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ABSTRACT
Bayesian inference for rank-order problems is frustrated by the
absence of an explicit likelihood function. This hurdle can be over-
come by assuming a latent normal representation that is consistent
with the ordinal information in the data: the observed ranks are
conceptualized as an impoverished reflection of an underlying con-
tinuous scale, and inference concerns the parameters that govern
the latent representation. We apply this generic data-augmentation
method to obtain Bayes factors for three popular rank-based tests:
the rank sum test, the signed rank test, and Spearman’s ρs.
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1. Introduction

The debate on alternatives to null hypothesis significance tests based on p-values [63] has
led to a renewed interest in the Bayesian alternative known as the Bayes factor. Advan-
tages of such Bayesian tests include the ability to provide evidence in favor of both the null
and the alternative hypotheses [12], the ability to straightforwardly synthesize evidence
to assess replicability [36], and the ability to monitor the evidence as the data accumulate
[51]; see [13,62] for further details on the advantages of Bayesian inference. These advan-
tages are met by the recently proposed Bayes factors for the classical two- and one-sample
t-tests [52], as well as for the Bayes factor for Pearson’s correlation [37]. These tests have
become increasingly popular in the applied sciences. The goal of this paper is to extend
these parametric Bayes factors to their rank-based counterparts.

Rank-based statistical procedures offer a range of advantages over their parametric
counterparts. First, they are robust to outliers and to violations of distributional assump-
tions, which occur frequently in many practical applications, such as the analysis of
questionnaire data. Second, they are invariant under monotonic transformations, which
is desirable when interest concerns a hypothesized concept (e.g. rat intelligence) whose
relation to the measurement scale is only weakly specified (e.g. brain volume or log brain
volume could be used as a predictor; without a processmodel that specifies howbrain phys-
iology translates to rat intelligence, neither choice is privileged). Third, many data sets are
inherently ordinal (e.g. Likert scales, where survey participants are asked to indicate their
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opinion on, say, a 7-point scale ranging from ‘disagree completely’ to ‘agree completely’).
Finally, rank-based procedures perform better than their fully parametric counterparts
when assumptions are violated, with little loss of efficiency when the assumptions do hold
[24].

Prominent rank-based tests include the Mann-Whitney-Wilcoxon rank sum test (i.e.
the rank-based equivalent of the two-sample t-test), the Wilcoxon signed rank test (i.e.
the rank-based equivalent of the paired sample t-test), and Spearman’s ρs (i.e. a rank-
based equivalent of the Pearson correlation coefficient). These ordinal tests were developed
within the frequentist statistical paradigm, and Bayesian analogues through Bayes factor
hypothesis testing have, to the best of our knowledge, not yet been proposed. We specu-
late that the main challenge in the development of Bayesian hypothesis tests for ordinal
data is the lack of a straightforward likelihood function. As stated by Harold Jeffreys [27,
pp. 178–179] for the case of Spearman’s ρs:

‘The rank correlation, while certainly useful in practice, is difficult to interpret. It is an esti-
mate, but what is it an estimate of? That is, it is calculated from the observations, but a function
of the observations has no relevance beyond the observations unless it is an estimate of a
parameter in some law. Now what can this law be? [··· ] the interpretation is not clear.’

This difficulty can be overcome by postulating a latent, normally distributed level for the
observed data (i.e. data augmentation). In other words, the rank data are conceptualized to
be an impoverished reflection of richer latent data that are governed by a specific likelihood
function. The latent normal distribution was chosen for computational convenience and
ease of interpretation. This general procedure is widely known as data augmentation [3,56],
and Bayesian inference for the parameters of interest (e.g. a location difference parameter
δ or an association parameter ρ) can then be achieved using Markov chain Monte Carlo
(MCMC) sampling. In other words, we can use the latent normal approach to overcome the
lack of a likelihood function, and thus enable a Bayesian approach to rank-based testing.

Below we first outline the general latent normal framework and then develop Bayesian
counterparts for three popular frequentist rank-based procedures: the rank sum test, the
signed rank test, and Spearman’s rank correlation. Each of these developed Bayesian tests is
accompanied by a simulation study that assesses the behavior of the test and a data example
that highlights the desirable properties of rank-based inference, as well as the applicability
of our proposed tests.

2. General methodology

In the Bayesian framework, the posterior distribution of the parameter of interest θ is
often used for hypothesis testing and parameter estimation. The posterior distribution is
proportional to the likelihood, i.e. f (data | θ), times the prior, i.e. π(θ), that is,

π(θ | data) ∝ f (data | θ) × π(θ). (1)

In the parametric case, this is often straightforward. For rank-based procedures, however,
f (data | θ) is unavailable and to overcome this complication, we can use a latent normal
framework.
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2.1. Latent normalmodels

Latent normal models were first introduced by [48] as a means of modeling data from
a 2 × 2 cross-classification table. The method was later extended by [49] to accommo-
date r × s tables. Instead of modeling the count data directly for the 2 × 2 case, Pearson
assumed a latent bivariate normal level with certain governing parameters. In the case of
cross-classification tables, the governing parameter is the polychoric correlation coefficient
(PCC) and refers to Pearson’s correlation on the bivariate, latent normal level.

