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Abstract: Leukemia invades the bone marrow progressively and, through unknown mechanisms,
outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in
prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have
been linked to several human diseases, including cancer. Small compounds that target PRMT1 have
a significant impact on both functional research and clinical disease treatment. In fact, numerous
PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through
topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in
order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using
linear discriminant analysis allows us to accurately classify over 90% of the investigated active
substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can
account for more than 56% of the variation. Both analyses are validated using an internal “leave some
out” test. The developed model could be utilized in future preclinical experiments with novel drugs.

Keywords: bone marrow microenvironment; cancer; leukemia; myeloproliferative disorders; model

1. Introduction

Only 40% of <60 years old and 10% of >60 years old individuals have achieved
long-term survival from acute myeloid leukemia (AML) [1]. The clones of leukemia that
drive the disease’s persistence and recurrence are resistant to current chemotherapy and
targeted treatments. Most AML patients have elevated expression of FLT3, a tyrosine kinase
that may play a role in the etiology of the disease [2]. The continual ligand-independent
activation of FLT3 kinase that this mutation causes makes it a promising therapeutic
target [3]. When administered alone, tyrosine kinase inhibitors (TKIs) have extremely short-
lived therapeutic effects and are only able to partially suppress AML cell proliferation [3,4].
Improved clinical response for FLT3-ITD+ AML patients requires the rapid development of
effective combination treatments, such as TKI therapy.

To regulate signal transduction and protein–protein interactions, arginine residues
can be modified into asymmetric dimethylarginine (ADMA) by adding two methyl groups
to a single guanidino nitrogen [5,6]. About 85% of arginine methylation activities in hu-
man cells are carried out by PRMT1, which deposits an ADMA mark onto substrates [7].
PRMT1 methylates not just histones but also proteins, including RUNX1 and EGFR, and has
been linked to processes as varied as cell proliferation, survival, and differentiation [5,8,9].
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PRMT1 methylates AML1-ETO9, increasing its transcriptional activity in murine leukemia
transformed by this fusion oncoprotein [9]. Recent research indicates that the oncogenic fu-
sion protein MLL-GAS7 or MLL-EEN recruits PRMT1 to methylate H4R3, hence sustaining
leukemic transcriptional pathways [10].

The PRMTs facilitate the transfer of methyl groups from the S-adenosylmethionine
molecule to the guanidino nitrogen atoms of arginine. Based on how the arginine residues
are methylated, methylarginines can be divided into three distinct forms: ω-NG,NG-
asymmetric dimethylarginine (aDMA),ω-NG,N′G-symmetric dimethylarginine (sDMA),
andω-NG-monomethylarginine (MMA). All PRMTs catalyze MMA, which is then used
by Type I PRMTs (PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, and PRMT8) to catalyze the
production of aDMA or by Type II PRMTs (PRMT5 and PRMT9) to catalyze the formation of
sDMA [5,6]. The PRMT7 is the only member of the Type III enzyme subclass that catalyzes
MMA formation [5–7].

The PRMTs have been implicated in human tumorigenesis in numerous studies. PRMT
enzymatic activity is necessary for many cellular processes in hematological malignancies,
such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair
processes, RNA splicing, and transcription by methylating histone tails’ arginine [11–13].
In human malignancies, elevated PRMT expression is associated with aggressive clinical
features and a poor prognosis [10,14]. PRMT1 overexpression promotes the survival and
invasion of cancer cells, whereas PRMT1 suppression inhibits the proliferation of cancer
cells [8,15–18]. In addition, growing evidence suggests that PRMT1 plays key roles in
malignant hematopoiesis [19].

Nowadays, various in silico technologies are utilized to design and assess the ef-
ficacy of new medications, one of which is molecular topology, specifically molecular
connectivity [20], which has proven to be useful in quantitative structure-activity rela-
tionship (QSAR) models. One of the most exciting features of molecular topology is the
ease with which topological descriptors can be calculated. Each structure is described as
a hydrogen-depleted network, with vertices representing atoms and edges representing
bonds. Manipulation of such matrices gives multiple sets of integers known as topological
indices [20], which have been shown to be capable of a simple and effective characterization
of molecular structure. When these indices are chosen correctly, it is possible to obtain a
highly specific characterization of each chemical compound, which can then be used in
QSAR models [21–25].

