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Humans can learn to perform multiple tasks in succession over the
lifespan (“continual” learning), whereas current machine learning
systems fail. Here, we investigated the cognitive mechanisms that
permit successful continual learning in humans and harnessed our
behavioral findings for neural network design. Humans catego-
rized naturalistic images of trees according to one of two orthog-
onal task rules that were learned by trial and error. Training
regimes that focused on individual rules for prolonged periods
(blocked training) improved human performance on a later test
involving randomly interleaved rules, compared with control re-
gimes that trained in an interleaved fashion. Analysis of human
error patterns suggested that blocked training encouraged hu-
mans to form “factorized” representation that optimally segre-
gated the tasks, especially for those individuals with a strong
prior bias to represent the stimulus space in a well-structured
way. By contrast, standard supervised deep neural networks
trained on the same tasks suffered catastrophic forgetting under
blocked training, due to representational interference in the
deeper layers. However, augmenting deep networks with an un-
supervised generative model that allowed it to first learn a good
embedding of the stimulus space (similar to that observed in hu-
mans) reduced catastrophic forgetting under blocked training.
Building artificial agents that first learn a model of the world
may be one promising route to solving continual task performance
in artificial intelligence research.

continual learning | catastrophic forgetting | categorization | task
factorization | representational similarity analysis

Intelligent systems must learn to perform multiple distinct tasks
over their lifetimes while avoiding mutual interference among

them (1). Building artificial systems that can exhibit this “continual”
learning is currently an unsolved problem in machine learning (2,
3). Despite achieving high levels of performance when training
samples are drawn at random (“interleaved” training), stan-
dard supervised neural networks fail to learn continually in
settings characteristic of the natural world, where one objec-
tive is pursued for an extended time before switching to an-
other (“blocked” training). After first learning task A, relevant
knowledge is overwritten as network parameters are optimized
to meet the objectives of a second task B, so that the agent
“catastrophically” forgets how to perform task A (4). For ex-
ample, state-of-the-art deep reinforcement learning systems can
learn to play several individual Atari 2600 games at superhuman
levels, but fail over successive games unless their network
weights are randomly reinitialized before attempting each new
problem (5, 6).
Human evolution, however, appears to have largely solved this

problem. Healthy humans have little difficulty learning to classify
a fixed stimulus set along multiple novel dimensions encountered
in series. For example, during development, children learn to
categorize animals flexibly according to dimensions such as size
or ferocity, and the subsequent introduction of a conceptually
novel axis of classification (e.g., species) rarely corrupts or dis-
torts past category knowledge. In other words, humans can learn
multiple potentially orthogonal rules for classifying the same

stimulus set without mutual interference among them. One
theory explains continual learning by combining insights from
neural network research and systems neurobiology, arguing that
hippocampal-dependent mechanisms intersperse ongoing expe-
riences with recalled memories of past training samples, allowing
replay of remembered states among real ones (7, 8). This process
serves to decorrelate inputs in time and avoids catastrophic in-
terference in neural networks by preventing successive over-
fitting to each task in turn. Indeed, allowing neural networks to
store and “replay” memories from an episodic buffer can accelerate
training in temporally autocorrelated environments, such as in video
games, where one objective is pursued for a prolonged period before
the task changes (5, 9).
However, in human psychology, evidence for the relative

benefits of blocked and interleaved training has been mixed.
Several studies have reported an advantage for interleaved
training, for example during skilled motor performance, such as
in sports (10) or language translation (11), and even in the ac-
quisition of abstract knowledge, such as mathematical concepts
(12). Similar results have been reported in human category
learning, with several studies reporting an advantage for mixing
exemplars from different categories, rather than blocking one
category at a time (13, 14). Interleaving might allow task sets to
be constantly reinstantiated from memory, conferring robustness
on the relevant representations (15), or amplify category-salient
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dimensions, by contrasting items from different categories against
each other on consecutive trials (16). Taken in isolation, these find-
ings support a single, general theory that emphasizes the benefits
of interleaved training for continual task performance in humans
and neural networks. Interestingly however, in other settings, blocked
training has been found to facilitate performance. For example,
blocked skill practice enhances performance for complex, but
not simple motor tasks (15), and, in category learning, clearly
verbalizable categories are better learned in a blocked fashion,
whereas interleaving boosts learning of categories that require
integration of different feature dimensions (17). In other words,
blocking may help learn dimensions where the exemplars are char-
acterized by higher between-category variability, whereas interleaving
helps when exemplars differ between categories (16). However, these
insights from category learning have yet to be harnessed to ad-
dress the challenge of continual learning in neural networks that
learn tabula rasa via parameter optimization, without handcrafting
of the model state space.
Here, our goal was to compare the mechanisms that promote

continual task performance in humans and neural networks. We
employed a canonical cognitive paradigm that involves switching
between classification tasks with orthogonal rules. While much is
known about the factors that limit task switching performance in

explicitly instructed, rule-based paradigms with simple stimuli
(18), here we explored how humans learned to switch between
classification tasks involving naturalistic, high-dimensional stimuli
from scratch and without prior instruction. In other words, rather
than studying the control processes that permit task switching, we
investigated how a general problem composed of two orthogonal
task rules is learned by trial and error alone. We taught human and
artificial agents to classify naturalistic images of trees according
to whether they were more or less leafy (task A) or more or less
branchy (task B), drawing trial-unique exemplars from a uniform
bidimensional space of leafiness and branchiness (Fig. 1A).
To preview our findings, we observed that, relative to inter-