Amaximum likelihood estimator for the PCCwas developed by [46,47], and a Bayesian
framework for the PCC was later introduced by [2]. This idea was extended by [50] to
rank likelihood models, where the latent boundaries are not estimated but determined
directly by the latent scores (see also [22,23]). For the two-sample location problem, a simi-
lar approach has been discussed by [4,5,53], where a continuous distribution is assumed to
be underlying the observed data. Furthermodels for ordinal data are given in [15,16,39,41].
However, these methods omit Bayesian hypothesis testing through Bayes factors and/or
lack a straightforward interpretation of the model parameters.

In general, the latent normal methodology allows one to transform ordinal problems to
parametric problems. The resulting models that are discussed here have a data-generating
process, are governed by easily interpretable parameters on the latent level, and enable
Bayes factor hypothesis testing. A detailed sampling algorithm of the general methodology
is presented in the next section.

2.2. Posterior distribution

We elaborate the main idea of the latent normal approach with data consisting of two
groups of samples. Let (rx, ry) be two vectors of ranked data, and zx, zy be the vectors of
associated latent normal scores which depend on a model parameter θ . The latent normal
posterior is then proportional to

π(zx, zy, θ | x, y) ∝ f (rx, ry | zx, zy) × f (zx, zy | θ) × π(θ) (2)

Note how the parametric likelihood in (1) is now replaced by the product f (rx, ry | zx, zy) ×
f (zx, zy | θ). As before, the third term on the right-hand side refers to the prior π(θ). The
second term refers to the latent normal structure. For instance, in the two-sample case, we
replace the generic θ by the population difference δ and take for f (zx, zy | θ) the product
of two normal densities with unit variances, but a mean depending on δ, see below for
further details. On the other hand, for inference on Spearman’s ρs, we replace the generic
θ by ρ, and take for f (zx, zy | θ) the centered bivariate normal density with unit variances,
and correlation ρ.

The first term on the right-hand side of (2), i.e. f (rx, ry | zx, zy) consists of a set of
indicator functions, presented below, that connect the observed ranks to the unobserved
latent normal scores, zx, zy such that the ordinal information (i.e. the ranking function) in
the observations rx, ry is preserved. This is similar to the approach of [1,3], who sampled
latent scores for binary or polytomous response data from a normal distribution that was
truncated with respect to the ordinal information of the data.

With (2) in hand, we have the specified the link between the data, the latent normal
scores and parameters, and an MCMC sampler can be constructed in order to obtain the
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joint posterior distribution. This sampler takes as input the ordinal information of the
observed data, and iteratively generates random parameter values θ as well as random
latent scores zx, zy. The indicator function f (rx, ry | zx, zy) ensures that the latent scores
zx, zy retain the ordinal information in the data by truncating the latent normal likelihood
f (zx, zy | θ). For the latent value zxi this means that its range is truncated by the lower and
upper thresholds that are respectively defined as:

axi = max
j:rxj <rxi

(
zxj

)
(3)

bxi = min
j:rxj >rxi

(
zxj

)
. (4)

For example, suppose that on a particular MCMC iteration we wish to augment the
observed ordinal value rxi to a latent z

x
i ; on the latent scale, the lower threshold a

x
i is given by

the maximum latent value associated with all rx lower than rxi , whereas the upper thresh-
old bxi is determined by the minimum latent value associated with all rx higher than rxi .
This dependence between the scores can make the sampler inefficient. In order to remedy
the high degree of autocorrelation that data augmentation can induce [60], we included an
additive decorrelating step documented by [35,44].

2.3. Estimation and testing

After obtaining the joint posterior distribution through the MCMC sampling algorithm
outlined above, we can either focus on estimation and present the marginal posterior dis-
tribution for the parameter of interest θ , orwe can conduct a Bayes factorhypothesis test and
compare the predictive performance of a point-null hypothesisH0 (in which the parame-
ter of interest is fixed at a predefined value θ0) against that of an alternative hypothesisH1
(in which θ is free to vary; [27,29,38]). The Bayes factor can be interpreted as a predictive
updating factor, that is, degree to which the observed data drive a change from prior to
posterior odds for the hypothesis of interest:

p(H1)

p(H0)︸ ︷︷ ︸
Prior odds

× p(data | H1)

p(data | H0)︸ ︷︷ ︸
Bayes factor10

= p(H1 | data)
p(H0 | data)︸ ︷︷ ︸
Posterior odds

(5)

For instance, a Bayes factor BF10 = 7 implies that the data are seven times more likely
under H1 then under H0, whereas BF10 = 1/9 indicates that the data are 9 times more
likely under the null than under the alternative.

For nested models, the Bayes factor be easily obtained using the Savage-Dickey den-
sity ratio [11,61], that is, the ratio of the posterior and prior ordinate for the parameter of
interest θ , underH1, evaluated at the point of testing θ0 specified underH0:

BF10 = p(θ0 | H0)

p(θ0 | data,H1)
. (6)
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3. Case 1: Wilcoxon rank sum test

3.1. Background

The ordinal counterpart to the two-sample t-test is known as the Wilcoxon rank sum test
(or as the Mann-Whitney-Wilcoxon U test). It was introduced by [64] and further devel-
oped by [40], who worked out the statistical properties of the test. Let x = (x1, . . . , xn1)
and y = (y1, . . . , yn2) be two data vectors that contain measurements of n1 and n2 units,
respectively. The aggregated ranks rx, ry (i.e. the ranking of x and y together) are defined
as:

rxi = rank of xi among (x1, . . . , xn1 , y1 · · · yn2),
ryi = rank of yi among (x1, . . . , xn1 , y1 · · · yn2).

