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Abstract: In recent years, deep learning has been applied to many medical imaging fields, including
medical image processing, bioinformatics, medical image classification, segmentation, and prediction
tasks. Computer-aided detection systems have been widely adopted in brain tumor classification,
prediction, detection, diagnosis, and segmentation tasks. This work proposes a novel model that
combines the Bayesian algorithm with depth-wise separable convolutions for accurate classification
and predictions of brain tumors. We combine Bayesian modeling learning and Convolutional Neural
Network learning methods for accurate prediction results to provide the radiologists the means
to classify the Magnetic Resonance Imaging (MRI) images rapidly. After thorough experimental
analysis, our proposed model outperforms other state-of-the-art models in terms of validation
accuracy, training accuracy, Fl-score, recall, and precision. Our model obtained high performances
of 99.03% training accuracy and 94.32% validation accuracy, F1-score, precision, and recall values
of 0.94, 0.95, and 0.94, respectively. To the best of our knowledge, the proposed work is the first
neural network model that combines the hybrid effect of depth-wise separable convolutions with the
Bayesian algorithm using encoders.

Keywords: magnetic resonance imaging (MRI); depth-wise separable convolution; deep learning;
Bayesian algorithm

1. Introduction

The era of deep learning has brought tremendous solutions to challenging tasks that
have been previously considered almost impossible or too demanding to deal with in real
life. Several methods have been developed and proposed for medical image classifica-
tion. With the prevalence of deep learning, high-level feature representation of medical
images has become more robust, and many state-of-the-art results have been obtained.
Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique used to
observe various diseases in the body. MRI is an advanced technique with a better resolution
with soft tissues than other forms of medical imaging. Radiologists and health experts use
magnetic resonance examination to diagnose diseases, detect abnormal tissues or tumors,
and guide surgical procedures. A brain tumor is caused by forming a significant mass of
abnormal cells inside or around the brain. These cells must be detected promptly because
the cancer is fatal if not analyzed and treated, affecting the brain processing functions
and the patient’s holistic health. MRI is the most common technique for obtaining and
diagnosing a specific type of brain tumor.

According to the World Health Organization (WHO), brain tumors can be classified
into various types based on their cell origin. These types include meningioma, pituitary
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adenoma, brain stem gliomas, oligodendrogliomas, astrocytoma, ependymomas, glioblas-
toma, etc. The meningioma type of brain tumor is often benign and can be treated if
detected early. They are low-grade tumors, which can be non-cancerous cells and are very
unlikely to spread. Meningioma tumor is slowly formed in the membrane surrounding
the spinal cord and the brain. The pituitary adenoma [1] type of brain tumor grows slowly
and is usually harmless in some cases. The tumors develop from tissues in the pituitary
gland, located at the base of the brain. This tumor type is prevalent as the pituitary gland
is responsible for controlling other glands in the body. The glioma [2] type of tumor is
developed from the glial cell and can be seen from a biopsy. Brain stem gliomas are found
in the lower part of the brain connected to the spinal cord, which can be challenging to
treat as they affect the basic functionalities of the brain and central nervous system.

A Bayesian Neural Network (BNN) is an artificial neural network with priors, built
using stochastic processes and trained using Bayesian Inference. A particular type of
Artificial Neural Network (ANN) is a Stochastic Neural Network. Stochastic neural net-
works are built by feeding stochastic components into the neural network using stochastic
weights to simulate a set of models 6 with their respective probability distribution p(6).
Stochastic neural networks are used to estimate the uncertainty in the model prediction.
In other words, the predictions for each model are aggregated after the models are trained
to understand the predictions’ uncertainty better. Bayesian estimation of unknown param-
eters is essential for estimating the uncertainty and confidence in these output decisions.
The prior distributions are first introduced over the network weights. Then the posterior
distributions are estimated subsequently.

Bayesian Neural Networks are made up of neural networks with a prior distribution
on their weights [3], as well as a probabilistic (or statistical) model, which forms the
core of this integration. This combination helps explore the strength and capabilities of
both neural networks and probabilistic modeling. Bayesian networks can approximate
functions using probabilistic models that allow direct specification. Valuable data can be
generated from specific parameterization in statistical modeling. In the prediction stage,
the statistical models ensure probabilistic guarantees on the model and generate a posterior
distribution of the parameters learned from previous examples’ observations. The nature
and distribution of the previously learned parameters can be deduced in the parameter
space. Bayes Theorem helps support the development of top machine learning algorithms
and provides a critical framework to analyze stochastic neural networks and train network
models. We can perform model comparison and selection using this approach without a
separate cross-validation dataset. Regularization is also an excellent technique to reduce
errors in the output distribution of the training data.