In this way, the topological indices have shown their value for the selection and
creation of novel pharmaceuticals [26,27], especially as antimalarial [28], antiviral [29],
antihistaminic [30], hypoglycemic [31], analgesics [32,33], antituberculosis [34] and an-
tileukemic drugs [35]. However, there are numerous limitations to consider when using
QSAR modeling in the pharmaceutical business [36,37]. Due to the large number of vari-
ables involved in QSAR data—hundreds of thousands of chemicals, each represented by
a unique set of descriptors, fingerprints that are typically very sparse, and some features
that are highly correlated—it is anticipated that the dataset contains some mistakes since
associations are examined by in situ studies.

As a result of these limitations, QSAR-based model prediction has been controversial.
This has led to QSAR prediction being used along with machine-learning algorithms. For
QSAR prediction, previous studies have turned to linear regression models [38], leave-one-
out cross-validation [39], and multilinear regression analysis [40]. Our research examined
the activities of a set of PRMT1 inhibitors of leukemia cell proliferation to develop QSAR
models of prediction using molecular topology, linear discriminant analysis, and multilinear
regression analysis. A screening method was also developed to identify novel compounds
with the potential for greater bioactivity.
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2. Results
2.1. Linear Discriminant Analysis

The search for an applicable mathematical-topological model to predict antileukemic
activity was conducted in two phases. First, a discriminant function was chosen to differ-
entiate between active and inactive antileukemic compounds. Second, the acquisition of
a topological function capable of quantifying the efficacy of the activity in terms of IC50.
Both functions would constitute the framework of the mathematical model that permits
the search for and selection of new potent antileukemic compounds.

To obtain the discriminant function, a linear discriminant analysis was applied to
17 compounds. The set consisted of both active and inactive compounds. The IC50 ≤ 1
M/105 concentration denotes the active compounds, whereas the IC50 > 1 M/105 concen-
tration denotes the inactive compounds. The selected discriminant function was:

Discriminant function = −14.123 + (0.848× nDB) + (1.680× nN) –(38.327×GGI9) + (392.190× JGI4),
N = 17, λ

(
Wilk′s Lambda

)
= 0.172, F (4, 15) = 14.442, p < 0.001

(1)

In Equation (1), there were topological descriptors that evaluated the constitutional
characteristics of each compound (nDB), atom count (nN), and topological charge (GGI9
and JCI4).

Figure 1 depicts the antileukemic activity distribution diagram using the discriminant
function (white bars represent inactive sets, and black bars represent active sets).
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Figure 1. Pharmacological distribution diagram for antileukemic activity by plotting expectancy
(E) vs. discriminant function (DF) (Equation (1)). The black bars represent the compounds with
IC50 ≤ 1 M/105, and the white bars, the compounds with IC50 > 1 M/105.

2.2. Multilinear Regression Analysis

Multiple linear regression allows one to generate a linear model in which the value
of the dependent or response variable, pIC50 (pIC50 = −log[IC50]), is predicted from a set
of independent variables called topological indices. To perform the multilinear regression
analysis, compounds with quantitative IC50 values in M/105 units were used. In addition,
the 17a compound was removed as it is an outlier. The number of compounds needed to
carry out the analysis was reduced to 16. The selected function was:

pIC50predicted = −42.089 + (314.536× JGI4)− (25.006×GGI7) + (59.732×Mv) + (0.450× X0v),
N = 16, R2 = 0.898, Q2 = 0.863, SEE = 0.646, p = 0.009

(2)

The predictive equation, Equation (2), exhibits an R2 value above 0.80 (0.898), which
explains over 89% of the variance. The descriptors selected are the mean topological
charge index (JGI4), topological charge index (GGI7), mean atomic van der Waals volume
(Mv), and the valence connectivity index (X0v). Particularly, the JGI4 index measures the
charge transfer between pairs of atoms and, consequently, the global charge transfer in the
molecule (e.g., the dipole moment) [32,33]; GGI7 index features the charge transfer between
a pair of atoms, accounting for the overall charge transfer within the molecule [26], Mv
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index shows the sum of the van der Waals volumes by the number of atoms, and the X0v
index, the connectivity (Figure 2).
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Table 1 and Figure 3 summarize the predictions made for each compound in the
training set using Equation (2). Overall, we can conclude that there is an acceptable level of
efficacy because 56.3% of compounds exhibit residuals shorter than ±1SEE. The value of
the greatest residual compound, compound 25d, is −1.271. Linear discriminant analysis
categorizes this compound as active, which implies that either the experimental IC50 is
correct or the topological model used here is a valid classification for the compound’s
antileukemic activity.
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Table 1. Classification results were obtained from linear discriminant analysis and multilinear regression for each compound analyzed.

