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Abstract: Three new large hexanuclear metalla-prisms 9–11 incorporating 1,3, 

5-tris(pyridin-4-ylethynyl)benzene (tpeb) 4 and one of the dinuclear arene ruthenium clips 

[Ru
2
(p-iPrC

6
H

4
Me)

2
(OO∩OO)][CF

3
SO

3
]

2
 (OO∩OO =2,5-dioxydo-1,4-benzoquinonato 

[dobq] 1, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 2, and 6,11-dihydroxy-5,12-naphthacene-

dionato [dotq] 3), which encapsulate the guest molecule ellagic acid (2,3,7,8-tetrahydroxy-

chromeno[5,4,3-cde]chromene-5,10-dione, 5) were prepared. All complexes were isolated as 

triflate salts in good yields and were fully characterized by 1H NMR spectroscopy and elec-

trospray ionization mass spectrometry. The photophysical properties of these metalla-prisms 

were also investigated. Compounds 9 and 10 showed potent antioxidant activity, but 10 had the 

superior ORAC
PE

 value (1.30±0.020). Ellagic acid (5) and compound 11 showed weaker activity 

than that of Trolox. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay 

showed that the metalla-prism compounds exhibit anticancer properties in vitro. Compound 10 

inhibited the growth of all cancer cell lines at micromolar concentrations, with the highest 

cytotoxicity observed against A549 human lung cancer cells (IC
50

 =25.9 μM). However, these 

compounds had a lower anti-cancer activity than that of doxorubicin. In a tumoricidal assay, 

ellagic acid (5) and compound 10 induced cytotoxicity in tumor cells, while doxorubicin did 

not. While free ellagic acid had no effect on the granulocyte-colony stimulating factor and 

regulated on activation normal T cell expressed and secreted protein, the encapsulated metalla-

prism 10 stimulated granulocyte-colony stimulating factor and reduced regulated on activation 

normal T cell expressed and secreted protein expression in the RAW264.7 macrophage line. 

Our results show that ellagic acid encapsulated in metalla-prisms inhibited cancer cells via 

the modulation of mRNA induction and protein expression levels of the granulocyte-colony 

stimulating factor and regulated on activation normal T cell expressed and secreted protein 

in macrophages.

Keywords: metalla-prism, antioxidant, tumoricidal assay, G-CSF, Rantes

Introduction
Since the past decade, there has been an increasing amount of interest in the design 

and synthesis of discrete 3D metallo-supramolecular architectures, as well as in their 

potential applications ranging from host–guest chemistry,1,2 catalysis,3–6 and light 

harvesting7–9 to biology.10–19 Three-dimensional cages, engineered via coordination-

driven self-assembly paradigms, have distinct advantages over conventional covalent-

container molecules, owing to the synthetic ease with which the coordination cages 

can be assembled, the availability of a large library of building blocks, and the ability 

to design selective guest encapsulations.20,21 The strong and highly directional nature 

of metal–ligand interactions results in the formation of stable and rigid coordination 
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cages with well-defined internal cavities while the confined 

nanospaces in these coordination cages create unique 

environments and geometric constraints distinct from the 

bulk media.16–19 Furthermore, the physicochemical proper-

ties of the host–guest complex are generally superior to 

those of the guest alone, resulting in improved efficacy and 

biocompatibility.22,23 The most widely used metal-based anti-

cancer drug, cisplatin,24–26 has been encapsulated in various 

hosts to reduce the severe side effects associated with this 

treatment.27,28 The field is now entering a new era in which 

applications such as micro-reactors or transporters are leading 

to new perspectives for metalla-cages.29

Macrophages represent a type of white blood cell that 

digests dead cell debris, xenobiotics, foreign substances, and 

cancer cells in a process called phagocytosis. In some situa-

tions, macrophages are tumoricidal, selectively recognizing 

and destroying tumor cells.30 However, the general role of 

macrophages in tumorigenesis is widely disputed and data 

suggest that it may be largely dependent on the context of 

the specific tumor type.31 Ellagic acid (5) is a secondary 

metabolite of many natural plants, particularly fruits such 

as strawberry, cranberry, and raspberry.32 In nature, ellagic 

acid exists both in the free form and is complexed in the 

form of ellagitannins. It is a strong antioxidant, and when 

a dose above the expected dietary intake was adminis-

tered, it was found to be effective against various tumors.33 

Animal studies demonstrated that only a limited fraction 

of the ingested ellagic acid is bioavailable,34 since most 

of it accumulates in intestinal epithelial cells with limited 

absorption into the circulation. Once absorbed, ellagic acid 

has a short half-life in the body owing to rapid metabolism 

in the liver and excretion in the urine.35 Recently, poly(d,l-

latic-co-glycolic acid)–poly(ethylene glycol) (PLGA–PEG) 