leaved training, providing humans (but not neural networks) with
blocked, and therefore temporally autocorrelated, objectives
promoted learning of mutually exclusive rules. Blocked training
successfully prevented interference between tasks, even on a
later generalization test involving a set of previously unseen tree
stimuli and random interleaving over trials. This occurred even
though interleaved testing should pose a particular challenge to
the blocked training group, as they did not practice random and
rapid task switches during training. Fitting a psychophysical
model to the data, we found that blocked training promoted
accurate representations of two orthogonal decision boundaries
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Fig. 1. Task design, experiment 1. (A) Naturalistic tree stimuli were parametrically varied along two dimensions (leafiness and branchiness). (B) All partic-
ipants engaged in a virtual gardening task with two different gardens (north and south). Via trial and error, they had to learn which type of tree grows best in
each garden. (C) Each training trial consisted of a cue, stimulus, response, and feedback period. At the beginning of each trial, an image of one of the two
gardens served as contextual cue. Next, the context was blurred (to direct the attention toward the task-relevant stimulus while still providing information
about the contextual cue), and the stimulus (tree) appeared together with a reminder of the key mapping (“accept” vs. “reject,” corresponding to “plant” vs.
“don’t plant”) in the center of the screen. Once the participant had communicated her decision via button press (left or right arrow key), the tree would
either be planted inside the garden (“accept”) or disappear (“reject”). In the feedback period, the received and counterfactual rewards were displayed above
the tree, with the received one being highlighted, and the tree would either grow or shrink, proportionally to the received reward. Test trials had the same
structure, but no feedback was provided. Key mappings were counterbalanced across participants. (D) Unbeknownst to the participants a priori, there were
clear mappings of feature dimensions onto rewards. In experiment 1a (cardinal group), each of the two feature dimensions (branchiness or leafiness) was
mapped onto one task rule (north or south). The sign of the rewards was counterbalanced across participants (see Methods). (E) In experiment 1b (diagonal
group), feature combinations were mapped onto rewards, yielding nonverbalizable rules. Once again, we counterbalanced the sign of the rewards across
participants. (F) Experiments 1a and 1b were between-group designs. All four groups were trained on 400 trials (200 per task) and evaluated on 200 trials
(100 per task). The groups differed in the temporal autocorrelation of the tasks during training, ranging from “blocked 200” (200 trials of one task, thus only
one switch) to “interleaved” (randomly shuffled and thus unpredictable task switches). Importantly, all four groups were evaluated on interleaved test trials.
The order of tasks for the blocked groups was counterbalanced across participants.
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required to perform the task (i.e., to “factorize” the problem
according to the two rules), whereas interleaved training encouraged
humans to form a single linear boundary that failed to properly
disentangle the two tasks. This benefit was greatest for those indi-
viduals whose prior representation of the stimulus space (as mea-
sured by preexperimental similarity judgments among exemplars)
organized the stimuli along the cardinal task axes of leafiness and
branchiness. Surprisingly, we even found evidence for the protective
effect of blocked learning after rotating the category boundaries
such that rules were no longer verbalizable. These findings sug-
gest that temporally autocorrelated training objectives encourage
humans to factorize complex tasks into orthogonal subcompo-
nents that can be represented without mutual interference.
Subsequently, we trained a deep neural network to solve the

same problem, learning by trial and error from image pixels
alone. As expected, a standard supervised deep network exhibi-
ted catastrophic forgetting under blocked training, and we used
multivariate analysis of network activations to pinpoint the source
of interference to the deeper network layer. However, building on
the insights from human learning, we show that pretraining the
network in an unsupervised way to represent the stimulus space
according to the major axes of leafiness and branchiness ameliorated
(but did not eliminate) catastrophic forgetting during subsequent
supervised training.

Results
In experiment 1a, adult humans (n ≈ 200) performed a “virtual
gardening task” that required them to learn to plant naturalistic
tree stimuli in different gardens (north vs. south, denoted by
different images) (Fig. 1 B and C). Unbeknownst to participants,
different features of the trees (leafiness vs. branchiness) predicted

growth success (and thus reward) in either garden (Fig. 1D). Dif-
ferent cohorts learned to plant (classify) trees under training re-
gimes in which gardens (tasks) switched randomly from trial to trial
(Interleaved group) or remained constant over sequences of 200
trials (B200 group), 20 trials (B20 group), or 2 trials (B2 group)
(Fig. 1F). All learning was guided by trialwise feedback alone; we
were careful not to alert participants either to the rules or to the
cardinal dimensions of the tree space (leafiness, branchiness). Our
critical dependent measure was performance on a final general-
ization test session involving novel tree exemplars in which leafy
and branchy tasks were interleaved but no feedback was provided.
We first describe three observations that we found surprising.

Firstly, the B200 group (which received the most blocked train-
ing) performed overall best during interleaved test (ANOVA:
F3,172 = 5.06, P < 0.05; B200 > Interleaved: t93 = 2.32, P < 0.05,
d = 0.47; B200 > B2: t86 = 3.81, P < 0.001, d = 0.80) (Fig. 2A).
This is striking, given the encoding specificity benefit that the
rival Interleaved group should have received from the shared
context during learning and evaluation (19). Secondly, the ben-
efits of blocked training were observed even when analysis was
limited to switch trials at test (ANOVA: F3,172 = 4.59, P < 0.01;
B200 > Interleaved: t93 = 2.06, P < 0.05, d = 0.43; B200 > B2:
t86 = 3.59, P < 0.01, d = 0.76), despite the fact that participants in
the B200 group had only experienced a single switch during
training (Fig. 2B). We found this remarkable, given that training
on task switching has previously been shown to reduce switch
costs (20); our data suggest that task switching can be paradox-
ically facilitated without any switch practice.
We next explored how blocked training promoted task per-