Comp. SMILES IC50 Exp. a (M/105) pIC50 Exp. Class (Exp.) Prob. Activ. b DF c Class (Pred.) pIC50 Pred. d

5 NC1=NC(NC2=CC=CC(NC(C3=CC=CC(NC4=CC=NC5=CC=CC=C54)=C3)=O)=C2)=CC(C)=N1 1 5.000 A 1.000 3.743 A 5.033
12 C1(OCC2=CC=CC=C2)=CC=CC(CNCC3CCNCC3)=C1 14.7 3.833 I <0.001 −2.443 I 3.258

13a CN(CCN(C)C)CC1=C(C=CCC1)SC2=C3C(C=CC=C3)=CC=C2 0.3 5.523 A 0.971 1.586 A 5.620
15a O=S(N)(C1=CC=C(CCNCC(C=C2)=CC=C2OCC=C)C=C1)=O 8.5 4.071 I <0.001 −0.922 I 5.147
16a OC1=CC(O)=C(C(CC2=NNC(C3=CC=C(C)C=C3)=C2)=O)C(O)=C1 4.9 4.310 I <0.001 −2.225 I 4.180
17a O=C(OCC)C1=C(C2=CC=CC=C2C3=CC=CC=C43)C4=CC5=[N+]1CCC6=C5C=CC=C6 5.3 4.276 I 0.038 0.024 NC 4.536
23a O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC3=C2C=CC=C3 >20 <3.699 I <0.001 −3.163 I 3.142
23b O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC=C2 >5 <4.301 I <0.001 −2.123 I 4.199
23d O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 >5 <4.301 I <0.001 −1.255 I 3.843
24a [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC3=C2C=CC=C3 3.4 4.469 I <0.001 −2.431 I 4.932
24b [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC=C2 >5 <4.301 I <0.001 −1.527 I 4.673
24c [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(F)=C2 4.5 4.347 I 0.008 −0.338 I 4.314
24d [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 5.4 4.268 I 0.008 −0.338 I 5.244
25c [H]C(N(C)CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(F)=C2 0.071 6.149 A 0.999 2.299 A 6.795
25d [H]C(N(C)CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 0.039 8.959 A 0.999 2.299 A 7.688
28d [H]C(N(C)CCN([H])[H])C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 0.00011 8.959 A 0.999 2.886 A 8.352
31d CNCCN(CC1=CC=CC=C1SC2=CC=CC=C2Cl)C 0.0006 8.222 A 1.000 3.931 A 8.612

a Experimental IC50 values taken from the work of Wang et al. [41], Valente et al. [42], Xie et al. [43]; b probability that the compound is active; c DF values obtained with Equation (1); d

Activity values predicted with Equation (2). A: active; I: inactive; DF: discriminant function; NC: non-classified. The compound classified as an outlier has not been predicted.
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Equation (2) was validated using leave-one-out cross-validation and an external test
(Figure 4). The coefficient of prediction, Q2 = 0.863, shows that Equation (2) has a high
robustness. The test results are displayed in Table 1, where some anticipated logIC50 values
are greater than 1.0, suggesting that the estimated IC50 value is less than 1 M/105.
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Figure 4. Graphic representation of the residual of pIC50 against predicted pIC50 obtained from the
selected prediction function, Equation (2). The interval in which they are presented corresponds to
±2SD.

3. Discussion

One of the most common somatic mutations in AML is FLT3-ITD, which is seen in
25% of AML patients and is linked with a poor prognosis [3]. TKI therapy has shown
relatively limited efficacy for individuals with AML, and recurrence is linked to the survival
of FLT3-ITD+ AML clones [3,44]. Therefore, novel therapies are required to eradicate
FLT3-ITD+ AML cells. In fact, PRMT1 specifically binds oncogenic FLT3, catalyzes its
protein methylation, and hence promotes the survival and proliferation of FLT3-ITD+ AML
cells [42]. In particular, FLT3 methylation levels are maintained in AML cells even after TKI
treatment, and limiting this activity with a pharmacological inhibitor improved FLT3-ITD+
AML cell elimination by a TKI, suggesting that PRMT1 inhibition might function as a
therapeutic for AML patients with FLT3-ITD [45].