nanoparticles loaded with ellagic acid were shown to have 

a chemo-preventive effect in MCF-7 human breast cancer 

cells.36 Although anticancer and cancer preventive effects 

of ellagic acid as an antioxidant have been reported, there is 

no information on the tumoricidal mechanism. In this study, 

we investigated whether the effect of ellagic acid could be 

mediated via ligands released by macrophages.

We have previously reported the preparation of various 

hexanuclear metalla-prisms,14,19 which were investigated as 

candidates for anti-cancer therapy. Following our results, we 

hypothesized that the encapsulation of ellagic acid (5) in hexa-

nuclear metalla-prisms would increase the bioavailability and 

thereby, also the anticancer activity. We therefore synthesized 

ellagic acid encapsulated in nano-sized metalla-prisms [ellagic 

acid⊂Ru
6
(p-iPrC

6
H

4
Me)

6
(tpeb)

2
(dobq)

3
][CF

3
SO

3
]

6
 (9), 

[ellagic acid⊂Ru
6
(p-iPrC

6
H

4
Me)

6
(tpeb)

2
(donq)

3
][CF

3
SO

3
]

6
 

(10) and [ellagic acid⊂Ru
6
(p-iPrC

6
H

4
Me)

6
(tpeb)

2
(dotq)

3
]

[CF
3
SO

3
]

6
 (11) (where, tpeb is 1,3,5-tris(pyridin-4-ylethynyl)

benzene, dobq is 2,5-dioxydo-1,4-benzoquinonato, donq is 5, 

8-dihydroxy-1,4-naphthaquinonato and dotq is 6,11-dihydroxy- 

5,12-naphthacenedionato) with similarly sized cavities but 

differently sized portals. The antioxidant activities of the 

compounds were examined by performing an oxygen-radical 

absorbance capacity (ORAC) assay and the anti-cancer activi-

ties by assaying cytokines secreted by macrophages. We found 

that one of our preparations exhibited tumoricidal effects via 

the modulation of macrophage-secreted ligands.

Materials and methods
Orac assay
The ORAC assay was performed essentially as described 

by Gillespie.37 β-Phycoerythrin (β-PE) and 2,2′-azobis 

(2-methylpropionamidine)dihydrochloride were used 

as a fluorescent probe and peroxy radical generator, 

respectively.38 Briefly, 20 μL of the sample or Trolox 

was incubated with 10 μM β-PE and 50 mM 2,2′-azobis 

(2-methylpropionamidine)dihydrochloride in a total volume 

of 200 μL. The fluorescence was monitored at 37°C for 

60 minutes, at two-minute intervals. All ORAC analyses were 

performed on a Synergy HT plate reader (Biotek Instruments 

Inc., Winooski, VT, USA) at 37°C with an excitation wave-

length of 530 nm and an emission wavelength of 590 nm. 

The area under the fluorescence decay curve (AUC) was 

calculated as follows:

 

AUC 1= + + + + + +
f

f

f

f

f

f

f

f
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where f
0
 is the initial fluorescence reading at 0 minutes and 

f
i
 is the fluorescence reading at i minutes. The net AUC was 

obtained by subtracting the AUC value of the blank from 

that of a sample. The protective effect of an antioxidant was 

measured by comparing the AUC value of the sample with 

that of a known antioxidant, Trolox, a water-soluble analog of 

vitamin E. The final results (ORAC values) were calculated and 

expressed using Trolox equivalents per gram dry weight.

cancer cell growth inhibition assay
Cell lines such as SK-hep-1 (human hepatocellular carci-

noma), AGS (human gastric carcinoma), A549 (human lung 

carcinoma), and B16/F10 (mouse skin carcinoma) were 

routinely grown in Dulbecco’s Modified Eagle’s Medium 

(DMEM) and Roswell Park Memorial Institute-1640 
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supplemented with 10% heat inactivated fetal bovine serum, 

1% penicillin/streptomycin at 37°C and 5% CO
2
. The cell sus-

pensions were seeded in 96-well plates at a concentration of 

1×104 cells per well (90 μL per well and 10 μL of the sample). 