A deep neural network is an artificial network model with an input unit, mul-
tiple hidden layers, and an output layer. Complex data models can be created with
many hidden layers and can perform better than a similar shallow network model [4].
Convolutional Neural Network (CNN) models consistently outperform other classical
machine learning techniques (including support vector machines, random forest, and
K-nearest neighbors) since 2012 when AlexNet won the ImageNet Large Scale Visual Recog-
nition Competition [5]. However, while CNN has achieved state-of-the-art performance in
medical image segmentation, image recognition, and medical image classification, there
are few works addressing image registration using CNN.

For medical image classification, a recent study [6] detailed the image-based brain
tumor segmentation using machine learning classifiers. Another study [7] proposed a 3D
CNN model for breast cancer detection using Clinical Image data.

Many works have been done on medical imaging, magnetic resonance imaging (MRI)
using reinforcement learning, and other deep learning techniques. The major challenge
is the data acquisition process, which is very time-consuming and could be tiresome for
hospital patients. According to a study on the application of compressed sensing for rapid
MRI [8], the average patient waiting for the full MRI scan takes about 15 min to 60 min
while remaining still in a given position, which is because the data is mainly sampled
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sequentially in K-space or frequency domain. To this end, a practical solution to this
tedious process is Compressed-Sensing MRI (CS-MRI) to accelerate data acquisition and
reduce the time and hardware resources used.

In recent years, reinforcement learning has been applied to the medical field in MRI
reconstruction, medical image processing, and so on. In a recent study, a detection agent
was trained using Deep Reinforcement Learning (DRL) for localizing landmarks in 3D CT
images [9]. DRL swiftly combines Reinforcement Learning with Deep Neural Networks,
making it applicable to more complex problems (including game theories and human-level
controls) as well as producing high-level performances [10]. However, deep reinforcement
learning has many drawbacks, including the need for lots of data to learn, lots of computa-
tion with high computational costs, sample inefficiency, and the tendency to rationalize the
information provided.

Regarding machine learning, many works have been proposed for the diagnosis of
various medical conditions, including learning techniques for the diagnosis of Alzheimer’s
disease [11], classification of breast tumors [12], predicting outcomes of clinical trials of
prostate cancer [13], as well as many other related works.

The previous work on multispectral tissue classification [14], using statistical pattern
recognition techniques, represented one of the most seminal works leading up to today’s
machine learning in medical imaging segmentation. There are different contributions
regarding supervised and unsupervised machine learning approaches for magnetic res-
onance image segmentation, and classification tasks [15]. A range of segmentation and
classification methods, such as deep CNN models, have been proposed for brain image
analysis on MRI [16,17].

Many algorithms, including Principal Component Analysis (PCA), Discrete Wave-
length transform (DWT) [18], Support Vector Machines (SVM), etc., have been used in dif-
ferent works for medical imaging. Table 1 shows different related works on Reinforcement
Learning, CNN research trends, medical image classification, prediction, and segmentation
tasks, as well as their contributions.

Table 1. Related works on MRI prediction and classification, CNN trends, medical imaging, and
their contributions.

Papers Features Main Contributions
Fully optimized deep CNN for Thr?e full.y'autp matic CNN models fpr
[19] . R . multi-classification of brain tumors using
multi-classification of brain tumor MRI . .
publicly available datasets.
Hybrid fuzzy brain-storm optimization Fuzzy brain-storm optimization
[20] algorithm for the classification of brain algorithm for medical image
tumor MRI segmentation and classification.
Evaluation and classification of the brain Machine-Learning-Technique (MLT) to
[21] tumor MRI using machine learning evaluate and classify the tumor regions in
technique brain MRI slices.
Ensemble deep features and ML Brain tumor classification using an
[22] classifiers for MRI-Based brain tumor ensemble of deep features and machine
classification learning classifiers
MRI brain tumor classification using CNN appr(.)ach to c.ategorlze brain MRI
[23] CNN scan images into cancerous
and non-cancerous
Transfer learning using CNN Deep transfer learning for feature
[24] architectures for MRI brain tumor extraction using deep pre-trained
classification CNN architectures
[25] MRI brain tumor classification using Reinforcement learning for MRI brain
Deep reinforcement learning tumor image classification
[26] Capsule Networks (CapsNets) Brain tl;r;)osliliaszlft;\fgﬁ(osn using
[27] CNN + Multi-step Reinforcement CNN-MRL Hybrid model for

Learning (MRL)

Image Processing
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Table 1. Cont.

Papers Features Main Contributions
Driver drowsiness detection app for
[28] Object detection with MobileNet smartphones based on deep

learning features

Another challenge of using deep reinforcement learning is that the time taken during
the training process is too much compared to other deep learning forms.

The main difference between our work and other deep CNN reinforcement learning
models is that our model is the first neural network model that combines the hybrid
effect of depth-wise separable convolutions with the Bayesian algorithm using encoders.
Other conventional CNN architectures deploy point-wise convolutions with a higher
computational cost, but our work uses depth-wise separable convolutions with the Bayesian
algorithm to ensure accurate predictions.