The test statistic U is then given by summing over either rx or ry, and subtracting
nx(nx + 1)/2 or ny(ny + 1)/2, respectively. In order to test for a difference between the
two groups, the observed value of U can be compared to the value of U that corresponds
to no difference. This point of testing is defined as n1n2/2.

To illustrate the procedure, consider the following hypothetical example. In the movie
review section of a newspaper, three action movies and three comedy movies are each
assigned a star rating between 0 and 5. Let X = (4, 3, 1) be the star ratings for the action
movies, and let Y = (2, 3, 5) be the star ratings for the comedy movies. The correspond-
ing aggregated ranks are Rx = (5, 3.5, 1) and Ry = (2, 3.5, 6). The test statistic U is then
obtained by summing over either Rx or Ry, and subtracting 3(3+1)

2 = 6, yielding 3.5 or 5.5,
respectively. Either of these values can then be compared to the null point which is equal
to n1n2/2 = 4.5.

The range of U depends on the sample sizes and to avoid this dependence, we con-
sider the rank-biserial correlation, which is a standardized effect size of U instead. The
rank-biserial correlation, denoted ρrb, is the correlation coefficient used as a measure
of association between a nominal dichotomous variable and an ordinal variable. The
transformation is as follows:

ρrb = 1 − 2U
n1n2

. (7)

When ρrb = 1 we now know that U is at its maximum. The rank-biserial correlation can
also be expressed as the difference between the proportion of data pairs where xi > yj
versus xi < yj [10,30]:

ρrb =
∑n1

i=1
∑n2

j=1 Q(xi − yj)

n1n2
, (8)

where Q(di) is the sign indicator function defined as

Q(di) =
{

−1 ifdi < 0
+1 ifdi > 0

. (9)

This provides an intuitive interpretation of the test procedure: each data point in x is com-
pared to each data point in y and scored −1 or 1 if it is lower or higher, respectively. In
the movie ratings data example, there are three pairs for which xi > yj, five pairs for which
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xi < yj, and one pair for which xi = yj, yielding an observed rank-biserial correlation coef-
ficient of 3−5

9 = −0.22, which is an indication that comedy movies receive slightly more
positive reviews.

One argument to favor the Wilcoxon rank sum test over its parametric counterpart is
provided by Pitman’s asymptotic relative efficiency (ARE); that is, the ratio of the number
of observations necessary to achieve the same level of power [33].1 If ARE > 1 then we
require fewer samples for U than for its parametric counterpart [58].

When the data are normally distributed as assumed under the parametric setting, then
the rank sum test performs slightly poorer to the parametric two-sample t-test as ARE of
3/π ≈ 0.955 [21,32]. Thus, even when the distributional assumption of the t-test holds,
the loss of the rank sum test in terms of sample sizes is about 4.5%. The ARE increases
as the data distribution grows more heavy-tailed, with a maximum value of infinity. In
addition, results for other distributions include the logistic distribution (ARE = π2/9 ≈
1.097), the Laplace distribution (ARE = 1.5), and the exponential distribution (ARE = 3).
Hence, relatively little is lost when using the Wilcoxon rank sum tests as compared to the
parametric two-sample t-test when the parametric assumptions are met, but a lot is gained
when the assumptions are violated.

3.2. Sampling algorithm

For the Bayesian counterpart of the Wilcoxon rank sum test, we use the latent normal
framework as elaborated on above. Specifically, the Bayesian data augmentation algorithm
for the rank sum test follows the graphicalmodel outlined in Figure 1. The ordinal informa-
tion contained in the aggregated ranking constrains the corresponding values for the latent
normal parameters Zx and Zy to lie within certain intervals (i.e. the ordinal information
imposes truncation). The parameter of interest here is the effect size δ, the difference in
location of the distributions for Zx and Zy. We follow [28] and assign δ a Cauchy prior
with scale parameter γ . For computational simplicity, this prior is implemented as a nor-
mal distribution with an inverse gamma prior on the variance, where the shape parameter
is set to 0.5 and the scale parameter is set to γ 2/2 [34,52]. The difference with earlier work
is that we set the latent normal variances σ to 1, as the rank data contain no information
about the variance and the inclusion of σ in the sampling algorithm becomes redundant.

In order to sample from the posterior distributions of δ, Zx and Zy, we used Gibbs sam-
pling [17]. Specifically, the sampling algorithm takes the aggregated ranks rx, ry as input
and iteratively generates the latent δ, Zx, and Zy as follows, at sampling time point s:

(1) For each i in (1, . . . , nx), sample Zx
i from a truncated normal distribution, where the

lower threshold is axi given in (3) and the upper threshold is bxi given in (4):

(Zx
i | zxi′ , z

y
i , δ) ∼ N(axi ,b

x
i )

(− 1
2δ, 1

)
,

where the subscripts ofN indicate the interval that is sampled from.
(2) For each i in (1, . . . , ny), the sampling procedure for Zy

i is analogous to step 1, with

(Zy
i | zyi′ , zxi , δ) ∼ N(

ayi ,b
y
i

) ( 1
2δ, 1

)
.
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Figure 1. The graphical model underlying the Bayesian rank sum test. The latent, continuous scores
are denoted by Zxi and Zyi , and their manifest rank values are denoted by xi and yj . The latent scores
are assumed to follow a normal distribution governed by the parameter δ. This parameter is assigned
a Cauchy prior distribution, which for computational convenience is reparameterized to a normal
distribution with variance g (which is then assigned an inverse gamma distribution).