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide) (MTT) was prepared as a stock solution of 5 mg/mL 

in phosphate buffer saline (pH 7.2) and was filtered. Ten 

microliters of the MTT solution was added to each well. 

After incubation for 3 hours at 37°C and 5% CO
2
, 100 μL 

of dimethylsulfoxide was added to each well to lyse the 

cells. The plates were read by using a multi-reader (Tecan, 

Männedorf, Switzerland) at 550 nm to determine cell viabil-

ity, and the percentage of surviving cells was calculated from 

the ratio of the absorbance of treated to untreated cells. The 

half-maximal inhibitory concentration (IC
50

) values for the 

inhibition of cell growth were determined by comparing the 

logarithmic plot of the percentage of surviving cells against 

the concentration of the drug by using a linear regression 

function.

Macrophage-mediated tumoricidal 
activity
The mouse macrophage cell line RAW264.7 was cultured 

in DMEM supplemented with 10% heat-inactivated fetal 

bovine serum. The assay for macrophage cytotoxicity was 

based on an assay described previously.39 The cytotoxicity 

was determined by measuring the viability of tumor target 

cells after co-cultivation with macrophages for 24 hours. 

Macrophages (1×105 cells per well) were first incubated for 

24 hours in 96-well plates in a medium with or without the 

test compounds. The macrophages were then washed three 

times with DMEM–fetal bovine serum and co-cultured for 

an additional 24 hours with B16/F10 tumor cells at a ratio of 

10:1 (1×104 cells per well). At the end of this time, 10 μL of 

MTT solution (5 mg/mL) was added to each well and incu-

bated for 4 hours at 37°C in an atmosphere of 5% CO
2
 before 

the color was extracted by 100 μL of dimethylsulfoxide added 

to each well. Cell viability was determined by the absorbance 

measured at 550 nm read by using a multi-reader (Tecan).

enzyme-linked immunosorbent assay 
array
For the determination of secretion of 23 cytokines (tumor 

necrosis factor-alpha, insulin-like growth factor, vascular 

endothelial growth factor, interleukin-6, fibroblast growth 

factor 6, interferon gamma [IFNγ], epidermal growth factor, 

leptin, interleukin-1 alpha, interleukin-1 beta, granulocyte-

colony stimulating factor [G-CSF], granulocyte-macrophage 

colony-stimulating factor, monocyte chemoattractant 

protein-1, macrophage inflammatory protein-1 alpha, Skp, 

cullin, F-box-containing complex, regulated on activation 

normal T cell expressed and secreted [Rantes], platelet-

derived growth factor, beta-nerve growth factor, interleu-

kin-17A, interleukin-2, interleukin-4, interleukin-10, and 

resistin), RAW264.7 macrophages were incubated for 

24 hours with ellagic acid (100 μM) and compound 10 

(2 μM), or the medium alone. The levels of the 23 cytokines 

were determined using a Mouse Cytokine ELISA Plate Array 

I kit (Signosis, Wyatt Dr Santa Clara, CA, USA) according 

to the manufacturer’s instructions.

real-time Pcr
Total RNA was extracted from RAW264.7 cells using the 

PureLink™ RNA Mini Kit (Ambion, Foster city, CA, USA). 

One microgram of total RNA was reversely transcribed in a 

volume of 20 μL using oligo (dT) primers, with enzyme and 

buffer supplied in the PrimeScript II 1st strand cDNA synthe-

sis kit (Takara, Osaka, Japan). Quantitative real-time poly-

merase chain reactions were performed by using a MX3005P 

qPCR system (Stratagene, La Jolla, CA, USA). The oligo-

nucleotide primers for the murine factors were as follows: for 

G-CSF, 5′-ATGGCTCAACTTTCTGCCCAG-3′ (forward) 

and 5′-CTGACAGTGACCAGGGGAAC-3′ (reverse); for 

Rantes, 5′-ACCCAGCAGTCGTCTTTGTCAC-3′ (forward) 

and 5′-TCCCGAACCCATTTCTTCTCT-3′ (reverse), and 

for β-actin, 5′-GGCTGTATTCCCCTCCATCG-3′ (forward) 

and 5′-CCAGTTGGTAACAATGCCATGT-3′ (reverse). 