The existing problems from previous reinforcement learning models and deep neural
network models include training instability, interference and exploration problems, sample
inefficiency, safety constraints, real-time inference problems, and delayed reward functions.
On the one hand, we present a new Bayesian deep convolutional network that can solve
the disadvantages of previous CNN and reinforcement learning models and combine and
use the prediction advantages of the existing models. On the other hand, we compare
our results with existing works regarding classification, prediction metrics, and accuracy.
These are the motivations to introduce the related works in medical imaging and other
CNN trends.

2. Materials and Methods
2.1. Problem Statement and Contributions

Although there are significant advances in deep learning, reinforcement learning,
and machine learning fields, the application in the medical field is still very limited due to
the few datasets and the private nature of this field. However, in this work, we apply the
advantages of the Bayesian neural network, which requires a small number of probability
variables to predict the continuous output confidently. The Bayesian model can also solve
queries in the joint distribution by adding all relevant entries. Since Bayesian classifiers
and networks are still traditional machine learning methods, they can complement the
depth-wise separable convolutions in deep CNN models. They can be used to predict and
classify medical images accurately.

Although medical image processing is very time-consuming, different techniques
used to increase the speed of the process have been employed. Machine learning and
artificial intelligence have rapidly advanced in different fields, especially medical imaging.
Different techniques of artificial intelligence and machine learning have played essential
roles in the medical field, including medical image processing, image segmentation [16],
image interpretation and interpolation, computer-aided diagnosis, image fusion, image
classification, and so on. Several methods have been proposed to improve MRI image
detection and classification accuracy.

In recent years, many deep learning approaches have been proposed for medical
image classification and segmentation. With the prevalence of deep learning, high-level
feature representation of medical images has become more robust, and many state-of-the-
art results have been obtained. The innovation of this work is the proposed model, which
can accurately perform classification with a high degree of probabilistic prediction accuracy.
The main contributions to this work include:

1. A new method for proper medical image classification and prediction is proposed
using depth-wise separable convolutions instead of the conventional standard point-
wise convolutional layers;
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2. By combining the Bayesian algorithm to depth-wise separable convolutions, the pro-
posed method obtains better results in terms of different evaluation metrics;

3. The proposed model mainly focuses on improving the accuracy of MRI image detec-
tion and ensuring efficient classification promptly to aid radiologists in obtaining an
accurate model for medical diagnosis. This model ensures efficient predictions for the
tumor type by implementing medical image registration and bias field correction on
the datasets.

2.2. Datasets

The dataset for this work is obtained from the repository of the BRAIN Initiative Neuro-
science Information framework [29], and the Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) 2015 dataset [30].

The BRATS dataset is from the competition on brain tumor segmentation. This dataset
consists of patients with glioblastoma and lower grade glioma, but we only acquired the
part for glioma in this research work.

The healthy slices of MRI images were obtained from the IXI dataset, containing T1
and T2 weighted images from healthy and normal subjects [31]. The images obtained were
in NIFTI format, so they had to be converted into PNG format for recognition by our model.

The Glioma class is obtained from the BRATS 2015 dataset consisting of high-grade
and low-grade gliomas, while pituitary and meningioma classes are obtained from the
image database [32] containing contrast-enhanced MRI images.

The dataset has four main classes: no tumor, pituitary tumor, meningioma tumor,
and glioma tumor. This is why the categorical class mode is used for multi-class classifi-
cation. The overall dataset consists of 4000 images, with each class having 1000 images.
The training and testing sets were split in the ratio of 4:1, with 80% of the data used for
training and 20% of the data used for testing. However, for models that require a training
set, test set, and validation set, the data is divided into 80% for the training set, 10% for
the test set, and 10% for the validation set. There are 3200 training samples and 800 test
samples. The preferred optimizer used in this work is the Adam optimizer because it is
easy to implement and has a lower computational cost than other optimizers. In addition,
due to the noise in some of the data, the Adam optimizer proved to be the best when
filtering out the noise, and it works well with large datasets. This optimizer requires little
memory for computation and deals with sparse gradients problems. Adam optimizer is
used in the training process, with a learning rate of 0.0001. This work uses the rectified
Linear unit activation function and SoftMax activation for the final output classes.

2.3. Mathematical Definitions and Algorithms

Let M and N represent the number of input channels and output channels of a
convolutional layer with Kernel K, the input of the feature map F can be represented as
Ir x Ir x M, where I represents the spatial width and spatial height of F. The size of K is
calculated as Ix x Ix X M x N, where Ik is the spatial dimension of the kernel, which must
be square. For standard point-wise convolutions, the computational cost can be computed
aSIK-IK~M-N-IF-IF.