formance in humans, using three more detailed analysis strategies.
First, we plotted psychometric curves showing choice probabilities
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Fig. 2. Results of experiment 1a. All error bars depict SEM. (A) Training curves of mean accuracy, averaged over 50 trials, and averaged test-phase accuracy.
Performance of all groups plateaued by the end of training. At test, the B200 group performed significantly better than the B2 and Interleaved groups. (B)
Mean test performance on task switch and task stay trials. Even on switch trials, the B200 group outperformed the Interleaved and B2 groups, despite having
experienced only one task switch during training. (C) Sigmoid fits to the test-phase choice proportions of the task-relevant (solid lines) and task-irrelevant
dimensions (dashed lines). Higher sensitivity (i.e., steeper slope) to the task-relevant dimension was observed for the B200, compared with the Interleaved
group. There was stronger intrusion from the task-irrelevant dimension in Interleaved compared with B200. (D) Conceptual choice models. The factorized
model (Left) predicted that participants learned two separate boundaries for each task, corresponding to the rewards that were assigned to each dimension
in trees space. The linear model (Right) simulated that participants had learned the same, linear boundary for both tasks, separating the trees space roughly
into two halves that yielded equal rewards and penalties in both tasks. (E) Results of RDM model correlations on test-phase data. While the factorized model
provided a better fit to the data for all groups, its benefit over the linear model was greater for the B200 than for the B2 and Interleaved groups. (F) Bayesian
model selection for the unconstrained and constrained psychophysical models. The estimated model frequencies support the RSA findings, as we observed an
interaction of group with model type. (G) Mean angular distances between true and subjective boundary, estimated by the 2-boundary model. A significantly
stronger bias for Interleaved compared with B200 suggests that blocked training optimizes boundary estimation. (H) Mean lapse rates, obtained from the
same 2-boundary model. There were no significant differences between groups. *P < 0.05; **P < 0.01; ***P < 0.001.
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(at test) as a function of the feature values along the relevant di-
mension (e.g., leafiness in the leafiness task) and the irrelevant
dimension (e.g., branchiness in the leafiness task). A nonzero slope
along the task-irrelevant dimensions signals interference between
the two categorization rules. Comparing the slopes of these fitted
curves revealed that blocked learning reduced the impact of the
irrelevant dimension on choice, as if B200 training prevented in-
trusions from the rival task (B200 < Interleaved: Z = 2.99, P < 0.01
r = 0.31; Fig. 2C). This interference might reasonably occur be-
cause participants learned an inaccurate bound, or because they
were confused about which rule to use. However, a model in which
participants confused the two rules with a given probability failed
to explain the data (SI Appendix, Fig. S4).
Secondly, we plotted choice probabilities p(plant) at test for

each level of the relevant and irrelevant dimension, to visualize
the decision boundary learned in each training regime. Visual
inspection suggested that, whereas B200 training allowed partici-
pants to learn two orthogonal decision boundaries that cleanly
segregated trees in leafiness and branchiness conditions, after
interleaved training, participants were more prone to use a single,
diagonal boundary through 2D tree space that failed to disentangle
the two tasks (SI Appendix, Fig. S1A). Using an approach related to
representational similarity analysis (RSA) (21, 22), we correlated
human choices matrices for each of the two tasks with those pre-
dicted by two different models (Fig. 2D). The first used the single
best possible linear boundary in tree space (linear model), and the
second used two boundaries that cleaved different compressions of
the tree space optimally according to the relevant dimension (fac-
torized model). Although the factorized model fit human data better
than the linear model in all conditions, its advantage was greatest in
the B200 condition (group*model interaction: B200tau_diff > Inter-
leavedtau_diff: Z = 3.59, P < 0.01, r = 0.37; B200tau_diff > B2tau_diff:
Z = 3.70, P < 0.01, r = 0.39; Fig. 2E).
Thirdly, we combined elements of these analysis approaches,

fitting a family of less constrained psychophysical models (to the
test data) that allowed the decision boundary angle to vary
parametrically through 2D tree space, and compared model
variants with either a single boundary or with one boundary for
each task (2-boundary model). Each model also featured policy
parameters that allowed the slopes, offset, and termination (e.g.,
lapse rate) of a logistic choice function to vary freely for each
participant (SI Appendix, Fig. S3). After appropriately penalizing
for model complexity, we subjected model fits to Bayesian model
selection at the random effects level (23–25). This more princi-
pled modeling exercise confirmed the results of the RSA analysis
above. Although all groups were overall better fit by the 2-
boundary model variant (protected exceedance probabilities, 2-
boundary vs. 1-boundary: B200: 1.0 vs. 0.0; B20: 1.0 vs. 0.0; B2:
0.69 vs. 0.31; Interleaved: 0.65 vs. 0.35), the estimated model
frequencies were significantly greater for the 2-boundary over
the 1-boundary model in the B200 relative to Interleaved group
(group × model interaction: B200ef_diff > Interleavedef_diff: Z =
4.28, P < 0.001, r = 0.44; B200ef_diff > B2ef_diff: Z = 4.52, P <
0.001, r = 0.48; Fig. 2F). Examining the resulting parameters
from the 2-boundary model, we found that participants in the
B200 condition exhibited sharper and more accurate boundaries
in tree space (boundary deviance: B200 < Int: Z = 2.36, P < 0.05,
r = 0.24; slope: B200 > B2: Z = 3.18, P < 0.01, r = 0.34; B200 >
Interleaved: Z = 2.43, P < 0.05, r = 0.25; Fig. 2G), but not a
different lapse rate (Kruskal−Wallis H3,172 = 4.98, P = 0.17; Fig.
2H). Together, these findings suggest that blocked training helps
promote two separate representations of the two rules from
which the problem was composed, in a way that is robust to
mutual interference. Strikingly, this protective effect of blocked
training persisted under test conditions in which tasks were en-
countered in random succession.
Categorization can rely on explicit rule discovery or more