The SYBR Premix Ex Taq II kit (Takara) was used for 

real-time PCR measurements. The final volume of the 

reaction was 25 μL containing 2 μL of the cDNA template, 

12.5 μL of Master Mix, 1 μL of each primer (10 μM stock 

solution), and 8.5 μL of sterile distilled water. The thermal 

cycling profile consisted of a pre-incubation step at 95°C for 

10 minutes, followed by 40 cycles of 95°C (15 seconds) and 

60°C (60 seconds). The relative quantitative evaluation of 

adipocyte differentiation and lipogenesis at the gene level was 

performed using the comparative cycle threshold method.

Synthesis of the metalla-prismatic cage 9
A mixture of tripodal donor 4 (3.0 mg, 0.008 mmol), ruthe-

nium acceptor 1 (10.8 mg, 0.012 mmol), and the guest mole-

cule ellagic acid (1.2 mg, 0.004 mmol) in CH
3
OH/CH

3
NO

2
 

(2 mL, 1:1) was stirred at 40°C for 24 hours. The reaction 

mixture was then filtered and concentrated by using rotavapor 

to reduce the volume followed by the addition of diethyl ether 

which yielded 9 as a wine-red crystalline powder. Yield 92%;  
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1H NMR (300 MHz, CD
3
NO

2
:CD

3
OD [1:1] solution, ppm):  

δ  8.33 (d, J=4.5 Hz, 12H), 7.47 (d, J=4.5 Hz, 12H), 7.11 (s, 8H),  

5.99 (d, J=5.5 Hz, 12H), 5.85 (s, 6H), 5.77 (d, J=5.5 Hz, 12H), 

2.90 (d, J=6.8 Hz, 6H), 2.20 (s, 18H), 1.34 (d, J=6.8 Hz, 

36H); MS (ESI) for 9 (C
152

H
126

F
18

N
6
O

38
Ru

6
S

6
): 1,112.74 

[9–3CF
3
SO

3
]3+.

Synthesis of the metalla-prismatic cage 10
A mixture of tripodal donor 4 (3.0 mg, 0.008 mmol), ruthe-

nium acceptor 2 (11.4 mg, 0.012 mmol) and guest molecule 

ellagic acid (1.2 mg, 0.004 mmol) in CH
3
OH/CH

3
NO

2
 (2 mL, 

1:1) was stirred at 40°C for 24 hours. The reaction mixture 

was then filtered and concentrated by using a rotavapor to 

reduce the volume followed by the addition of diethyl ether 

which yielded 10 as a sea-green powder. Yield 90%; 1H NMR 

(300 MHz, CD
3
NO

2
:CD

3
OD [1:1] solution, ppm): δ 8.46 

(d, J=6.8 Hz, 12H), 7.45 (s, 2H), 7.41 (d, J=5.0 Hz, 12H), 

7.29 (s, 12H), 7.03 (s, 6H), 5.78 (d, J=6.0 Hz, 12H), 5.57 (d, 

J=6.1 Hz, 12H), 2.87 (d, J=6.7 Hz, 6H), 2.13 (s, 18H), 1.34 

(d, J=6.8 Hz, 36H); MS (ESI) for 10 (C
164

H
132

F
18

N
6
O

38
Ru

6
S

6
): 

1,162.74 [10–3CF
3
SO

3
]3+.

Synthesis of the metalla-prismatic cage 11
A mixture of tripodal donor 4 (3.0 mg, 0.008 mmol), ruthe-

nium acceptor 3 (12.6 mg, 0.012 mmol) and guest molecule 

ellagic acid (1.2 mg, 0.004 mmol) in CH
3
OH/CH

3
NO

2
 (2 mL, 

1:1) was stirred at 40°C for 24 hours. The reaction mixture 

was then filtered and concentrated by using a rotavapor to 

reduce the volume followed by the addition of diethyl ether 

which yielded 11 as a green crystalline solid. Yield 87%; 1H 

NMR (300 MHz, nitromethane:MeOD [1:1] solution, ppm): 

δ 8.77 (dd, J=6.0, 3.4 Hz, 12H), 8.53 (d, J=6.4 Hz, 12H), 

7.99 (dd, J=6.0, 3.4 Hz, 12H), 7.27 (d, J=6.4 Hz, 14H), 6.77 

(s, 6H), 5.97 (d, J=6.3 Hz, 12H), 5.74 (d, J=6.3 Hz, 12H), 

3.07–2.96 (m, J=6.9 Hz, 6H), 2.23 (s, 18H), 1.36 (d, 

J=6.9 Hz, 36H); MS (ESI) for 11 (C
188

H
144

F
18

N
6
O

38
Ru

6
S

6
): 

1,262.78 [11–3CF
3
SO

3
]3+.