Let (i, j) represent the spatial coordinate in the receptive field of size k, y represent the
output label space, m represent the number of filters applied in Kernel K, and W represent
the convolutional weight applied, then the point-wise convolutional process P [33] is
given by:

M
P(W, ), = Y W= Yijm) 1)
m

Assuming the network model has L depth-wise convolutional layers, the depth-wise
convolutional process D in layer | performs element wise multiplication (denoted by ©),
as shown below:

=

,L

DW,y)ij) = 2 Wit © Y(ithj+1) )
y

B
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However, in our model, we apply depth-wise separable convolutions to restrict the
relationship between the output channels and the kernel. The point-wise and depth-wise
convolutions all make up the term depth-wise separable convolutions. Point-wise convolu-
tions are just normal 1 x 1 convolutions with the stride of 1. For depth-wise convolutions,
there is no dependency on the number of output channels so that the computational cost
can be computed as Ix - Ix - M - Ir - Ir. Depth-wise separable convolutions have lower
computational costs, about nine times less than standard convolutions. The depth-wise
separable convolutional process Z, with spatial coordinate (i, j), point-wise convolutional
weight W, and depth-wise convolutional weight Wy, is given by:

Z(Wp, Wa,y) (i) = P(i, j) (Wp, D(i, ) (Wa,y)) ®)

The training algorithm for the Bayesian model with deep priors is given in
Algorithm 1. The input parameters are the MRI dataset to be trained, which is further split
into the test and training sets. Encoders are used, and the Evidence Lower Bound (ELBO)
function is used for computation. The main reason for employing Bayesian modeling is to
ensure that the prior beliefs influence the posterior beliefs. Let Pr(w) denote the weights of
the prior distribution, « denote the first hyperparameter of a prior distribution over another
parameter, E;, denote the estimator of the weights such that the prior becomes a Gaussian
function, and let Z,, denote the normalizer, then Pr(w) can be represented as:

e*thw
Priw) = G @
where Zy () = /(e*”‘Ew)dw (5)

Algorithm 1: Bayesian Training Algorithm with Depth-wise Separable
Convolutions
Input:
N M
1. MRI dataset to train prior Dy, : {(xj, ;) }j:1
m
2. Target MRI dataset Dr : {(xf’yf)}j:1

3. Variational approximation parameters gg(w) and deep weight priors
with encoder E, (z|w)

Training;:

1. Train Bayesian CNN model on D,

2. Collect kernel features and split them into standard and depth-wise separable
convolutions

3.  Train the model using encoders as implicit priors

4. Update Layer j € {1,...L}, input channel p € {1,...Cipy }, output channel
qe {1, - Coutput}

for j=0to N do

sample minibatch D*;

Split Dy on train and test dataset: D", Dest ;

Train the model and compute the ELBO Function:

L(6) = logp(Dif*") — KL(gs(w)|[p(w| D))

Update encoder parameter: & = a + 537, (L(0))

Evaluate the model on D using the evaluation metrics

end

Output:

1. Posterior distribution of the Bayesian CNN model parameter g (w)
2. Bayesian CNN brain tumor prediction model for the 4 classes
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2.4. Training Algorithm

Due to the intractable nature and lack of analytical solutions of the posterior inference
methods, the need for variational inference and other practical approximation techniques
arises. The idea behind variational inference is translating the inference of the posterior
directly into an optimization problem, which could either be a minimization or maxi-
mization problem. Modern Deep neural network architectures have multiple layers of
linear and nonlinear transformations; thus, Variational inference can be used to scale large
approximations of these architectures. The emerging challenge with this approach is that
the propagation of probability distributions is introduced over the weights through sev-
eral deep layers. Bayesian Convolutional Neural Network (BCNN) is used for various
deep learning tasks such as image Super-Resolution [34], Generative Adversarial Net-
work modeling [35], and various image classification tasks. The Kullback-Leibler (KL)
divergence parameter [36] between the true posterior p(w|D) and the variational approxi-
mation gy (w) or variational distribution q(w|0) can be used to measure the closeness of the
approximations with respect to 6, where the training dataset is represented as:

D= {x(i),y(i)} (6)
The definition of KL divergence is given by:

KL(g(0) () = - [ a(xos(53)) 7)

The cost function or variational free energy is expressed as:
F(D,0) = KL(qo|[p(W)) — Eg, (w)log(p(D[w)) ®)

2.5. Architecture of the Proposed Model

The architecture of the proposed model in this work is illustrated in Figure 1. We take
the input MRI dataset for the proposed model and perform specific preprocessing tasks
on the original images. The images are rescaled to the desired input format, and data nor-
malization is performed. Since there are noises in the data, we performed data cleaning to
reduce and filter out the unwanted noise in the data. Next, data augmentation is performed
on the data, including horizontal and vertical shifts, rotations, image brightening, image
enlargement, horizontal flips, and vertical flips. Bias field correction is also performed using
the fuzzy C-means clustering algorithm. The final preprocessing step is image registration
with reference images and other images that should be aligned correspondingly.