(3) Sample δ from

(δ | zx, zy, g) ∼ N (μδ , σδ),

where

μδ = 2g(nyzy − nxzx)
g(nx + ny) + 4

σ 2
δ = 4g

g(nx + ny) + 4
.

(4) Sample g from

(G | δ) ∼ Inverse Gamma
(
1,

δ2 + γ 2

2

)
,

where γ determines the scale (i.e. width) of the Cauchy prior on δ.

Repeating the algorithm a sufficient number of times yields samples from the posterior
distributions of Zx,Zy, and δ. The posterior distribution of δ can then be used to obtain a
Bayes factor through the Savage-Dickey density ratio given in (6).

3.3. Simulation study

In order to provide insight into the behavior of the inferential framework, a simulation
study was performed. For three values of difference in location parameters, � (0, 0.5, 1.5),
and three values of n (10, 20, 50), 1000 data sets were generated under various distributions:
skew-normal, Cauchy, logistic, and uniform distributions. In one scenario, both groups
have the same distributional shape (e.g. both follow a logistic distribution), and in a sec-
ond scenario, one group follows the normal distribution and one group follows one of the
aforementioned distributions.

First, the relationship between the observed rank statisticU and the latent normal Bayes
factor was analyzed. Figure 2 illustrates this relationship, fitted with a cubic smoothing
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Figure 2. The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for logistic data. Because U is dependent on n, the rank biserial correlation coeffi-
cient is plotted on the x-axis instead of U. The relationship is clearly defined, and maximum evidence in
favor ofH0 is attained when ρrb = 0. The further ρrb deviates from 0, the stronger the evidence in favor
ofH1 becomes. The lines depict smoothing splines fitted to the observed Bayes factors.

spline [6], for two logistic distributions (α = 20). To show results for multiple values of n
in one figure, the rank biserial correlation coefficient ρrb is plotted instead ofU. The figure
shows a clear relationship: whenρrb = 0, thus,U corresponds to the test value n1n2/2, then
the evidence in favor ofH0 is at its maximum as one would expect. Similarly, when |U| is
maximal, that is, |ρrb| = 1, one has the most evidence against the null, which is apparent
from the curves getting closer to 0. This relationship grows more decisive as n increases:
both the peak at ρrb = 0 and the decay at |ρrb| = 1 are more prominent as n grows. The
results are highly similar for the other distributions that were considered (see the online
supplementary material at https://osf.io/gny35/ for the results of these scenarios). Since
both statistics, ρrb and BF01, depend solely on the ordinal information in the data, the
observed relationship is not surprising. This result highlights and illustrates the robustness
of the latent normal Bayes factor to violations of the assumptions of the parametric test: it
illustrates the same robustness as the traditionalW test statistic.

Second, the relationship between the latent normal Bayes factor and the parametric
Bayes factor [52] was analyzed. For both the parametric and rank-based Bayes factor, a
default Cauchy prior with scale 1/

√
2 is used. Figure 3 illustrates this relationship for all

values of n and � that were used, again in the scenario with two logistic distributions.
Generally, the two Bayes factors are in agreement. In cases where � deviates from 0, the
parametric Bayes factor becomesmore decisive (i.e. deviates from1) compared to the latent
normal Bayes factor. For distributions of data that violate the assumptions of the paramet-
ric test, such as the Cauchy distribution, the relationship between the two Bayes factors is
notably less defined. In this case, the results of the rank-basedBayes factor aremore reliable,
which is expected based on the ARE results as the Cauchy is a heavy-tailed distribution.
The parametric test greatly overestimates the variance and is no longer able to detect differ-
ences in location parameters (see the supplementary material), whereas the latent normal

https://osf.io/gny35/
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Figure 3. For all combinations of difference in location parameters�, and n, the relationship between
the latent normal Bayes factor and the parametric Bayes factor is shown for logistic data. The black lines
indicate the point of equivalence. The two Bayes factors are generally in agreement, as suggested by the
ARE results in [58].

Bayes factor is unaffected by this. Note that the difference in performance is due to the
use of the latent normal framework and not due to the prior, as both the parametric and
rank-based Bayes factor use the same Cauchy prior.

3.4. Data example

Cortez and Silva [9] gathered data from 395 students concerning their math performance
(scored between 1 and 20) and their level of alcohol intake (self-rated on a Likert scale
between 1 and 5). Students passed the course if they scored ≥ 10, and we will test whether
students who failed the course (n1 = 130) had a higher self-reported alcohol intake than
their peers who passed (n2 = 265).