Statistical analysis
All quantitative results were expressed as mean ± standard 

error (SE). Statistical analysis was performed using Student’s 

t-test. Values of P,0.05 and P,0.01 were considered to be 

statistically significant.

Results and discussion
Syntheses of the empty metalla-prisms 6, 7, and 8 have 

been reported previously.14 Ellagic acid (5) encapsulated 

in metalla-prisms 9, 10, and 11 were readily prepared 

quantitatively by the reaction of one of the binuclear 

[Ru
2
(p-iPrC

6
H

4
Me)

2
(dobq)(MeOH)

2
][CF

3
SO

3
]

2
 1 ,40 

[Ru
2
(p-iPrC

6
H

4
Me)

2
(donq)(H

2
O)

2
][CF

3
SO

3
]

2
 2,41 or [Ru

2
(p-

iPrC
6
H

4
Me)

2
(dotq)][CF

3
SO

3
]

2
 314 acceptors with the tripyri-

dyl donor 442 and ellagic acid (5) in a 3:2:1 ratio (Figure 1). 

The addition of diethyl ether to the concentrated reaction 

mixtures resulted in the isolation of analytically pure hexa-

nuclear cages as crystalline solids. All the cages were fully 

characterized by 1H NMR, electrospray ionization mass 

spectrometry, and UV/Vis absorption.

The formation of the compounds 9–11 was monitored 

by 1H NMR spectroscopy in CD
3
NO

2
:CD

3
OD solution 

(1:1, Figure 2). The resonance of the ellagic acid proton 

was observed to be shifted upfield upon formation of the 

encapsulated system compounds 9–11. Similarly, in the 
1H NMR spectra of 9–11, the signals corresponding to 

the Hα and Hβ nuclei of the pyridine rings were observed 

to undergo upfield shifts (Δδ =0.2–0.3 ppm) relative to 4, 

indicative of the metal pyridine coordination. Protons of 

the ligand panel in 9–11 were shifted upfield in comparison 

with the empty cages 6–8. The signals of the CH protons of 

the dobq, donq, and dotq bridging ligands remained almost 

unchanged. The proton resonances of the p-cymene ligands 

located at the periphery of the prism were not significantly 

affected by the presence of ellagic acid (5) in the cavities 

of 9–11.

Diffusion-ordered NMR spectroscopy43–45 confirms 

the encapsulation of ellagic acid into the cavity of 10 

(Figures S1–S4). The diffusion-ordered NMR spectroscopy 

measurement of the empty cage 7 and the inclusion system 

10 gave diffusion coefficients (D) of 6.1×10−10 m2⋅s−1 and 

5.6×10−10 m2⋅s−1, respectively.

Electrospray ionization mass spectrometry (ESI-MS) 

analysis confirmed the formation of [3+2] self-assembled 

hexanuclear cages 9–11 encapsulating ellagic acid, by 

the appearance of multiple-charged fragments. The 

multiple-charged ions were observed: for 9 at m/z =1,112.7 

[9−3CF
3
SO

3
]3+, for 10 at m/z =1,163.06 [10–3CF

3
SO

3
]3+ and 

for 11 at m/z =1,263.11 [11–3CF
3
SO

3
]3+ and these peaks were 

well resolved isotopically (Figure 3). The appearance of the 

expected peaks, together with the isotopic patterns, confirmed 

the formation of the expected ellagic acid-encapsulated self-

assembled products 9–11.