The expression of PRMT1 is consistently high in malignant tumors [10,18,46–48].
However, the role it plays in these situations is likely to be determined by the role(s) of its
substrate(s) [10,18,46–48]. Loss of PRMT1 activity inhibits MLL-GAS7- or MLL-EEN-driven
leukemogenesis, according to recent research [10]. Specifically, PRMT1 methylates H4R3,
which is critical for oncogenic transcriptional programs. There is growing evidence to show
that, in contrast to the FLT3 WT receptor, the FLT3-ITD protein preferentially localizes
intracellularly [49–51]. As a mostly nuclear and cytoplasmic protein, PRMT1 preferentially
interacts with FLT3-ITD over FLT3 WT protein [52]. As a result, PRMT1 has significantly
better access to FLT3-ITD protein than to FLT3 WT protein.

About 30% of individuals with AML have FLT3 changes, such as internal tandem du-
plication and point mutations within the tyrosine kinase domain (TKD) [53,54]. Inhibitors
of FLT3 kinase-like sorafenib, quizartinib, and gilteritinib have been utilized in clinical
practice [55]. However, clinical responses to these drugs are transient because of high rates
of relapse and drug resistance after treatment, which contributes to disease progression
and poor overall survival [4,56]. Therefore, finding effective compounds to overcome drug
resistance is an urgent problem.

The steps involved in developing a QSAR model are as follows: (I) choosing a set
of molecules that cover a wide range of chemical space and have verified bioactivity; (II)
making 2D/3D structures of the molecules and optimizing them with the right molecular
mechanics; (III) calculating molecular descriptors and pruning data with a good statistical
method; and (IV) making a QSAR model with the right method. We used quantitative
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structure-activity relationships to computationally screen 17 PRMT1 inhibitors of leukemia
cell proliferation.

According to Mitteroecker and Bookstein [57], linear discriminant analysis is a statis-
tical method for classifying data into two or more groups using a linear formalism [38].
Linear discriminant analysis, like multiple linear regression, creates a predicted association
between categorical and continuous descriptor values. Another technique that looks for
differentiation between groups is linear discriminant analysis. The equation below defines
an arbitrary discriminant function: DF = C0 + C1X1 + C2X2 + . . . + CKXK where, X1,
X2. . .Xk represents the predictor scores of the total k variables and C1, C2. . .Ck represents
their respective weights. Thus, if the discriminant function was greater than zero, a given
compound was selected as a potential antileukemic agent; otherwise, it was categorized
as “inactive.” The classification matrix was highly significant for the set (99.9% correct
prediction for the active group, five out of five correctly classified, and 91.7% for the inactive
group, 11 out of 12 correctly classified; Table 1).

It is evident that the regions with the least overlap for compounds with theoretical
antileukemic activity occur when discriminant function >1, indicating that the highest
activity expectation occurs over this value. If discriminant function >0 and <1, a compound
will be classified as non-classified (NC). Based on the outcomes of linear discriminant
analysis and multilinear regression (Equations (1) and (2)), a topological model for the
search for novel antileukemic agents can be formulated. The search was made for PRMT1
inhibitor compounds according to the following requirements. If the discriminant function
is >1 and <5, and pIC50 is greater than 9, then the compound is labeled as potentially
antileukemic. Otherwise, the compound would be considered inactive.

Antileukemic activity assays must support these suggestive findings in order to enable
the validation or evaluation of the suggested model and to act as a useful tool in the search
for novel compounds with higher activity against leukemia cell proliferation.

The QSAR method’s main strength is that it can anticipate the characteristics of novel
chemical compounds without first having to synthesize and test them. The chemical,
industrial, medicinal, biological, and environmental fields all make use of this method
for predicting physicochemical qualities [58]. In addition, QSAR techniques reduce costs
and speed up the time it takes to create novel compounds for application as medications,
materials, and additives, among others [59]. In contrast, molecular docking is a computer
tool for assessing the affinity of active site residues for a given molecule or molecules [60].
The drug development industry makes use of molecular docking as a time-saving approach
to examine ligand-target binding compatibility [61]. So, in future studies, molecular binding
could help us to examine the ligand-target binding compatibility.

