but also by nutrient supply
and the energy status of a cell, it could be that these latter fac-
tors contribute to mTORC1 activation in PKD. Two groups tested
this independently by subjecting three slowly progressive
mouse models (Pkd1RC/RC, Pkd2WS25/� and Pkd1flox/flox: Nestin-Cre)
to food restriction, without malnutrition, and found this treat-
ment to be surprisingly effective [113, 114]. Mild to moderate re-
duction of food intake—even a reduction as low as 10% below
that of controls—resulted in very significant inhibition of renal
cyst growth, proliferation, fibrosis and markers of inflamma-
tion. In these studies, food intake was reduced overall meaning
that all macro- and micronutrients were proportionally re-
duced. Food reduction by 40% not only inhibited the rate of cyst
growth but also actually led to a decrease of existing cystic bur-
den and therefore reversed the disease. Such a reversal has pre-
viously only been seen from mTORC1 inhibition with a high
dose of rapamycin [4].

Food restriction led to inhibition of not only the S6 branch
downstream of mTORC1 [113, 114], but also even more substan-
tial inhibition of the 4E-BP1 branch [114] (see Figure 1). Although
previous work mainly evaluated the S6 branch, this new finding
suggests that 4E-BP1 may be a more important driver of renal
cyst growth. Rapamycin effectively inhibits the S6 branch, but is
a less effective inhibitor of the 4E-BP1 branch [115]. This consid-
eration may possibly help to explain why high-dose rapamycin
is effective in rodent models of PKD but low-dose rapamycin
failed in clinical trials (see above).

A mechanistic explanation for the surprisingly high efficacy
of food restriction in PKD mouse models still remains outstand-
ing. However, the translational potential of these findings is
very high. It seems possible that ADPKD may prove to be treat-
able by dietary interventions in many patients. If so, this would
provide a safe and inexpensive therapy but may encounter re-
sistance and potential conflicts of interest [116, 117] because it
would also undermine significant investments by academic
investigators, patient advocacy organizations and the biotech
and pharmaceutical industry to develop new drugs for ADPKD
therapy.
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Tissue targeting approaches

Many of the compounds discussed above would likely be too
toxic to be used for long-term therapy in ADPKD patients. A pos-
sible way to circumvent unwanted extra-renal effects is to tar-
get these compounds specifically, or at least preferentially, to
polycystic kidneys. Work in our laboratory has led to two suc-
cessful strategies, one for the targeting of small molecules to
PKD kidneys and the other for the targeting of antibodies to cyst
lumens in PKD kidneys (Figure 2). Because small molecule drugs

and biologics (such as mAbs) differ dramatically in their phar-
macological properties, very different approaches are needed to
direct them to a specific target tissue.

Targeting of small molecules to renal cysts via the folate
receptor. In this approach, drug payloads are chemically conju-
gated to the B vitamin, folic acid. The resulting folate-conju-
gated drugs bind to the high-affinity folate receptor (FR) and are
internalized into cells by endocytosis (Figure 2B). Tissue

FIGURE 2: Drug targeting to renal cyst lumens in PKD. (A) Cartoon of a cross-section of a renal cyst in PKD that is lined by a single-layer epithelium forming an enclosed

space. The kinase mTOR is depicted as an example of an intracellular pharmacological target that can be reached via folate-conjugated small molecule drugs as shown

in (B). The cyst lumen contains growth factors and cytokines that activate receptors on the apical plasma membranes of the cyst-lining cells. These growth factors and

their receptors receptors are the intended targets of antagonistic mAbs in dIgA format as shown in (C). (B) Magnified cartoon. A depiction of a folate-conjugated small

molecule drug consisting of the ligand folate (1), a hydrophilic spacer (2), a cleavable bond (3) and the payload (4), which could be rapamycin in the case of FC-rapa. FC-

rapa binds to the FR on the plasma membrane of cyst-lining cells and is internalized via receptor-mediated endocytosis, followed by cleavage and release of the drug

in the endosome. The free, activated drug is subsequently released into the cytoplasm where it can inhibit its intended target mTOR. The FR is subsequently recycled

back to the plasma membrane for additional rounds of drug uptake. Whereas cysts in PKD express the FR, most other cells instead utilize the reduced folate carrier