UV/Vis absorption spectra
The UV/Vis absorption spectra of 6–11 and ellagic acid 

(5) were also investigated (Figure 4). High-energy bands 

were observed in the spectra of 6–11, and the absorbance 
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bands of 8 and 11 were dominated by π→π* transitions 

of the tetracene moieties from 550 nm to 620 nm. A sig-

nificant hypochromic effect observed in the spectra of 

complexes 9 and 10, in comparison with 7 and 8 was due 

to the distortion of the geometry by the encapsulation of 

ellagic acid (5).

antioxidant activity
Reactive oxygen species and the resultant oxidative damage 

have been implicated in pathogenesis and there is scientific 

evidence to suggest that antioxidants reduce the risk of 

chronic conditions including cancer and heart disease.46–48 

In this study, the antioxidant activities of the prepared com-

pounds were evaluated by the ORAC assay. Compounds 9 

and 10 showed potent antioxidant activity with 10 having 

the most significant level of activity of all the tested com-

pounds, with an ORAC
PE

 value of 1.30±0.020. In contrast, 

ellagic acid (5) and compound 11 showed weaker activity 

than Trolox (Table 1).

effects of cancer cell growth inhibition
Organometallic arene-Ru-based half-sandwich complexes 

have attracted interest as potential anticancer agents due to 

their activity against a range of cancer cells accompanied by 

low toxicity and lack of cross-resistance with cisplatin. The 

cytotoxicity of ellagic acid (5) and encapsulated cages 9–11  

was explored in vitro using the human cancer cell lines: 

SK-hep-1 (liver cancer), AGS (gastric cancer), and A549 

(lung cancer). These cell lines were exposed to increas-

ing concentrations of the test compounds for 24 hours, 

after which a colorimetric MTT assay was performed. The 

results, summarized in Table 2, were compared with those 

determined for the well-known anticancer drug, doxorubicin. 

Ellagic acid (5) and cages 9 and 11 displayed poor activity. 

Figure 1 (A) Synthesis of ellagic acid-encapsulated arene-ruthenium metalla-prisms 9–11 and (B) arene-ruthenium metalla-prisms 6–8.

°
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Figure 2 excerpts of 1h NMr spectra of (A) ellagic acid (5), (B) empty prism 6, (C) encapsulated prism 9, (D) empty prism 7, (E) encapsulated prism 10, (F) empty prism 8 
and (G) encapsulated prism 11 in cD3NO2:cD3OD (1:1) solution.
Abbreviation: ppm, parts per million.
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However, compound 10 exhibited inhibition against all 

cancer cell lines at low micromolar concentrations, with the 

highest cytotoxicity against the A549 human lung cancer cell 

line (IC
50

 =25.9 μM). Zahin et al demonstrated that ellagic 

acid decreased cell survival rates of A549 cells to 61% at a 

concentration of 165 μM, suggesting that the encapsulation 

of ellagic acid in nano-sized metalla-prisms increased the 

anticancer efficacy of ellagic acid.49

Macrophage-mediated tumoricidal 
activity
Cells of the monocyte–macrophage lineage have the capac-

ity to recognize and destroy tumor cells50,51 when activated 

by lymphokines such as IFN-γ and G-CSF.52,53 In this study, 

macrophages were pretreated with the test materials (ellagic 

acid [5] and cage 10) or the control medium, before being 

co-cultured with B16/F10 cells to assess the ability of the 

compounds to activate macrophages to kill tumor cells. Fig-

ure 5A indicated that ellagic acid and compound 10 did not 

exert cytotoxic effects but doxorubicin did in B16/F10 mouse 

skin carcinoma when these were incubated without mac-

rophages. Figure 5B showed that ellagic acid and compound 

10 incubated with macrophages kill 55.1% (at 2 μM of ellagic 

acid) and 58.6% (at 2 μM of compound 10) of cancer cells 

compared to the untreated macrophages with B16/F10 cells 

whereas doxorubicin was less effective compared to its effect 

without macrophages. Therefore, ellagic acid and compound 

10 are macrophage-dependent in terms of their cytotoxicity 

against cancer cells.

Figure 3 calculated (red) and experimental (black) eSI-MS spectra of ellagic acid 
encapsulated prisms 9–11.
Abbreviation: eSI-MS, electrospray ionisation mass spectrometry.

Figure 4 UV/Vis spectra of ellagic acid (5), empty metalla-prisms 6–8 and ellagic 
acid-encapsulated metalla-prisms 9–11 in a solution of methanol (1×10−5 M).
Abbreviation: UV/Vis, ultraviolet/visible.