implicit learning of stimulus−response associations (26). Pre-

vious studies on category learning have provided evidence for an
interaction of training regime (blocked vs. interleaved) and the
type of categorization problem (rule-based vs. information in-
tegration) (17). To test whether the benefit of blocked training
depended on the use of rule-based strategies, next we rotated the
category boundaries for tasks A and B by 45° in tree space such
that they lay along a nonverbalizable leafy/branchy axis (“diagonal
boundary” condition) and repeated our experiment in a new co-
hort of participants (experiment 1b; n ≈ 200). Partially consistent
with a previous report (17), we observed no significant differences
in test performance among the different training groups for this
“information integration” task (ANOVA on accuracy: F3,162 =
0.25, P = 0.86; stay trials only: F3,162 = 0.37, P = 0.78; switch trials
only: F3,162 = 0.63, P = 0.60) (Fig. 3 A and B). Interestingly,
however, we still saw evidence of factorized learning in the
B200 condition. This was revealed by shallower psychometric
slopes for the irrelevant dimension at test (B200 < Interleaved:
Z = 3.11, P < 0.01, r = 0.34; B200 < B2 Z = 2.91, P < 0.01, r =
0.32; Fig. 3C), and a better fit to representational dissimilarity
matrices (RDMs) for the factorized task model in the
B200 condition, both relative to Interleaved (Z = 3.10, P < 0.01,
r = 0.33) and B2 (Z = 3.45, P < 0.01, r = 0.38) training conditions
(Fig. 3E). Moreover, as revealed by Bayesian model comparison,
the 2-boundary model fit the data best in the B200 condition, but
the more constrained 1-boundary model explains the data best
in the interleaved condition (protected exceedance probabilities
2-boundary vs. 1-boundary: B200: 0.59 vs. 0.41, B20: 0.47 vs. 0.53,
B2: 0.25 vs. 0.75, Interleaved: 0.17 vs. 0.83; group × model inter-
action of estimated frequencies: B200ef_diff > Interleavedef_diff:
Z = 3.55, P < 0.001, r = 0.38; B200ef_diff > B2ef_diff: Z = 3.01,
P < 0.01, r = 0.33; Fig. 3F). Once again, using the uncon-
strained (2-boundary) psychophysical model (as for the “cardi-
nal” condition above), we observed lower estimates of boundary
error in the B200 condition (B200 < Interleaved Z = 2.86, P <
0.01, r = 0.31; B200 < B2 Z = 2.63, P < 0.01, r = 0.29; Fig. 3G),
but higher lapse rates (B200 > Interleaved Z = 2.01, P < 0.05,
r = 0.22; Fig. 3H). Thus, it seems that, under nonverbalizable
boundaries, blocked training promotes learning of the effective
boundary, but this benefit only offsets (but does not reverse) a
nonspecific cost incurred by random task lapses. The reason
for these lapses is unclear. Reasoning that participants might
forget the task trained first to a greater extent in the diagonal
condition, we plotted performance separately for task 1 (i.e.,
that experienced first) and task 2 (second) in the cardinal and
diagonal cases. However, forgetting did not differ (SI Appendix,
Fig. S2). It may be that the limited experience with task switching
during training is more detrimental to performance when rules are
nonverbalizable (26).
Our favored explanation for these findings is that blocked

training allows humans to compress the high-dimensional image
onto distinct, rule-specific discrimination axes (see Discussion).
In other words, blocked training promotes an understanding of
the structure of the task space as being primarily dictated by the
leafiness and branchiness of the trees. If so, then it follows that
participants who are a priori predisposed to represent the trees
according to orthogonal axes of leafiness vs. branchiness might
be most able to benefit most from such a strategy. We might thus
expect these participants to learn disproportionately faster under
blocked training, especially when the task-specific category
boundaries lie on the cardinal axes of the stimulus feature space.
Next, thus, we repeated our experiments on a new participant

cohort who classified the stimuli once again according to cardinal
(experiment 2a) and diagonal (experiment 2b) boundaries, but
this time we measured participants’ representation of tree space
using a preexperimental and postexperimental “arena” task, in
which trees were manually arranged according to their similarity
or dissimilarity within a circular aperture (27, 28). This allowed
us to estimate the extent to which the a priori prestimulus
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arrangement matched the 2D leafy vs. branchy grid encountered
in the subsequent classification task(s), and to quantify partici-
pants’ prior sensitivity to stimulus variations along the two major
feature axes of leafiness and branchiness (Fig. 4). We computed a
single quantity, that we refer to as a “grid prior,” that captured the
extent to which the reported pairwise dissimilarities align with
those predicted by a 2D grid-like arrangement of the stimuli on
the screen (although our metric did not require participants to
align the trees precisely in a grid, but merely to organize the trees
along orthogonal axes of leafiness and branchiness). We then
tested how this grid prior (measured from preexperimental data
alone) interacted with training regime to predict subsequent test
performance.
Although performance was overall poorer in this cohort, the

results of the main task were similar to those of experiments 1a
and 1b, with stronger evidence for factorized learning under
B200 than interleaved training from the RSA analysis, as in-
dicated by fits to choice matrices (experiment 2a: B200 > In-
terleaved: Z = 3.21, P < 0.001, r = 0.27; experiment 2b: B200 >
Interleaved Z = 2.31, P < 0.05, r = 0.23), a significant interaction
effect of group and model on the estimated model frequencies
(experiment 2a: B200ef_diff > Interleavedef_diff: Z = 4.77, P <
0.0001, r = 0.41; experiment 2b: B200ef_diff > Interleavedef_diff:
Z = 2.82, P < 0.01, r = 0.28) and estimates of boundary error of
the 2-boundary model for cardinal boundaries (experiment 2a:
B200 < Interleaved: Z = 2.56, P < 0.05, r = 0.22; experiment 2b:
B200 < Interleaved Z = 1.97, P < 0.05, r = 0.19) from the psy-
chophysical model (SI Appendix, Fig. S5). However, of primary
interest for this experiment was how participants’ prior repre-
sentation of the stimulus space interacted with training regime to
promote learning. Splitting participants according to the median
grid prior, in experiment 2a (cardinal boundaries), we found that
those participants who tended to a priori represent leafiness

and branchiness orthogonally exhibited more benefit from
B200 training than those who did not (B200highPrior > B200lowPrior:
Z = 2.871, P < 0.005, r = 0.35; InthighPrior = IntlowPrior: Z = 1.692,
P = 0.09; Fig. 5A). The finding remained significant when we used
an analysis of covariance (ANCOVA) to estimate interactions be-
tween grid prior and training on performance (grid prior: F1,134 =
13.54, P < 0.001; group: F1,134 = 6.6, P < 0.05; grid prior*group:
F1,134 = 6.28, P < 0.05). Moreover, signatures of factorized learning,
including the fits of the factorized model to human choice matrices,
were more pronounced for the high grid prior group under B200
but not interleaved training (B200highPrior > B200lowPrior: Z = 3.12,
P < 0.01, r = 0.38; InthighPrior = IntlowPrior: Z = 1.55, P = 0.06;