As alcohol intake was measured on a Likert scale, the data contain many ties and
show extreme non-normality. These properties make this data set particularly suitable for
the latent-normal rank sum test. The hypotheses are H0 : δ = 0 which is pitted against
H1 : δ �= 0. For the rank-based Bayes factor we use the prior Cauchy prior with scale 1/

√
2,

that is, δ ∼ Cauchy
(
0, 1√

2

)
. The null hypothesis posits that alcohol intake does not differ
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Figure 4. Do students who flunk a math course report drinking more alcohol? Results for the Bayesian
rank sum test as applied to the data set from [9]. The dashed line indicates the Cauchy prior with scale
1√
2
. The solid line indicates the posterior distribution. The two grey dots indicate the prior and posterior

ordinate at the point under test, in this case δ = 0. The ratio of the ordinates gives the Bayes factor.

between the students who passed the course and those who failed. The alternative hypoth-
esis posits the presence of an effect and assigns effect size a Cauchy distribution with scale
parameter set to 1√

2
, as advocated by [43]. Figure 4 shows the resulting posterior distri-

bution for δ underH1 and the associated Bayes factor. The posterior median for δ equals
−0.121, with a 95% credible interval that ranges from −0.373 to 0.120. The correspond-
ing Bayes factor indicates that the data are about 4.694 times more likely under H0 than
underH1, indicating moderate evidence against the hypothesis that self-reported alcohol
intake differentiates between students who did and who did not pass the math exam. As a
reference, the parametric t-test yields a Bayes factor of 7.138 in favor ofH1, which is less
conservative. However, due to the violated assumptions of the parametric t-test model, this
result is meaningless.

4. Case 2: Wilcoxon signed rank test

4.1. Background

The rank-based counterpart to the paired samples t-test was proposed by [64], who termed
it the signed rank test. The test procedure involves taking the difference scores between
the two samples under consideration and ranking the absolute values. The procedure may
also be applied to one-sample scenarios by ranking the differences between the observed
sample and the point of testing. These ranks are thenmultiplied by the sign of the respective
difference scores and summed to produce the test statisticW. For the paired samples signed
rank test, let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two data vectors each containing
measurements of the same n units, and let d = (d1, . . . , dn) denote the difference scores.
For the one-sample signed rank test, this process is analogous, except y is replaced by the
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Table 1. The scores, difference scores, ranks of the absolute difference scores, and the sign indicator
function Q for the hypothetical scenario where X = (5, 8, 4) are the initial scores on a math exam and
Y = (6, 7, 7) are the scores on the exam after a tutoring session.

i (yi − xi) di rank(|di|) Q(di)

1 6−5 1 1.5 1
2 7−8 −1 1.5 −1
3 7−4 3 3 1

test value. The test statistic is then defined as:

W =
n∑
1

[rank(|di|) × Q(di)] ,

where Q is the sign indicator function given in (9).
To illustrate the procedure, consider the following hypothetical data example. Three

students take a math exam, graded between 0 and 10, before and after receiving a tutoring
session. LetX = (5, 8, 4) be their scores on the exambefore the session, and letY = (6, 7, 7)
be their scores on the exam after the session. The difference scores, the ranks of the absolute
difference scores, and the sign indicator function are presented in Table 1. In order to have
a positive test statistic indicate an increase in scores, the difference scores are defined here
as (yi − xi). The test statistic W is then calculated by summing over the product of the
fourth and fifth column: 1.5−1.5+ 3 = 3. This value indicates a slight increase in math
scores after the tutoring session.

An often used standardized effect size forW is the matched-pairs rank-biserial correla-
tion, denoted ρmrb, which is the correlation coefficient used as a within subjects measure of
association between a nominal dichotomous variable and an ordinal variable [10,30]. The
transformation is as follows:

ρmrb = 1 − 4W
n(n + 1)

. (10)

The matched-pairs rank-biserial correlation can also be expressed as the difference
between the proportion of data pairs where xi > yi versus xi < yi. For the grades example,
there is one pair forwhich xi > yi, and twopairs forwhich xi < yi, yielding amatched-pairs
rank-biserial correlation coefficient of 2−1

3 = 2
3 , which is an indication that the tutoring

session has increased students’ math ability.
The signed rank test is similar to the sign test, where the procedure is to sum over the

sign indicator function. The difference here is that the output of the sign indicator function
is weighted by the rankedmagnitude of the absolute differences. The signed rank test has a
higher ARE than the sign test: a relative efficiency of 32 for all distributions [8]. For the one-
sample scenario, the Pitman ARE of the signed rank test (compared to the fully parametric
t-test) is similar to the ARE of the rank sum test for the unpaired two-sample scenario;
for example, when the data follow a normal distribution the ARE equals 3/π . For other
distributions, especially when these are heavy-tailed, the signed rank test outperforms the
t-test [33,58].
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4.2. Sampling algorithm

The data augmentation algorithm is similar to that of the rank sum test and is outlined
in Figure 5. Here d denotes the difference scores as ordinal manifestations of latent, nor-
mally distributed values Zd. The parameter of interest is again the standardized location
parameter δ, which is assigned a Cauchy prior distribution with scale parameter γ . Simi-
lar to the rank sum sampling procedure, the variance of Zd is set to 1, as the ranked data
contain no information about the variance. The computational complexity of sampling
from the posterior distribution of δ is again reduced by introducing the parameter g. The
Gibbs algorithm for the data augmentation and sampling δ is as follows, at sampling time
point s:

(1) For each value of i in (1, . . . , n), sample Zd
i from a truncated normal distribution,

where the lower threshold is adi given in (3) and the upper threshold is b
d
i given in (4):

(Zd
i | zdi′ , δ) ∼ N(

adi ,b
d
i

) (δ, 1)

(2) Sample δ from

(δ | zd, g) ∼ N (
μδ , σ 2

δ

)
,

where

μδ = gnzd

gn + 1

σ 2
δ = g

gn + 1

(3) Sample g from

(g | δ) ∼ InverseGamma
(
1,

δ2 + γ 2

2

)
,

where γ determines the scale (i.e. width) of the Cauchy prior on δ.

Repeating the algorithm a sufficient number of times yields samples from the posterior
distributions of Zd and δ. The posterior distribution of δ can then be used to obtain a Bayes
factor through the Savage-Dickey density ratio given in (6).

4.3. Simulation study

Similar to the Wilcoxon rank sum test, a simulation study was performed to illustrate the
behavior of the Bayesian signed rank test. For three values of difference in location param-
eters,� (0, 0.5, 1.5), and three values of n (10, 20, 50), 1000 data sets were generated under
various distributions: skew-normal, Cauchy, logistic, and uniform distributions. In one
scenario, both groups have the same distributional shape, and in a second scenario, one
group follows the normal distribution and one group follows one of the aforementioned
distributions. After the data were generated, the difference scores between the two groups
were calculated, and used as input for the Bayesian latent normal test.
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Figure 5. The graphical model underlying the Bayesian signed rank test. The latent, continuous dif-
ference scores are denoted by Zdi , and their manifest signed rank values are denoted by di . The latent
scores are assumed to follow a normal distribution governed by parameter δ. This parameter is assigned
a Cauchy prior distribution, which for computational convenience is reparameterized to a normal
distribution with variance g (which is then assigned an inverse gamma distribution).

Figure 6. The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for logistic data. BecauseW is dependent on n, thematched-pairs rank-biserial cor-
relation coefficient is plotted on the x-axis instead ofW. The relationship is clearly defined, andmaximum
evidence in favor ofH0 is attained when ρmrb = 0. The further ρmrb deviates from 0, the stronger the
evidence in favor ofH1 becomes. The lines are smoothing splines fitted to the observed Bayes factors.

The same analyses were performed as for the Wilcoxon rank sum test. First, the rela-
tionship between the observed rank statistic W and the latent normal Bayes Factor was
analyzed. Figure 6 illustrates this relationship, fitted with a cubic smoothing spline [6],
when the difference scores were taken for two logistic distributions. To show results for
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Figure 7. For all combinations of difference in location parameters�, and n, the relationship between
the latent normal Bayes factor and the parametric Bayes factor is shown for logistic data. The black lines
indicate the point of equivalence. The two Bayes factors are generally in agreement, with the latent
normal Bayes factor accumulating evidence in favor of the true model faster.

multiple values of n in one figure, the matched-pairs rank-biserial correlation coeffi-
cient ρmrb is plotted instead of W. The Bayes factor shows a clear relationship with the
rank-based test statistic, where the maximum evidence in favor of H0 is obtained when
this statistic equals 0. Furthermore, the obtained Bayes factor grows more decisive as n
increases. For other distributions of the data, highly similar results were obtained (see the
online supplementary material at https://osf.io/gny35/ for the results of these scenarios).

Next to the relationship betweenW and the latent normal Bayes factor, the relationship
between the latent normal Bayes factor and the parametric Bayes factor [52] was ana-
lyzed. Figure 7 illustrates the results for all combinations of n and the difference in location
parameters,�. Note that differences in performance are due to the use of the latent normal
framework and not due to the prior specification, as both the parametric and rank-based
Bayes factor were based on the same Cauchy prior with scale 1/

√
2. The two Bayes fac-

tors are generally in agreement, with the parametric Bayes factor accumulating evidence in
favor ofH1 faster when this is the truemodel. The latent normal Bayes factor demonstrates
more instability, due to only using the ordinal information in the data. For distributions of

https://osf.io/gny35/
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the data that violate the assumptions of the parametric test, such as the Cauchy distribu-
tion, the parametric test greatly overestimates the variance and is no longer able to detect
differences in location parameters (see the supplementary material). This misspecification
does not affect the latent normal Bayes factor, underscoring its robustness.

4.4. Data example

Thall and Vail [57] investigated a data set obtained by D. S. Salsburg concerning the effects
of the drug progabide on the occurrence of epileptic seizures. During an initial eight week
baseline period, the number of epileptic seizures was recorded in a sample of 31 epileptics.
Next, the patients were given progabide, and the number of epileptic seizures was recorded
for another eight weeks. In order to accommodate the discreteness and non-normality of
the data, Thall and Vail [57] applied a log-transformation on the counts.

This log-transformation has a clear impact on the outcome of a parametric Bayesian
t-test [43]: BF10 ≈ 0.2 for the raw data, whereas BF10 ≈ 2.95 for the log-transformed data.
Here we analyze the data with the signed rank test; because this test is invariant under
monotonic transformations, the same inference will result regardless of whether or not the
data are log-transformed.