4. Materials and Methods
4.1. Analyzed Compounds and Tests Carried Out

In this QSAR study, we used the work of Wang et al. [41] to choose a group of 17
PRMT1 inhibitors of leukemia cell proliferation. As a reference, we used compound 5,
which has a half-maximal inhibitory concentration (IC50) against leukemia cell proliferation
of 1 M/105. All these compounds have demonstrated inhibitory activity against leukemia
cell proliferation, which has been previously tested and experimentally verified [41–43].
The respective IC50 (M/105) concentration values and their chemical structures are available
(Table 1).

It is important to note that each molecule still has the same number as it did in the
original work from which the compounds were taken [41–43]. To draw the chemical
structure of the molecules, the ChemDraw® Professional 22.0.0.22 software was used
(Figure 2).

4.2. Molecular Descriptors

Well-known topological descriptors have been used in this work: Subgraph Randić–
Kier–Hall-like indices up to the fourth order (mχt, mχt

v) [62,63], topological charge indices,
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up to the fifth order (Jm, Gm, Jv
m, Gv

m) [31,32], quotients and differences between valence
and non-valence connectivity indices (mCt = mχt/mχv

t and mDt = mχt − mχv
t) [64,65]. Each

compound was characterized by a set of 100 descriptors. Table 2 shows the symbol, name,
and definition of each descriptor. All descriptors used in this work were obtained with
Alvascience® software, version 2 [66]. The descriptors are available on https://doi.org/10
.6084/m9.figshare.22784939.v1 (accessed on 23 June 2023)

Table 2. Symbol, name, and definition of each descriptor used in this study.

Symbol Name Definition

kχt, k = 0–4 and t = p, c, pc Randic-like indices of order k and type path (p), cluster
(c), and path-cluster (pc) kχt =

knt
∑

j=1

 ∏
i ∈ Sj

δi

−1/2
where δi is the number of bonds,

σ or π, of the atom i to non-hydrogen
atoms. Sj is the jth sub-structure of

order k and type t

kχv
t

, k = 0–4 and t = p, c, pc Kier–Hall indices of order k and type path (p), cluster
(c), and path-cluster (pc) kχv

t
=

knt
∑

j=1

 ∏
i ∈ Sj

δV
i

−1/2
where δV

i is the Kier-Hall valence
of the

atom i. Sj is the jth sub-structure of
order k and type t

Gk, k = 1–5 Topological charge indices of order k
Gk =

N−1
∑

i=1

N
∑

j=i+1

∣∣Mij − Mji
∣∣→ δ

(
k, Dij

)
where M = AQ is the product of the

adjacency and inverse square distance
matrices for the hydrogen-depleted
molecular graph. D is the distance

matrix. δ is the Kronecker delta

GV
k , k = 1–5 Valence topological charge indices of order k

GV
k =

N−1
∑

i=1

N
∑

j=i+1

∣∣∣MV
ij − MV

ji

∣∣∣→ δ
(
k, Dij

)
where MV = AVQ is the product of the
electronegativity-modified adjacency
and inverse square distance matrices
for the hydrogen-depleted molecular
graph. D is the distance matrix. δ is

the Kronecker delta
Jk, k = 1–5 Normalized topological charge indices of order k Jk =

Gk
N−1

Jv, k = 1–5 Normalized valence topological charge indices of
order k JV

k =
GV

k
N−1

kDt, k = 0–4 and t = p, c, pc Connectivity differences of order k and type path (p),
cluster (c), and path-cluster (pc)

k Dt = kχt − kχV
t

kCt, k = 0–4 and t = p, c, pc Connectivity quotients of order k and type path (p),
cluster (c), and path-cluster (pc)

kCt =
k χt
k χV

t

4.3. QSAR Algorithms
Linear Discriminant Analysis

Linear discriminant analysis is an algorithm that allows us to distinguish between
two or more categories or objects by means of a linear function. In our case, it is about
differentiating or discriminating between active and inactive compounds according to the
values of the descriptors of their molecules [25].