Depth wise Separable Convolution

i Feat Extracti
Data Preprocessing I D) with Bayesian Encoders

a. Tumor Area Extraction

Input Image

Qutput Classes

‘ 7 Glioma Tumor

IMeningioma Tumor

+ Image Texture
enhancement

+ Data Normalization

+ Noise Reduction and

filtering 1 ™ No Tumor
« Data Augmentation b. Mask Tumor Extraction « Average pooling with Rel.U Am.livnlllm -
« Bias field correction « Depth wise separable convolutions Pituitary Tumor
« Image registration « Feature mapping =

= Vectorization and Batch Normalization
+ Bayesian training with deep weighted filters
+ Computation with encoders
Brain tumor Ellrl:lhl’d tumor + Entropy probability and mean contrast
ape

Figure 1. Architecture of the proposed model.

After preprocessing, specific feature extraction is performed on the image.
This part is divided into tumor area extraction and mask tumor extraction with ground
truth. The extracted features are used to train the neural network. The training phase
uses depth-wise separable convolution and Bayesian training with encoders. Average
pooling is used in this work instead of the maximum pooling used in conventional CNN
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architectures. The depth-wise separable convolutions involve the aggregation of point-wise
convolutions and depth-wise convolutions. Vectorization is performed as the next step,
along with feature mapping of the desired tumor region. Bayesian training is done with
Algorithm 1, using the model’s deep-weighted filters and weighted priors. Encoders are
also used in this step, and the entropy probability and mean contrasts are computed auto-
matically by the model. For validation, an input image is selected randomly from the test
set. Then, the model predicts the class to which the image belongs. If the image is not a
brain tumor MRI image, it will automatically refer to the output class of “No tumor”.

In Figure 2, the whole convolution process using depth-wise separable convolution
with Bayesian encoders is illustrated. The ReLU activation function is used after every point-
wise convolutional layer, while the Softmax classifier is used in the output layer. The red
cuboids after every depth-wise separable convolution in Figure 2 represent the kernels.

Input image

224 % 224 % 3

112x 112 % 32 112x112% 32 112x 112 % 64

[l output
dasses

56 % 56 x 128 14 % 14 % 512

Encoder blocks

28 x 28 x 256

TxTx 1024
7% 7 %1024 [\

Average Pooling

FC1 FC2 FC3

Dense | (Dense| fortma

»>

1024 512 256

Figure 2. Layered representation of the depth-wise separable features.

The input layer of this model takes the shape of 224 x 224 x 3, with 3-dimensional
color channels. The batch sizes of 32 and 16 are both used due to the capacity of the
graphics processing unit. Larger batch sizes were not used in this work because of the high
tendency to obtain redundant results. The number of iterations is set to 100 epochs and
trained for 671 seconds. Each epoch represents the complete cycle on the whole dataset.
Dropouts were used in the fully-connected layers, with a maximum dropout probability of
50%. Table 2 lists the proposed work’s input and training parameters.

Table 2. Input parameters for training the proposed model.

Parameters Values
Input shape 224 x 224 x 3
Batch size 32
Number of epochs 100
Number of training samples 3200 images
Number of test samples 800 images
Training time 671s
Output classes 4
Class mode Categorical (Multi-class classification)
Optimizer Adam
Learning rate 0.0001
Activation function ReLU, SoftMax
Dropout Probability 50%

3. Results

3.1. Experimental Setup

In this work, several implementation tools are used, such as Keras, TensorFlow, Py-
Torch, and Caffe Application Programming Interface. The main programming language
used is Python. The proposed model is trained on the brain tumor MRI dataset.
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The codes used in this work were implemented using the GeForce RTX Graphical
Processing Unit (GPU) due to the high performance and speed of training. The processor
used is an Intel Core i-7 central processing unit with an operating system memory of about
1.2 TB. The Google Colaboratory [37] tool is also used for running the codes because of
the speed of its processor and in-built libraries. The CUDA driver is used for the training,
supported by NVIDIA for computer graphics compilation. The CUDA version used is
9.0.176, and it helped to ensure maximum utilization of the GPU resources. PyTorch 1.2
is used with Python 3.9.1 for training. Furthermore, the model is trained with the Keras
framework using the TensorFlow backend.

3.2. Evaluation Criteria

Several evaluation metrics are used in this work, including accuracy, F1-score, recall,
and precision. This study also uses confusion matrices to evaluate the performance algo-
rithms. The confusion matrix is an error matrix that allows visualization of the model’s
performance. In the equations below, TP, TN, FP, and FN represent True Positive, True
Negative, False Positive, and False Negative, respectively.