A B C D

FE

G H

Fig. 3. Results of experiment 1b. All error bars depict SEM. (A) Training curves and averaged test-phase performance. At the end of the training, perfor-
mance plateaued for all groups. At test, in contrast to experiment 1a, there was no significant difference in performance between groups. (B) No performance
difference between task switch and stay trials. (C) Sigmoid fits to the test-phase choice proportions of the task-relevant (solid lines) and task-irrelevant di-
mensions (dashed lines). No sensitivity differences were observed along the relevant dimension. However, once again, there was stronger intrusion from the
task-irrelevant dimension for Interleaved compared with B200. (D) Conceptual model RDMs. The same reasoning applies as described in Fig. 2D. (E ) RDM
model correlations at test. Despite equal test performance, the relative advantage of the factorized over the linear model is stronger for B200 than for
B2 or Interleaved, suggesting that blocked training did result in better task separation, despite equal performance. (F ) Bayesian model comparison
between unconstrained and constrained models supports the RSA findings. The unconstrained model fits best in the B200 group, but the constrained
model fits best to the Interleaved group. (G) Mean bias of the decision boundary obtained by the unconstrained model. The bias was smallest for B200,
indicating that this group estimated the boundaries with high precision. (H) Mean lapse rates. The B200 group made a higher number of unspecific
random errors during the test phase, compared with the Interleaved group, which explains equal test performance despite evidence for successful task
factorization. We suspect that limited experience with task switches is more detrimental when rules are nonverbalizable. Asterisks denote significance: *P < 0.05;
**P < 0.01; ***P < 0.001.

Fig. 4. Task design, experiment 2. Before and after the main experiment
(identical to experiment 1), participants engaged in a dissimilarity rating
arena task, in which they had to rearrange trees via mouse drag and drop
inside a circular aperture to communicate subjective dissimilarity (see
Methods). We obtained one RDM per subject and phase, depicting
how dissimilarly the trees were perceived. Correlation of the RDMs from
the “Pre” with a model RDM that assumed perfect grid-like arrange-
ment (branchiness × leafiness) yielded a grid prior (Kendall tau) for each
participant.
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ANCOVA: Grid prior: F1,134 = 22.36, P < 0.0001; Group: F1,134 =
12.18, P < 0.001; grid prior*group: F1,134 = 8.16, P < 0.01; Fig. 5B).
By contrast, in the diagonal boundary case (experiment 2b), we
observed generally higher performance and task factorization for
those participants who had a higher grid prior, but no interaction
with training regime (accuracy: highPriorpooled > lowPriorpooled, Z =
2.052, P < 0.05, r = 0.20; factorization: highPriorpooled > low-
Priorpooled, Z = 1.97, P < 0.05, r = 0.194; ANCOVA on accuracy:
grid prior: F1,99 = 5.96, P < 0.02, group: F1,99 = 1.5, P = 0.223, grid
prior*group: F1,99 = 0.31, P = 0.579; ANCOVA on correla-
tions with factorized model: grid prior: F1,99 = 9.15, P < 0.01;
group: F1,99 = 2.07, P = 0.15; grid prior*group: F1,99 = 0.01,
P = 0.91; Fig. 5 C and D).
Next, for comparison with humans, we trained deep artificial

neural networks to perform the task. In experiment 3, convolu-
tional neural networks (CNNs) were separately trained on the
cardinal and diagonal tasks under either blocked or interleaved
training conditions, and classification performance was periodi-
cally evaluated with a held-out test set for which no supervision
was administered. On each “trial,” the networks received images
of task-specific gardens onto which trees were superimposed as
input (analogous to the content of the stimulus presentation
period in the human experiments) and were optimized (during
training) with a supervision signal designed to match the reward
given to humans (SI Appendix, Fig. S6A). As expected, under
interleaved training, the network rapidly achieved ceiling per-
formance at test on both tasks. However, under blocked training,
network performance dropped to chance after each task switch
(Fig. 6 A and B), in line with an extensive literature indicating
that such networks suffer catastrophic interference in tem-
porally autocorrelated environments (4, 29). Using an RSA
approach, we correlated the layer-wise activity patterns with
model RDMs that either assumed pixel value encoding (pixel
model), category encoding of both tasks (factorized model),

category encoding of the most recent task only (interference
model), or a linear boundary through feature space (linear model;
see Methods for details). Unit activation similarity patterns in the
early layers reflected the pixelwise similarity among input images,
whereas deeper layers exhibited a representational geometry that
flipped with each new task, as predicted by the interference
model, and indicative of catastrophic forgetting (Fig. 6 C
and D).
Our investigations of human task learning suggested that prior

knowledge of the structure of the stimulus space allows hu-
mans to learn factorized task representations that are protected
from mutual interference. We thus wondered whether pretrain-
ing the CNN to factorize the task space appropriately would
mitigate the effect of catastrophic interference. To achieve this,
we trained a deep generative model [a beta variational autoen-
coder or β-VAE (30)] on a large dataset of trees drawn from
the 2D leafy × branchy space (experiment 4a), but without the
gardens as contextual cues. The autoencoder learned to re-
construct its inputs after passing signals through two “bottle-
neck” nodes, which encourages the network to form a compressed
(2D) representation of the latent stimulus space (SI Appendix, Fig.
S6B). Unlike a standard VAE, which typically learns an un-
structured latent representation, the β-VAE can learn disen-
tangled and interpretable data generating factors, similar to a
child who acquires structured visual concepts through pas-
sive observation of its surroundings (30). To verify that the
network had learned appropriately, we traversed the latent
space of activations in the two bottleneck units and visual-
ized the resulting tree reconstructions, revealing a 2D em-
bedding space that was organized by leafiness × branchiness
(Fig. 7A).
Next, thus, in experiment 4b, we retrained the CNN of ex-