The hypothesis specification here is similar to that of the setup of the rank sum
example: H0 : δ = 0 which is pitted against H1 : δ �= 0 and prior 1/

√
2, that is, δ ∼

Cauchy
(
0, 1√

2

)
. Figure 8 shows the resulting posterior distribution for δ under H1 and

the associated Bayes factor. The posterior median for δ equals 0.207, with a 95% credible
interval that ranges from −0.138 to 0.549. The corresponding Bayes factor indicates that
the data are about 2.513 times more likely under H0 than under H1, indicating that, for
the purpose of discriminatingH0 fromH1, the data are almost perfectly uninformative.

5. Case 3: Spearman’s ρs

5.1. Background

Spearman [55] introduced the rank correlation coefficient ρ in order to overcome the
main shortcoming of Pearson’s product moment correlation, namely its inability to capture
monotonic but non-linear associations between variables. Spearman’s method first applies
the rank transformation on the data and then computes the product-moment correlation
on the ranks. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two data vectors each containing
measurements of the same n units, and let rx = (rx1, . . . , r

x
n) and ry = (ry1, . . . , r

y
n) denote

their rank-transformed values, where each value is assigned a ranking within its variable.
This then leads to the following formula for Spearman’s ρs:

ρs = Covrxry
σrxσry

.

The Pitman ARE of Spearman’s ρ compared to parametric Pearson’s ρ displays a similar
pattern to theARE’s discussed before.When the data follow a bivariate normal distribution,
the ARE equals 9/π2 [25]. Thus, under optimal conditions for the parametric test, it is
marginally more efficienct compared to Spearman’s ρ. As the data depart from normality,
the rank-based test outperforms its parametric counterpart.
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Figure 8. Does progabide reduce the frequency of epileptic seizures? Results for the Bayesian signed
rank test as applied to the data set presented in [57]. The dashed line indicates the Cauchy prior with
scale 1√

2
. The solid line indicates the posterior distribution. The two grey dots indicate the prior and

posterior ordinate at the point under test, in this case δ = 0. The ratio of the ordinates gives the Bayes
factor.

Figure 9. The graphical model underlying the Bayesian test for Spearman’s ρs. The latent, continuous
scores are denotedbyZxi andZ

y
i , and theirmanifest rank values are denotedby rxi and r

y
j . The latent scores

are assumed to follow a normal distribution governed by parameter ρ (which is assigned a uniform prior
distribution).

5.2. Sampling algorithm

The graphical model in Figure 9 illustrates the data augmentation setup for inference on
the latent correlation parameter ρ. The sampling method is a Metropolis-within-Gibbs
algorithm, where data augmentation is conducted with a Gibbs sampling algorithm as
before, but combinedwith a randomwalkMetropolis-Hastings sampling algorithm [20,42]
to sample from the posterior distribution of ρ (see also [59]).

The sampling algorithm for the latent correlation is as follows, at sampling time
point s:
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(1) For each i in (1, . . . , nx), sample Zx
i from a truncated normal distribution, where the

lower threshold is axi given in (3) and the upper threshold is bxi given in (4):

(Zx
i | zxi′ , z

y
i , ρzx ,zy) ∼ N(axi ,b

x
i )

(
zyi ρzx ,zy ,

√
1 − ρ2

zx ,zy

)

(2) For each i in (1, . . . , ny), the sampling procedure for Zy
i is analogous to step 1.

(3) Sample a new proposal for ρzx ,zy , denoted ρ∗, from the asymptotic normal approxi-
mation to the sampling distribution of Fisher’s z-transform of ρ [14]:

tanh−1(ρ∗) ∼ N
(
tanh−1(ρs−1),

1√
(n − 3)

)
.

The acceptance rate α is determined by the likelihood ratio of (zx, zy | ρ∗) and (zx, zy |
ρs−1), where each likelihood is determined by the centered bivariate normal density
with unit variances, and correlation ρ:

α = min
(
1,

P(zx, zy | ρ∗)
P(zx, zy | ρs−1)

)
.

Repeating the algorithm a sufficient number of times yields samples from the posterior
distributions of zx, zy, and ρzx ,zy .

5.3. Transforming parameters

The transition from Pearson’s ρ to Spearman’s ρs can be made using a statistical relation
described in [31]. This relation, defined as

ρs = 6
π
sin−1

(ρ

2

)
.

enables the transformation of Pearson’s ρ to Spearman’s ρs when the data follow a bivari-
ate normal distribution. Since the latent data are assumed to be normally distributed, this
means that the posterior samples for Pearson’s ρ can be easily transformed to posterior
samples for Spearman’s ρs. The posterior distribution of ρs can then be used to obtain a
Bayes factor through the Savage-Dickey density ratio given in (6).

5.4. Simulation study

Similar to the previous tests, the behavior of the latent normal correlation test was assessed
with a simulation study. For four values of Spearman’s ρs (0, 0.3, 0.8) and three values of
n (10, 20, 50), 1000 data sets were generated under four copula models: Clayton, Gum-
bel, Frank, and Gaussian [7,18,45,54]. Using Sklar’s theorem, copula models decompose a
joint distribution into univariate marginal distributions and a dependence structure (i.e.
the copula). This decomposition enables the generation of data for specific values of Spear-
man’s ρs. Furthermore, the copula is independent of the marginal distributions of the data
and can therefore encompass a wide range of distributions.