Table 1 anti-oxidative effects of ellagic acid (5) and cage 
compounds 9–11

Compound Molecular weight ORACPE values

ellagic acid (5) 302.19 0.65±0.029a

6 3,483.23 ,0.5
7 3,633.41 ,0.5
8 3,933.76 ,0.5
9 3,785.43 1.23±0.023a

10 3,935.60 1.30±0.020a

11 4,235.95 0.93±0.014a

Notes: Trolox (vitamin e) OracPe value 1. aValues are mean ± Se.
Abbreviations: Orac, oxygen-radical absorbance capacity; Se, standard error.
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cytokine secretion
Cytokines are signaling molecules that play critical roles 

in many biological processes such as cellular growth, dif-

ferentiation, gene expression, migration, immunity, and 

inflammation. Macrophages release cytokines to activate and 

recruit other cells during inflammation, or as direct killing 

agents.54,55 The co-incubation of activated macrophages with 

tumor cells either up- or down-regulated the production of 

different cytokines depending on the nature of the tumor cells, 

thereby modulating the susceptibility of these tumor cells to 

macrophage-mediated tumor cytotoxicity.56 We measured the 

effect of ellagic acid and compound 10 on the secretion of 

23 cytokines by using macrophages, with an enzyme-linked 

immunosorbent assay (ELISA) array chosen to represent 

cytokines, which are known to inhibit the growth of tumor 

cells. As shown in Figure 6, compound 10 stimulated G-CSF 

by 18.4% compared to control cells. G-CSF decreases the 

morbidity of cancer chemotherapy by reducing the incidence 

of febrile neutropenia.57 However, treatment with ellagic acid 

actually inhibited G-CSF secretion using macrophages. In 

contrast, macrophages treated with ellagic acid showed a 

26.9% increased secretion of IFN-γ which stimulates several 

anti-proliferative and thus tumoricidal biochemical pathways 

in macrophages as well as in tumor cell lines.58–60 In addition, 

compound 10 reduced Rantes secretion from macrophages 

(−43.2%) in contrast, to the increase (11.1%) seen with 

ellagic acid. Rantes is highly expressed in various tumors and 

promotes tumor growth and metastasis by inducing tumor cell 

proliferation and angiogenesis.61–63 In summary, macrophages 

treated with compound 10 may inhibit the growth of cancer 

cells due to the increased secretion of G-CSF and decreased 

secretion of Rantes.

Molecular ligand mrNa expression 
of macrophages
The inhibition of tumor cell growth exerted by compound 10 

was apparently through the modulation of a different set of 

macrophage proteins than those affected by the naked ellagic 

acid. While ellagic acid encapsulated in compound 10 acted 

on G-CSF and Rantes, the naked ellagic acid had an effect on 

IFN-γ secretion or protein expression (Figure 6). In order to 

confirm these results, we investigated the mRNA expression 

of G-CSF and Rantes in the macrophage RAW264.7 cell line 

by using the real-time polymerase chain reaction. G-CSF 

was increased by compound 10 (~2.1 times vs control) and 

Rantes was decreased (~0.4 times vs control) with respect to 

the mRNA levels (Figure 7). These results demonstrate that 

ellagic acid encapsulated into a nano-sized metalla-cage inhib-

ited tumor cells through the modulation of G-CSF and Rantes 

in macrophages at the level of both protein and mRNA.

Table 2 Inhibition effects on cell viability after exposure of 
human cancer cell lines to ellagic acid (5), compounds 9–11 and 
Doxorubicin

Compound IC50 (μM)a

SK-hep-1 AGS A549

ellagic acid (5) .200 .200 .200
6 .200 .200 .200
7 .200 .200 .200
8 .200 .200 .200
9 .200 .200 .200
10 86.6±1.17 88.2±2.64 25.9±2.40
11 187.1±6.17 .200 .200
Doxorubicinb 3.02±0.18 2.14±0.10 3.18±0.09

Notes: aIc50 is the drug concentration necessary for 50% inhibition of cell viability. 
Data are shown as mean ± Se. bDoxorubicin (positive control) was used as itself.
Abbreviation: Se, standard error. 

Figure 5 Tumoricidal effects of ellagic acid (5) and compound 10 on co-cultured B16/F10 mouse skin carcinoma and raW264.7 mouse macrophage cells. (A) ellagic acid (5) 
and compound 10 without macrophage pretreatment. (B) elicited macrophages pretreated with ellagic acid (5) and compound 10 24 hours before incubation with B16 cells.
Notes: The results are mean ± Se of triplicates from a representative experiment. **P,0.01; significantly different from the control.
Abbreviation: Se, standard error. 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 (Special Issue on diverse applications in Nano-Theranostics) submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

235

anti-cancer effects of ellagic acid-encapsulated metalla-cages

Conclusion
We have described the synthesis, characterization, host–

guest properties, antioxidant and anti-cancer activity of 

ellagic acid-encapsulated Ru-based nano-prismatic cages. 