TP+ TN

Aceuracy = 5 TN T FP T EN ©
.. TP
Precision = TP+ P (10)
TP
Recall = TPLEN (11
2 x Precisi R
Floscore — 2¥ Precision ecall (12)

Precision + Recall

For TP, the model predicts a positive result in the presence of the tumor, such that
tumor samples are correctly predicted as tumor samples. For TN, the model predicts a
negative result in the absence of the tumor, such that non-tumor samples are correctly
predicted as non-tumor samples. For FP, the model predicts a positive result without
the tumor, such that non-tumor samples are falsely predicted as tumor samples. For FN,
the model predicts a negative result in the presence of the tumor, such that tumor samples
are falsely predicted as non-tumor samples.

Entropy is the measure of randomness or uncertainty in predicting the data. The en-
tropy value ranging from [0-1] reflects the level of uncertainty disorder, depending on
the number of classes present in the dataset. The main goal of this neural network model
is to reduce the uncertainty of the order and keep the entropy as low as possible. Let p;
represent the frequentist probability of an element i, then the equation for calculating the

data entropy is given below.
C

H=) —pilog, pi (13)

i=1

3.3. Accuracy and Loss Representations

After training our proposed model with the Bayesian training algorithm and depth-
wise separable convolutional layers, we obtained the graphs for training and validation
for the proposed model, along with the confusion matrix, as shown in Figures 3 and 4.
Our model’s training accuracy and loss are 99.28% and 0.0269, respectively. Our model’s
validation accuracy and loss are 94.38% and 0.4082, respectively.

Our model also correctly classified all the images in the pituitary tumor class, as there
was no misclassification in this class, as can be seen from the confusion matrix in Figure 4.
Our model obtained a weighted average of 0.99 for precision, recall, and Fl-score.
However, for validation, our model obtained a weighted average precision value of 0.95,
an average recall value of 0.94, and an average Fl-score of 0.94.
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Model accuracy Model loss

12 = Training loss
—— Validation loss

09
08
o7

0o
2
—— Taining accuracy
—— Validation accuracy

05

b 2 P ) & 100 ) p) 0 & & 100

Figure 3. Accuracy and loss representation for the proposed model.

Confusion matrix

glioma_tumar

meningioma_tumor 7

Tue label

no_tumor - 1

pituitary_tumor 7

Predicted label

Figure 4. Confusion matrix for the proposed model.

3.4. Bayesian Prediction Results with Different MRI Images

In this part, we describe the prediction categories for the four classes in the dataset,
as shown in Figure 5a-d. Additionally, we describe the mean probabilities for the four
classes in the dataset, as shown in Figure 6a—d.

The model predicts the category the input image belongs to, then calculates the entropy
value and the Bayesian mean probability that the prediction is correct. The tumor heat map
area for the pituitary tumor is also plotted on the far right of Figure 5a.

The confusion matrix for our model explains that few glioma tumor images are
incorrectly predicted as “meningioma tumor” and “no tumor” classes. This is due to the
uncertainty and resemblance of these medical images. However, our model predicts the
input image correctly to be a glioma tumor, with a mean probability of 0.90. Figure 5b gives
the category, entropy, mean probability, and heatmap for Glioma tumor.
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Predicted category: pituitary_tumor

Entropy : 0.00

Predictions: {'pituitary_tumor': 50} Mean probability: 1.00 1.pituitary_tumor 0.997

glicma_tumor 0.904

@)

Predicted categery: glioma_tumer
Entropy : 0.00
Predictions: { glioma_tumor': 50} Mean probability: 0.90

(b)

Predicted category: meningioma_tumor
Entropy : 0.00 -

Predictions: {'meningioma_tumor': 50}

Mean probability: 0,95 L meningioma_tumor 0.940

(©)

Predicted category: no_tumor

Entropy : 0.00
Predictions: {'no_tumar": 50}

Mean probability: 0.92

1.no_tumor 0.929

(d)

Figure 5. Prediction categories for the four classes in the dataset. (a) Pituitary tumor: prediction
(left), mean probability (middle), and heat map (right). (b) Glioma tumor: prediction (left), mean
probability (middle), and heat map (right). (c¢) Meningioma tumor: prediction (left), mean probability
(middle), and heat map (right). (d) No tumor: prediction (left), mean probability (middle), and heat
map (right).
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Figure 6. Mean probabilities for the four classes in the dataset. (a) Mean probability graphs: “pituitary
tumor” = 1.00. (b) Mean probability graphs: “glioma tumor” = 0.90. (c) Mean probability graphs:
“meningioma tumor” = 0.95. (d) Mean probability graphs: “no tumor” = 0.92.