periment 3, again on blocked and interleaved curricula, but using
the trained β-VAE encoder from experiment 4a as a feature
extractor for the main task. We provided the output of the en-
coder from the β-VAE an input to the first fully connected layer
in the CNN, thereby allowing it to utilize similar prior knowledge
about the structure of the inputs, as our human participants
seemed to do (SI Appendix, Fig. S6C). This approach mirrors
that which occurs during human development, in which rich
knowledge of the statistical structure of the world is learned
before the rules guiding behavior are explicitly taught (31). The
effect of catastrophic interference in the CNN, although still
present, was reduced by this intervention. More precisely, the
network retained some knowledge of previous tasks it had ex-
perienced during blocked training (Fig. 7 B and E), leading to
overall improved performance in this condition relative to the
vanilla CNN for the cardinal as well as the diagonal group (test
accuracy, blocked training: cardinal prior CNN > vanilla CNN
Z = 5.50, P < 0.001, r = 0.66, diagonal priorCNN > vanilla CNN
Z = 2.83, P < 0.01, r = 0.34). Using RSA to investigate repre-
sentational geometry in the network, we found that using the
autoencoder as a feature extractor encouraged the network to
represent the task in a factorized manner, with RDMs showing
reduced correlations with the interference model and increased
correlations with the factorized model in both fully connected
layers [correlation with factorized model for prior CNN > vanilla
CNN, all P values < 0.01 for both FC layers (r = 0.66) and output
layer (rfc1 = 0.66, rfc2 = 0.66, rout = 0.54); correlation with in-
terference model for vanilla CNN > prior CNN, all P values <
0.001 (rfc1 = 0.68, rfc2 = 0.53, rout = 0.56); Fig. 7 C and D]. In-
terestingly, in the diagonal boundary case, the advantage for the
factorized model was only significant in the output layer (Z =
2.2, P < 0.05, r = 0.26; Fig. 7F), but we observed reduced cor-
relations with the interference model in all three earlier layers
(all P values < 0.01, rfc1 = 0.41, rfc2 = 0.41, rout = 0.40; Fig. 7G).
We take these data as a proof-of-concept that unsupervised
learning of the statistical structure of the world may be one

A B

C D

Fig. 5. Results of experiment 2. All error bars depict SEM. (A) Experiment 2a
(cardinal boundary): median split of test performance. The benefit of
blocked training was significantly stronger for participants with a higher
prior on the structure of the trees space. (B) Experiment 2a: median split of
correlations between choice probabilities and factorized model (Fig. 1D).
Under blocked training, participants with a strong prior showed significantly
stronger evidence of task factorization. (C) Experiment 2b (diagonal
boundary). There was no difference between low and high grid priors on
mean test accuracy. (D) Experiment 2b. The correlation coefficients of the
factorized model did not differ between groups. An ANCOVA (see Results)
revealed a main effect of the prior on task factorization, but no interaction
with group. *P < 0.05.
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important factor for promoting continual task performance in
both humans and neural networks.

Discussion
Humans can continually learn to perform new tasks across the
lifespan, but the computational mechanisms that permit con-
tinual learning are unknown. Here, we tackled the problem of
understanding how humans learn to classify high-dimensional
stimuli according to two orthogonal rules, from scratch and
without instruction. We first show that humans benefit from
blocked training conditions, in which task objectives are pre-
sented in a temporally autocorrelated fashion, even when later
test stimuli are interleaved between trials, a scenario that was not
experienced during initial training. This result poses a challenge
for standard computational models of learning, including current
neural network accounts, where test performance is typically
heavily determined by the level of exposure to equivalent train-
ing examples (19, 32). Our detailed behavioral analysis offers
some insight into how blocked training promotes continual task
performance in humans. Under blocked training, participants
learned the two category boundaries more accurately and with
reduced mutual interference, as revealed by a psychophysical
model which separately modeled errors arising from boundary
inaccuracy and those incurred by generalized forms of forgetting.
Secondly, those participants with a prior bias to represent the
trees according to their orthogonal leafiness and branchiness
enjoyed greatest benefit from blocked training, but only when
the rules mapped onto the cardinal axes of the branch × leaf
space, and not in the diagonal case. This benefit exceeded that
conferred during interleaved training, ruling out generalized
explanations for this phenomenon. Our favored interpretation is
that continual learning is facilitated when participants have
learned a low-dimensional embedding of the stimulus space that
maps cleanly onto the rules which could plausibly be useful for
behavior (in this case, leafy vs. branchy classification), and that
blocked training promotes such a representation in a way that
interacts with prior knowledge.
A rich literature has sought to understand how visual repre-

sentations are formed and sculpted during category learning.
One prominent theme is that, during training, expertise emerges
as high-dimensional (or “integral”) representations of a stimulus
are disentangled into more separable neural codes (33–35).
However, the precise computational mechanisms by which this
occurs remain unresolved. Several models have assumed that
unsupervised processes allow decision-relevant features to be

appropriately clustered into categories, explaining why feedback-
driven category learning is easier when stimuli already differ on
fewer dimensions (as in “rule-based” tasks), or exhibit decision-
relevant features that are a priori salient (36). However, most
previous models have been applied to tasks involving clearly
instructed rules, or artificial stimuli in which dimensions were
clearly segregable, and thus involve limited state spaces which
are prepopulated by the features or dimensions manipulated by
the researchers. Our modeling approach is different. We tackled
a problem related to that faced by the mammalian visual
system, i.e., how to learn compressed representations from
atomistic features (e.g., image pixels) in a way that enhanced
continual category learning in a network of neurons. Neverthe-
less, our work draws on extant themes in the past literature. For
example, our use of a variational autoencoder as a feature ex-
tractor builds on the appeal to unsupervised methods but extends
these approaches to the more biologically plausible case where
features are image pixels and clusters are extracted through multi-
ple hierarchically ordered layers in a densely parameterized neural
network.
However, our main finding, namely the representational ro-