Our antioxidant studies of these complexes reveal that 

complexes 9 and 10 have antioxidant activity superior to 

Trolox, a derivative of vitamin E which has been used as an 

adjunctive therapeutic agent for certain cancers. Nanotech-

nology approaches, including the encapsulation of synthe-

sized or natural products into biocompatible nanoparticles 

or nano-sized materials, were initially applied to cancer 

therapeutics to decrease toxicity, increase bioavailability, 

and promote the selectivity of the tumor. Our results in this 

study indicate that compound 10 inhibited the A549 human 

Figure 6 Plot showing the change in cytokine secretion of raW264.7 macrophages with ellagic acid and compound 10.
Abbreviations: TNF-α, tumor necrosis factor alpha; IGF, insulin-like growth factor; VEGF, vascular endothelial growth factor; IL-6, interleukin-6; FGF6, fibroblast 
growth factor 6; IFNγ, interferon gamma; egF, epidermal growth factor; Il-1α, interleukin-1alpha; Il-1β, interleukin-1beta; g-cSF, granulocyte-colony stimulating factor; 
gM-cSF, granulocyte-macrophage colony-stimulating factor; McP-1, monocyte chemoattractant protein-1; MIP-1α, macrophage inflammatory protein-1 alpha; SCF, Skp, 
cullin, F-box-containing complex; rantes, regulated on activation, normal T cell expressed and secreted; PDgF, platelet-derived growth factor; β-NgF, beta-nerve growth 
factor; Il-17a, interleukin-17a; Il-2, interleukin-2; Il-4, interleukin-4; Il-10; interleukin-10.

α α β α

β

Figure 7 Schematic representing the proposed events and g-cSF and rantes gene expression in raW264.7 macrophages with ellagic acid (control) and compound 10.
Notes: The upward arrows indicate an increase in the g-cSF level and the crossed arrow indicates the inhibition of rantes.
Abbreviations: rantes, regulated on activation normal T cell expressed and secreted; g-cSF, granulocyte-colony stimulating factor.
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lung cancer cell line, whereas the free ellagic acid itself 

lacked activity. In a tumoricidal assay system, ellagic acid 

as well as complex 10 inhibited the growth of tumor cells 

while doxorubicin lacked activity. At the same time, IFNγ 

was induced by ellagic acid while compound 10 had no 

effect on IFNγ, but did stimulate G-CSF and inhibit Rantes 

in RAW264.7 macrophage cell ligand expression where 

ellagic acid had no effect. Our results show that ellagic 

acid-encapsulated metalla-cage 10, exhibited an inhibitory 

effect for cancer cells via G-CSF induction and Rantes 

inhibition in macrophages at both mRNA and protein levels. 

This study serves as the first step toward establishing ellagic 

acid encapsulated into nano-sized metalla-cages as promis-

ing anticancer therapeutic agents, superior to the existing 

chemopreventative agents.
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Figure S1 1h spectra of metalla-prismatic cage 9 recorded in cD3NO2:cD3OD (1:1) solution.
Abbreviation: ppm, parts per million.
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Figure S2 1h spectra of metalla-prismatic cage 10 recorded in cD3NO2:cD3OD (1:1) solution.
Abbreviation: ppm, parts per million.
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Figure S3 1h spectra of metalla-prismatic cage 11 recorded in cD3NO2:cD3OD (1:1) solution.
Abbreviation: ppm, parts per million.
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Figure S4 1h NMr titrations of ellagic acid in a solution of 6 in acetone-d6.
Notes: (A) 6 (4.0 mm), (B) 6+0.25 equivalents of ellagic acid, (C) 6+0.50 equivalents of ellagic acid, (D) 6+0.75 equivalent of ellagic acid and (E) 6+1.0 equivalents of ellagic acid.
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Figure S5 The DOSY spectra of 7 (red) and 10 (blue) in cD3NO2:cD3OD (1:1).
Abbreviations: DOSY, Diffusion-ordered NMr spectroscopy; ppm, parts per million.
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