Additionally, some meningioma tumor images are incorrectly predicted as “glioma
tumor” and “no tumor” classes. However, our model predicts the input image correctly to
be a glioma tumor, with a mean probability of 0.95. Figure 5c gives the category, entropy,
mean probability, and heatmap for the meningioma tumor region. The confusion matrix
shows that some healthy MRI images are incorrectly categorized as tumor classes. However,
our model predicts the input image correctly to be “no tumor”, with a mean probability
of 0.92. Figure 5d gives the category, entropy, mean probability, and heatmap for the “no
tumor” region. It is worth noting that if the entropy is low, then the model’s uncertainty will
also be low. If the mean probability is 1.0, then the model is confident that the prediction is
accurate and belongs to the class category predicted.

The differences between Figure 5a—d lie in the heatmap of the tumor area (located at
the right of each figure), the mean probabilities provided in the middle, and the prediction
category of the model (provided at the left of each figure). The mean probabilities for all
four classes (in the middle of Figure 5a—d) are further obtained and plotted separately in
Figure 6a—d, respectively.
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In Figure 6a, the mean probability is 1.0 for “pituitary tumor”, while it remains 0.0 for
the other three classes. This is a perfect prediction. In Figure 6b, the mean probabilities
are plotted for all four classes. The value is 0.9 for “glioma tumor”, 0.02 for “meningioma
tumor”, 0.07 for “no tumor”, and 0.01 for “pituitary tumor”.

In Figure 6¢, the mean probabilities are plotted for all four classes, and the value is
0.95 for the “meningioma tumor” class, 0.04 for the “glioma tumor” class, 0.01 for the “no
tumor” class, and 0.00 for the “pituitary tumor” class. In Figure 6d, the mean probabilities
are plotted for all four classes, and the value is 0.92 for the “no tumor” class, 0.07 for the
“pituitary tumor” class, 0.01 for the “meningioma tumor” class, and 0.00 for the “glioma
tumor” class.

3.5. Comparison of All Models

In this section, we compare all the models to our proposed model. We plot the bar
chart representation and give the tabular comparisons of the models and their recall values,
precision scores, F1-scores, accuracy, and loss values. Table 3 gives the tabular comparison
of all models used in this work.

Table 3. Comparison of the proposed model to various models.

Training Validation

Models Acc. (%) Acc. (%) Precision F1-Score Recall
ResNet50 91.91 86.58 0.88 0.86 0.87
Alexnet 93.60 92.75 0.94 0.93 0.93
VGG16 98.50 89.51 0.92 0.91 091
MobileNet 98.96 93.42 0.94 0.94 0.94
PW-CNN 97.86 87.87 0.88 0.88 0.88
Ours + ReLU  99.19 94.38 0.95 0.94 0.94
Pashaei [38] 93.68 - 0.94 0.93 0.91
Kurup [39] 92.60 - 0.92 0.93 0.94

In AlexNet training, we converted our input images to 227 x 227, trained with rec-
tified Linear Unit activation, and added dense layers with neurons 4096, 1000, and an
output of 4 classes. We trained with Adam optimizer and performed preprocessing on the
dataset, including reshaping, rotation, horizontal and vertical flip, and zooming with a
specific range.

In VGG16 training, we converted our input images to 224 x 224, trained with recti-
fied Linear Unit activation. There are 13 convolutional layers, 3 fully-connected layers,
with neurons 4096, 4096, and an output of 4 classes. We trained with Adam optimizer and
performed preprocessing on the dataset.

In MobileNet training, we used the input dimension of 224 x 224 for the images.
The activation function used was Rectified Linear Unit. There are 28 layers in the MobileNet
architecture, with an average pooling layer, 1024 neurons in the fully-connected layer,
and an output of 4 classes.

The ResNet model consists of 5 stages, each having different convolutional and iden-
tity blocks. Each identity block in the model has three convolutional layers, while the
convolutional block also has three convolutional layers. Batch normalization is used after
every layer, and the ReLU activation function is used. There are about 47 million trainable
parameters in this model.

In the Standard CNN model with Point-wise Convolutional layers (PW-CNN), there
are six point-wise convolutional layers, one dense layer, and four classes output of four
classes. Batch normalization is used with the ReLU activation function. Adam optimizer is
also used to train the model over many iterations.

In the previous work using Kernel Extreme Learning Machines (KELM) [38], the 10-
fold cross-validation method is used for testing, and the dataset is divided into 80% for the
training set and 20% for the validation set.
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In the previous work using capsule network for brain tumor classification [39], the k-
fold cross-validation method is not used for testing, and the dataset is also divided into
80% for the training set and 20% for the validation set.

From Table 3, the best values from the experimental criteria are given in bold.
Our model outperforms other models in terms of training accuracy (Tr. Acc), valida-
tion accuracy (Val. Acc), Fl-scores, and precision. Our model obtained the joint-best recall
score of 0.94 and the MobileNet model. The comparison of the training and validation
accuracy for all the models is given in Figure 7.