bustness conferred by a blocked curriculum, remains unexplained
by existing category learning models. One existing suggestion is
that attentional mechanisms are central to this process. Blocked
training may allow participants to orient attention more effectively
to the relevant dimension(s), or to actively filter or suppress the
irrelevant dimension, facilitating dimension segregation for leaf-
iness/branchiness. Indeed, previous work has suggested that the
performance benefits of blocked training are limited to rule-based
categorization, perhaps because it is easier to orient attention to
dimensions that are a priori separable according to a verbalizable
rule (17). Had we examined percent test accuracy alone, we
might have drawn similar conclusions from our data, because
there was no overall test benefit for blocked regimes under the
diagonal (i.e., information integration) condition. However, a
model-based analysis disclosed that humans nevertheless tended
to factorize the relevant boundaries more cleanly after blocked
training on diagonal as well as cardinal boundaries (Fig. 3G).
Thus, any mechanistic account that appeals to attention will need
to explain why task factorization occurs for both verbalizable and
nonverbalizable rules. For example, it is possible that switching
between two reward functions in the interleaved learning pro-
vokes a generic processing cost in humans that is lower or absent
in the blocked condition (37). Another possibility is that effects
of blocking vs. interleaving are related to the spacing of conditions
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Fig. 6. Results of experiment 3. All error bars depict SEM across independent runs. (A) Experiment 3a (cardinal boundary): mean performance of the CNN on
independent test data, calculated after the first and second half of training, separately for the first and second task and blocked vs. interleaved training.
Interleaved training resulted quickly in ceiling performance. In contrast, the network trained with a blocked regime performed at ceiling for the first task, but
dropped back to chance level after it had been trained on the second task, on which it did also achieve ceiling performance. (B) Experiment 3b (diagonal
boundary): mean test performance. Similar patterns as for the cardinal boundary were found: Blocked training resulted in catastrophic interference, whereas
interleaved training allowed the network to learn both tasks equally well. Interestingly, the CNNs performed slightly worse on the diagonal boundary, as did
our human participants. (C) Experiment 2a, blocked training. Layer-wise RDM correlations between RDMs were obtained from activity patterns and model
RDMs. The correlation with the pixel dissimilarity model decreases with depth, whereas the correlation with the catastrophic interference model increases.
Neither the factorized nor the linear model explain the data well, indicating that blocked training did not result in task factorization or convergence toward a
single linear boundary. (D) Experiment 2b, blocked training. Again, correlations with the pixel model decrease and correlations with the interference model
increase with network depth.
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in time (11), which, in turn, may be due to the relative attentional
salience of items experienced at longer lags. More generally, at-
tention mechanisms are widely thought to play a prominent role in
controlling the allocation of neural resources (or gain) in a way
that allows task sets to be effectively segregated (35), and yet are
notably absent from our neural network account. Understanding
how the executive processes that characterize human learning may
be effectively incorporated into deep learning models is a frontier
topic in machine learning and may be an important future approach
to bridging the performance gap in continual learning between
humans and machines.
Our work is related to previous suggestions that temporally

structured contextual information (e.g., that available in our
blocked north or south gardens) is clustered into “parcels” that
are tagged by their temporal context (38). Indeed, studies of
expert knowledge (39) and laboratory-based categorization
(40, 41) show that the task context is an excessively salient cue
for retrieval, as if participants partitioned their knowledge
between tasks even when it was unnecessary or detrimental to
do so (42). Moreover, humans have a strong tendency to infer

contextual structure in an otherwise unstructured task, point-
ing to the existence of a mechanism that structures knowledge
strongly according to local context (43). Lastly, previous work
on concept learning suggests that blocking such that instances
of concepts occur in close proximity aids learning of these con-
cepts and even outperforms blocking based on perceptual simi-
larity (44).
These findings, and ours, raise the critical question of how

knowledge is partitioned among tasks in cortical areas, such as
the prefrontal cortex, that subserve executive control. We did not
investigate neural signals, and so it is challenging to draw strong
inferences about how the task representations formed by blocked
and interleaved learning may differ. However, single-cell re-
cordings in the macaque have suggested that after extensive
(interleaved) training, neurons in prefrontal cortex form high-
dimensional representations of task variables that are mixed
across the neuronal population (dimension expansion), allowing
efficient decoding of relevant actions via appropriate linear
readout (45, 46). Mixed selectivity for distinct tasks will naturally
similarly emerge in supervised neural networks after training on

A B C D

E F G

Fig. 7. Results of experiment 4. (A) Experiment 4a. (Top) Example of tree images used for training the autoencoder. (Bottom) The 2D latent space traversal of
trained autoencoder (see Methods). For each x,y coordinate pair, we plot a tree image sampled from the generative model, revealing that the autoencoder
learned a disentangled low-dimensional representation of branchiness and leafiness. (B) Experiment 4b (cardinal), blocked training: comparison of perfor-
mance on the first task after training on the second task, between the model from experiment 3 (“vanilla” CNN, without priors) and the model from ex-
periment 4 (“pretrained” CNN, with priors from VAE encoder). Unsupervised pretraining partially mitigated catastrophic interference. (C) Experiment 4b
(cardinal), blocked training: comparison of layer-wise RDM correlations with factorized model for CNN, between networks without and with unsupervised
pretraining. Pretraining yielded stronger correlations with the factorized model in each layer. (D) Experiment 4b (cardinal), blocked training: comparison of
layer-wise RDM correlations with interference model. Likewise, pretraining significantly reduced correlations with the catastrophic interference model in each
layer. (E) Experiment 4b (diagonal), blocked training: mean accuracy on the first task after training on the second task, for vanilla and pretrained CNN. Again,
pretraining mitigated catastrophic interference. (F) Experiment 4b (diagonal), blocked training. RDM correlations with factorized model only increased in the
output layer. (G) Experiment 4b (diagonal), blocked training. RDM correlations with the interference model increased significantly in each layer. All error bars
indicate SEM across independent runs. *P < 0.05; **P < 0.01.
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randomly intermixed examples, but not after blocked training,
where, instead, representations oscillate periodically in line with
the slowly changing objectives (4). One possibility is that pre-
viously observed dimension expansion occurs only after extensive
interleaved training (e.g., over months or years) that is a hall-
mark of animal training regimes and human development, but
not most laboratory-based studies involving humans. We think it
is likely that blocked training in humans will facilitate the
emergence of compressive representations formed by our un-
supervised network, and these may be visible in human neuro-
imaging data. Indeed, there are recent hints that category
learning reduces the dimensionality of blood oxygenation level-
dependent (BOLD) signals in decision-related regions (47).
However, this remains to be fully tested by future studies.
Our work uses insights from human psychology to enhance