(RFC) for folate uptake. Because the RFC cannot transport folate-conjugated drugs, these cells will be unaffected. (C) An antagonistic antibody in dIgA format (red) binds

to the pIgR (green) on the basolateral surface of cyst-lining cells and is transcytosed to the apical surface. After arrival at the apical surface, the pIgR is cleaved which

leads to the release of the complex between dIgA and the ectodomain of the pIgR (secretory IgA) into the cyst fluid. The dIgA antibody can then inhibit its intended tar-

get such as a growth factor or growth factor receptor (blue). Because renal cysts have enclosed spaces, the dIgA antibody will accumulate in the cyst fluid. In contrast,

pIgR-mediated transcytosis will lead to excretion and loss of the dIgA antibody in other epithelial tissues such as the intestinal epithelium.
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specificity of these drugs is due to the fact that most cells in the
body do not express the FR, but instead import folate via the re-
duced folate carrier, which does not allow the import of folate-
conjugated drugs [118, 119]. The FRa isoform has a restricted
pattern of expression in normal tissues [120] but is expressed at
high levels in renal proximal tubule epithelial cells [120, 121]. In
addition, FRa is highly expressed in several epithelial cancers,
which is why folate-conjugated drugs preferentially target
to cancer cells and have been developed for tumor therapy
[122, 123].

FRa expression was also found to be high in renal cysts in
mouse models of PKD and human ADPKD samples [11, 124],
which suggested that PKD could be amenable to FR-targeting
strategies. A folate-targeted form of the mTORC1 inhibitor (see
above) rapamycin (FC-rapa or EC0371) was developed that in-
cluded a hydrophilic spacer and a self-immolative linker
designed to be cleaved intracellularly to reconstitute the active
drug [11]. In the nonorthologous, early-onset bpk model of PKD,
FC-rapa administered by intraperitoneal injection proved highly
effective in inhibiting mTOR activity in the kidneys—but not in
other organs—and led to strong attenuation of cyst growth and
proliferation and preserved renal function [11]. In a follow-up
study, FC-rapa was tested at lower doses in an orthologous
Pkd1flox/�: Nestin-Cre mouse model and compared head-to-head
to unconjugated rapamycin. Both, FC-rapa and unconjugated
rapamycin were similarly effective in inhibiting PKD disease
progression. However, FC-rapa exhibited much reduced extra-
renal effects, including effects on the immune system and re-
duced systemic toxicity as assessed by body weight gain over
time [124]. In the same study, it could also be directly demon-
strated that renal cysts are accessible to folate-conjugated com-
pounds as assessed using a novel fluorescent folate-conjugated
reporter [124]. This reporter was efficiently taken up by the col-
lecting duct-derived cysts that are prevalent in the bpk mouse
model [124], and FC-rapa was effective in inhibiting the growth
of these cysts [11]. These results indicate that the FR is
expressed on collecting duct-derived cysts and not restricted to
cysts that originate from proximal tubules.

Although the preclinical data to date suggest that targeting
drugs to PKD kidneys via FR is a feasible approach [125], it has
yet to be tested in a clinical trial in ADPKD patients. In addition
to targeting FR with folate-conjugated small molecules, other
FR-targeting approaches have been investigated that may also
have application in PKD. The most advanced is mirvetuximab
soravtansine, an FR-targeted antibody–drug conjugate, which
consists of an anti-FR antibody linked to maytansoid DM4, a po-
tent tubulin-disrupting agent. Preclinical and clinical studies
suggest that the overall efficacy of mirvetuximab soravtansine
is linked to the relative expression of FR [126–128], and its rela-
tive efficacy is currently being tested in patients with platinum-
resistant ovarian cancer [129] including a pivotal Phase 3 clinical
trial in this patient population [130].

Targeting of mAbs to renal cysts via the polymeric
immunoglobulin receptor. As opposed to small molecule drugs,
a major advantage of mAbs is their typically higher target spe-
cificity that greatly reduces or eliminates off-target adverse
effects [131, 132]. The disadvantage due to lack of oral bioavail-
ability is partially overcome by much longer half-lives of mAbs
compared with small molecules, which means that dosing is re-
quired much less frequently.