Accuracy representation for all models

100

HEEE Tain
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80
&0
40
2
0
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=

Figure 7. Accuracy representations for all models.

3.6. Ablation Study

We tested our model’s efficiency using various activation functions such as Rectified
Linear Unit (ReLU), Leaky Rectified Linear Unit (LReLU), Swish activation function, Expo-
nential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear
Unit (GELU), Hyperbolic Tangent, Linear activation, and Softplus activation. The graphical
representation of the proposed model trained with different activation functions is given
in Figure 8. The SeLU activation has the advantage of internal normalization. The TanH
activation has the vanishing gradient problem, which is not the case in ReLU activation.
GELU also avoids the vanishing gradient problem, although it is not commonly used in
practice. For the Softplus activation, the computation is relatively large and expensive when
obtaining the back-propagation gradient. The first derivative of Softplus is the sigmoid
function (used for binary classification), which makes it soft saturated. For linear activation,
the derivative remains constant, and the error does not improve since the gradient is the
same. From Table 4, although the LReLU activation had a higher training accuracy than
other activation functions, it is very inconsistent. It produces a very high loss value, which
is not applicable for training our brain tumor images. The Leaky ReLU activation function
saturates for large negative values, rendering them inactive. In other words, if the input
value is negative, then the gradient will be represented as the hyperparameter . ELU
activation is computationally expensive because of the exponential term, although it gives
a high precision value as the ReLU function. The Swish activation function is unbounded
above like the ReLU function and bounded below, although it is computationally expen-
sive. Our proposed model uses the RELU activation to ensure computational effectiveness,
reduce time complexity, and provide sparsity in the network model, thereby reducing
over-fitting and noise. The non-linear nature of ReLU makes the network model adapt-
able to learning complex patterns. Table 4 compares the proposed model with different
activation functions.
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Accuracy Representation with Different Activation Functions

A

O Vo (s i b S e
/y’f’“{ f}:z W&%ﬂ RTINS

- J'l;
o6 .'ﬁ‘ A /\ mk\_\‘ ,f\“»\\_f‘#\/\ j\‘\ﬁ/\/ﬁ ‘Illvf
: '\ \ ‘r\\ I\ \/\ ." \/\fl I'|‘ /\J'l V

| —— swish

| relu
E

‘ — leaky-relu

| selu

| — ¢l
softplus

| ianh
inear

Test Accuracy
(_
(
Z

o F.Y) 40 &0 ;1) 100
Epoch

Figure 8. Accuracy representations of the proposed model with different activation functions.

Table 4. Comparison of the proposed model using different activation functions.

?;:ZS::::; ;l;r::n:; ? Xilcl.d(iz)on Precision F1-Score Recall
Swish 98.87 93.75 0.94 0.93 0.93
SELU 98.22 92.50 0.94 0.92 0.92
ELU 99.72 93.50 0.95 0.93 0.92
GELU 99.28 93.00 0.93 0.93 0.93
LReLU 99.97 94.00 0.94 0.94 0.94
TanH 86.81 84.13 0.85 0.84 0.83
Linear 99.19 92.75 0.94 0.93 0.93
Softplus 99.37 92.87 0.94 0.93 0.93
ReLU 99.19 94.38 0.95 0.94 0.94

4. Discussion

In this work, a fine-grained method for classifying brain tumors using deep learning
and the Bayesian method has been proposed. This approach breaks the barrier of simply
relying on the conventional neural network classification methods and can also be applied
to different medical imaging tasks. Our proposed method combines the Bayesian algorithm
using deep filters and depth-wise separable convolutional neural networks with learnable
features. We test and compare our deep learning model with benchmark models, including
AlexNet, ResNet, MobileNet, VGG16, and Conventional CNN, with point-wise convolu-
tions. Then, we evaluate the models in terms of probabilistic prediction, accuracy, recall
value, precision, and F1-score. Experimental analysis shows that our model outperforms
other network models in precision, recall, F1-score, training accuracy, and validation accu-
racy. The high performances of 99.03% training accuracy and 94.32% validation accuracy
give us high confidence that this work can be used in real-life scenarios and radiology.
To the best of our knowledge, the proposed work is the first neural network model that
combines the hybrid effect of depth-wise separable convolutions with the Bayesian algo-
rithm using encoders. In future works, we will explore other data augmentation techniques
to increase the size of the data and ensure the model’s generalization capability. Another
future improvement would be to adopt a three-dimensional system to ensure that this
model can be used in clinical trials and adjust to real-world brain tumor classification
scenarios. This will help us compare our system model to other existing models in real
life, compare the pros and cons of each system, and finally upgrade our proposed net-
work model to complete optimization. We will employ automated techniques using deep
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learning and artificial intelligence to resist adversarial attacks against our model if used in
clinical phases.
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