the performance of artificial neural networks. Our goal here
was not to achieve state-of-the-art performance in machine
learning classification using the tree dataset. Indeed, as we
show, ceiling performance on our task can easily be achieved
with a standard CNN via interleaved training. Rather, we were
interested in understanding the representations formed by the
network during blocked training, which exhibits the temporal
autocorrelation typical of naturalistic environments, and examining
how these might be altered by exposure to unsupervised pre-
training that encouraged the network to form appropriate
embeddings of the 2D tree space—the same grid prior that allowed
humans to benefit most from blocked training. We found that using
a deep generative model as a feature extractor for the CNN
partially guarded against catastrophic interference, and en-
couraged the preservation of representations of task A when
later performing task B. One interpretation of this finding is
that human continual learning is scaffolded by extensive un-
supervised training that confers an understanding of the statistics
of the world before any rule learning. However, we note several
caveats to this finding. Firstly, comparing the performance of
adult humans—who bring a lifetime of visual experience and
rich conceptual knowledge to the laboratory—with neural net-
works that learn tabula rasa is always a challenge. For example, by
necessity, our neural networks were trained with many more ex-
amples than the humans, because they began the task with weights
initialized to random. Secondly, we are conscious that our
experiment tested only conditions in which a single stimulus set
is categorized according to two orthogonal rules; further work
will be required to see whether the findings reported here from
humans and neural networks generalize to different experi-
mental settings, for example where there are multiple stimulus
sets, or a symmetric categorization rule (rather than “plant vs.
no plant”) is employed (14). Finally, we acknowledge that our
pretraining intervention only mitigated, but did not remove,
the effect of catastrophic interference. Indeed, it is very likely
that other mechanisms, including weight protection schemes
that allow new learning to be allocated to synapses according
to their importance for past learning, will also play a key role
(3, 48). A promising avenue for future research may be to un-
derstand how structure learning and resource allocation schemes
interact.

Methods
An expanded version is presented in SI Appendix.

Participants. We recruited a large cohort (n = 768) of adult participants via
Amazon Mechanical Turk. We set a criterion of >55% accuracy at test for
inclusion in the analysis and continued to recruit participants until we
reached at least n = 40 in each training group; In total, we included 352 male
and 231 female participants (SI Appendix, Table S1), with a mean age of
33.33 y (range 19 y to 55 y); ages did not differ reliably between groups (SI
Appendix, Table S2).

All participants provided consent before taking part, and the studies were
approved by the University of Oxford Central University Research Ethics
Committee (approval R50750/RE001).

Stimuli. Trees were generated by a custom fractal tree generator and varied
parametrically in five discrete steps along two feature dimensions, spanning a 2D
space of leafiness × branchiness. For human studies and neural network simu-
lations, we created independent training and test sets of trees for each level of
branchiness and leafiness (5 × 5 levels). The same trees were shown for both
tasks. Different trees were used for training and test to prevent rote learning.

Task and Procedure. Experiments 1 and 2 were run online in forced fullscreen
mode. All experiments began with written instructions and consisted of a
training phase (400 trials) and a test phase (200 trials). In both phases, par-
ticipants viewed a tree in one of two contexts (north and south gardens) and
decided whether to plant it or not. They received feedback (points) according
to howwell it grew. During both training and test for experiments 1a and 2a,
the tree’s leafiness determined how well it grew in one context, and
branchiness determined its growth in the other (cardinal boundary). In ex-
periments 1b and 2b, the decision boundary was rotated by 45°, to align
with the diagonal axes of the branch × leaf stimulus space, so that growth
success depended jointly on leafiness and branchiness (diagonal boundary).
We equated the number of presentations of each condition (leafy level [5] ×
branchy level [5] × context [2]). In experiment 2, a further task that involved
rearranging trees in a circular arena according to their similarity was added
before and after the main task.

In experiment 1, we trained participants in four conditions, each involving
200 north and 200 south gardens in different order. In the interleaved
condition, gardens were randomly interleaved over trials. In the B2, B20, and
B200 conditions, gardens remained constant over 2, 20, or 200 trials. In ex-
periment 2, we included only the B200 and interleaved training conditions.
All groups were evaluated with a randomly interleaved test session (100 in-
stances of each).

RSA. We calculated p(plant) as a function of every level of leafiness ×
branchiness, and then computed an RDM expressing the dissimilarity (in
average accuracy) between each pair of leaf × branch level. We compared
these to model-predicted RDMs that were generated to match a theo-
retically perfect observer (model 1) or an observer who learned the best
possible single linear boundary through the 2D space and applied it to both
tasks (model 2).

Psychophysical Model. Each stimulus was represented in terms of its distance
to a decision boundary with an angle φ. This value was converted to a choice
probability via a logistic function with slope s, bias b, and lapse parameter «
(SI Appendix, Fig. S3). We compared two variants of this model. An un-
constrained model, which had two boundaries and two logistic functions
with different slope, one for each task (eight parameters), and a constrained
model with only one boundary and one slope (four parameters). The two
models were fit to the human data via maximum likelihood estimation. We
compared the best-fitting parameters across groups using nonparametric
statistics. Model comparisons were conducted with random effects Bayesian
model selection.

Neural Network Simulations. All networks consisted of several convolutional
and fully connected layers arranged in a feed-forward architecture. They
received RGB images as input. In experiment 3, the network was trained in
online mode (one sample per time) on 10,000 trials per task, which were
randomly sampled from the training data and superimposed onto the con-
textual cues (gardens). We trained the networks on blocked and interleaved
curricula. Test performance on both tasks was assessed on independent data
(10,000 trees) after the first and second half of the training session. We
collected 20 independent runs for each group. In experiment 4a, the β-VAE
was trained until convergence on the training data. We then replaced the
convolutional layers of the experiment 3 network with the trained encoder
and froze the weights, such that training on the task took only place in the
two fully connected layers.

Statistical Tests. We tested for significance at the group level using standard
(non) parametric tests. We calculated Cohen’s d and z/sqrt(N) as measures of
effect size for parametric and nonparametric post hoc tests, respectively.
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