Two sets of compounds: The first with proven activity against leukemia cell prolif-
eration (in our case, all the compounds with IC50 ≤ 1 M/105), and the second comprised
inactive compounds (IC50 > 1 M/105) were considered for the analysis. The percentage of
correct classifications tested the discriminant ability in each group. Linear discriminant
analysis was performed using the SPSS® software, version 20 (IBM Corp., Armonk, NY,
USA). The selection of the descriptors was based on the Fisher-Snedecor parameter, and
the classification criteria were based on the shortest Mahalanobis distance (distance to the
corresponding centroid) [67]. The statistical program selects the variables used for the
calculation of the discriminant function in stepwise way. In fact, it reviews all the variables,
and the one that contributes the most to the discrimination of the groups will be included in
the model, while the variable that contributes the least to the prediction will be eliminated.
The quality of the discriminant function was evaluated by Wilk’s lambda parameter, λ,
which is a statistic of multivariate analysis of variance that tests the equality of group means
for the variable(s) in the discriminant function [68].

From the selected discriminant function, the pharmacological activity distribution
diagram was drawn. This diagram was pictured just to establish the intervals of the
discriminant function in which the expectancy, E, of finding antileukemic compounds
is maximum. Pharmacological activity distribution diagrams are histogram-like plots of
connectivity functions in which expectancies appear on the ordinate axis. For each arbitrary
interval of any function, the expectancy of activity Ea is defined as Ea = a/(I + 1), where “a”

https://doi.org/10.6084/m9.figshare.22784939.v1
https://doi.org/10.6084/m9.figshare.22784939.v1
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is the quotient between the number of active compounds in the interval divided by the total
number of active compounds, and “i” is the number of inactive compounds in the interval
divided by the total number of inactive compounds. The expectancy of inactivity, Ei, is
defined in a symmetrical way as Ei = i/(a + 1). This representation allows us to see the areas
in which the overlap is minimal, as well as to determine the intervals of the discriminant
function, where the probability of finding new active compounds is maximum in relation
to the choice of a false active [69].

4.4. Multilinear Regression Analysis

The IC50 values have been softened as pIC50 = −logIC50, as is usual in QSAR stud-
ies. The regression equation was obtained by correlating the experimental pIC50 values
with the topological index by multilinear regression analysis through the SPSS® software
(IBM Corp., Armonk, NY, USA). The judgment for the selection of variables consisted of
using the group with the least number of variables to avoid overfitting, and the value of
the multiple correlation coefficient, R2, was high (R2 > 0.8), and the standard error of the
estimate was minimal. To accept the prediction function, an internal validation test was
performed. The validation of the prediction function is performed through an internal
cross-validation of the leave-one-out type; that is, determine the prediction coefficient (Q2).

Leave-One-Out Cross-Validation

Each compound is removed from the model, and the activity value, pIC50, is recalcu-
lated with the other compounds and descriptors from the selected equation. The process
is repeated as many times as compounds are studied [70]. With the predicted values, the
value of the prediction coefficient (Q2) is determined and compared with the value of R2.
The values of Q2 > 0.7 show us that and, therefore, that the function obtained is robust and
the selected model is of good quality.

4.5. Limitations

The purpose of this review was (1) to examine the activities of a set of PRMT1 inhibitors
to develop QSAR models of prediction using molecular topology, linear discriminant
analysis, and multilinear regression analysis and (2) to develop a screening method to
identify novel compounds with greater antileukemic bioactivity. However, our in silico
study should be replicated using in vitro and in vivo models with PRMT1 inhibitors must
be made. In addition, future studies should perform molecular dynamics studies for the top
three compounds and analyze the thermodynamic parameters, such as the free energy of
binding using, for example, molecular mechanics/Poisson–Boltzmann surface area. Finally,
molecular docking tools for this study of protein-ligand interactions and virtual screening
should be performed.

5. Conclusions

Successfully using molecular topology to identify a QSAR model to predict the an-
tileukemic activity of a group of PRMT1 inhibitor compounds. All employed molecular
descriptors are graph-theoretic in nature. The mathematical model utilized in this study
retains the primary structural features involving the correlated property, IC50, and is
therefore applicable to the virtual screening of databases for the discovery of new active
compounds. In the next stage of research, multiple PRMT1 inhibitor compounds should be
compiled into a virtual library for computationally pursuing and optimizing antileukemic
activity against leukemia cell proliferation. Significant enhancements to the activity have
been achieved.
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