Many potential targets for PKD therapy are cytokines,
growth factors and their receptors. For many of these targets,
very effective antagonistic mAbs have already been

developed—and are even in clinical use, primarily for cancer
therapy. A prime example is the EGFR, which is over-expressed
in PKD. Small molecule tyrosine kinase inhibitors against the
EGFR effectively inhibit renal cyst growth in PKD mouse models
[133]. However, the known toxicity of small molecule EGFR
inhibitors would seem to make them poor candidates as long-
term therapeutics for ADPKD. Antagonistic EGFR mAbs would
seem much more promising at first glance. However, to our
knowledge, no publication reporting efficacy of any mAb in ro-
dent models of PKD has yet appeared. Our own efforts to use
existing mAbs against several targets in PKD mouse models
have led to failure. It seems likely that other labs have found
similar results, but such failed studies are rarely published.

A likely explanation for these failures is that many of the
growth factors/receptors implicated in PKD are localized to the
luminal compartment of renal cysts. For example, the EGFR has
been found to be activated and apically localized in cysts [134],
and EGFR ligands have been found in cyst fluid [135]. Since cysts
are enclosed, epithelial-lined spaces [136], any growth factors
secreted into cyst fluid should be able to stimulate their cognate
receptors that are present on apical membranes of cyst-lining
cells. This would lead to continuous auto- and paracrine activa-
tion of cyst cells and may lead to an inescapable, permanent
state of activation once cysts are formed.

The biotech industry exclusively uses IgG isotypes to de-
velop mAb therapeutics. However, IgG antibodies are not capa-
ble of crossing the epithelial barrier of renal cysts and should
therefore never gain access to this compartment. Considering
this problem, it is not surprising that mAbs in IgG format should
be ineffective in PKD if the intended target resides in cyst
lumens.

To overcome this problem, we have utilized antibodies of a
different isotype, IgA, specifically dimeric IgA (dIgA). The pur-
pose of dIgA in nature is to cross epithelial barriers so that it
can be excreted into external secretions as a first line of defense
against pathogens. This is accomplished by transcytosis via the
polymeric immunoglobulin receptor (pIgR) that binds dIgA at
the basolateral side of epithelial cells and releases it into the
apical space in complex with the ecto-domain of the pIgR [137,
138]. This final ‘secretory IgA’ (sIgA) consists of the dIgA mole-
cule tightly bound to the pIgR ecto-domain, which also provides
the antibody increased stability and protection from proteases.

We found that the pIgR is highly expressed on cyst-lining
cells in human ADPKD and mouse models, and that its expres-
sion is driven by the aberrant activation of the STAT6 pathway
[139] that is one of the driving forces of renal cyst growth [140,
141]. Importantly, we found that dIgA administered by intraper-
itoneal injection in PKD mouse models is indeed targeted to
polycystic kidneys and accumulates in renal cyst fluid [139]. In
contrast, injected IgG does not measurably reach renal cyst
lumens [139]. Because pIgR is a sacrificial transporter, it can
only transcytose dIgA unidirectionally into cyst lumens but not
back out. Because the majority of renal cysts have lost their con-
nection to the tubular system, once dIgA has reached cyst
lumens, it will be trapped there. Therefore, administered dIgA
can accumulate in renal cyst lumens (Figure 2C). In contrast,
due to the relatively short serum half-life of dIgA, the remainder
of injected dIgA would be rapidly cleared systemically by secre-
tion, primarily via the intestinal epithelium and via the bile
[142, 143]. The net effect is that parenterally administered dIgA
is specifically targeted to renal cyst lumens and would be
expected to have minimal systemic effects.

Using this approach, we estimated that concentrations of
dIgA in the microgram per milliliter range can be achieved in
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renal cyst lumens in mice, which far exceeds the 50% effective
concentrations of any IgG therapeutic mAb currently in use.
These findings suggest that it is feasible to utilize antagonistic
mAbs against any number of growth factors/receptors impli-
cated in PKD, provided that the mAbs are in dIgA format. This
approach would allow the re-purposing of numerous existing
mAbs, after re-formatting to dIgA—including those mAbs that
are already in clinical use such as mAbs against the EGFR. Since
the pIgR can also transcytose pentameric IgM antibodies, this
isotype could potentially also be utilized. However, the large
size of pentameric IgM is likely to create additional challenges
with regard to manufacturing and pharmacokinetics.

CONCLUSIONS

In conclusion, numerous pharmacological agents targeting a
multitude of pathways and molecules have shown promise in
preclinical studies. Although renal and extra-renal side effects
are a concern for the long duration of therapy needed in
ADPKD, novel approaches for targeting of drugs to renal cysts
may overcome this problem. New findings suggest that ADPKD
therapy may even be possible without drugs but instead using
dietary intervention.
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