Similar to the previous tests, the relationship between the latent normal Bayes factor
and the observed rank-based statistic was analyzed. Figure 10 illustrates this relationship,
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Figure 10. The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for data generated with the Clayton copula. The relationship is clearly defined, and
maximum evidence in favor ofH0 is attained when Spearman’s ρs = 0. The further Spearman’s ρs devi-
ates from 0, the stronger the evidence in favor ofH1 becomes. The lines are smoothing splines fitted to
the observed Bayes factors.

fitted with a cubic smoothing spline [6], for various values of n, for data generated with the
Clayton copula. The relationship is similar to those shown for the previous tests: maximum
evidence in favor ofH0 is attained when the observed Spearman’s ρs equals 0. The further
the observed test statistic deviates from 0, the more evidence is accumulated in favor of
H1. Furthermore, the obtained Bayes factor grows more decisive as n increases. Highly
similar results were obtained for the other copulas that were considered (see the online
supplementary material at https://osf.io/gny35/ for the results of these scenarios).

Secondly, the relationship between the latent normal Bayes factor and the parametric
Bayes factor [37] for testing correlations was analyzed. For both Bayes factors, a uniform
prior between −1 and 1 was used, such that differences in performance are due to the use
of the latent normal framework and not due to the prior. Figure 11 shows the results for all
combinations of n and ρ that were used, for the Clayton copula. The two Bayes factors are
generally in agreement. An important remark here is that the marginal distributions of the
data are not taken into account. The data generated with the copula method are located on
the unit square, and if so desired, can then be transformed with the inverse cdf to follow
any desired distribution. These transformations are monotonic, and therefore do not affect
the rank-based Bayes factor, whereas the parametric Bayes factor can be heavily affected
by this. This underscores an important property of the rank-based Bayes factor: it solely
depends on the copula (i.e. the only component of the data that pertains to the dependence
structure), and not on the marginal distribution of the data.

5.5. Data example

We return to the data set from [9] and examine the possibility that math grades (ranging
from 0 to 20) are associated with the quality of family relations (self-reported on a Likert

https://osf.io/gny35/
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Figure 11. For all combinations of Spearman’s ρs and n, the relationship between the latent normal
Bayes factor and the parametric Bayes factor is shown for data generated with the Clayton copula. The
black lines indicate the point of equivalence. The two Bayes factors are generally in agreement.

Figure 12. Is performance on a math exam associated with the quality of family relations? Results for
the Bayesian version of Spearman’s ρs as applied to the data set from [9]. The dashed line indicates the
uniform prior distribution, and the solid line indicates the posterior distribution. The two grey dots indi-
cate the prior and posterior ordinate at the point under test, in this case ρ = 0. The ratio of the ordinates
gives the Bayes factor.
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scale that ranges from 1−5). The hypotheses are H0 : ρ = 0 which is pitted against H1 :
ρ �= 0. For the Bayes factor we use the uniform prior, that is, ρ ∼ Uniform[−1, 1]. Thus,
the null hypothesis specifies the lack of an association between the two variables and the
alternative hypothesis assigns the degree of association a uniform prior distribution (e.g.
[28]). The parametric correlation test [37] yields a Bayes factor of 9.467, but since the data
are ordinal measures and not normally distributed, the parametric correlation model is
severely misspecified. Thus, conducting the rank-based analysis is more applicable and
prudent here.

Figure 12 shows the resulting posterior distribution for ρs underH1 and the associated
Bayes factor. The posterior median for ρs equals 0.059, with a 95% credible interval that
ranges from −0.052 to 0.161. The corresponding Bayes factor indicates that the data are
about 7.915 times more likely under H0 than under H1, indicating moderate evidence
against an association between math performance and the quality of family ties.

6. Concluding comments

This article outlined a general methodology for applying conventional Bayesian inference
procedures to ordinal data problems. Latent normal distributions are assumed to generate
impoverished rank-based observations, and inference is done on the model parameters
that govern the latent normal level. This idea, first proposed by [48], yields all the advan-
tages of ordinal inference including robustness to outliers and invariance to monotonic
transformations. Moreover, the methodology also handles ties in a natural fashion, which
is important for coarse data such as provided by popular Likert scales. Furthermore, the
robustness of the latent normalmethod is underscored by the simulation studies performed
for each test. These results illustrate that the method provides accurate inference, even if
the data are not normally distributed.

By postulating a latent normal level for the observed rank data, the advantages of ordinal
inference can be combined with the advantages of Bayesian inference such as the ability
to update uncertainty as the data accumulate, the ability to quantify evidence in favor of
either hypothesis being tested, and the ability to incorporate prior information. It should
be stressed that, even though our examples used default prior distributions, the proposed
methodology is entirely general in the sense that it also applies to informed or subjective
prior distributions [19].

For computational convenience and ease of interpretation, our framework used latent
normal distributions. This is not a principled limitation, however, and the methodology
would work for other families of latent distributions as well (e.g. [2]).

In sum, we have presented a general methodology to conduct Bayesian inference
for ordinal problems, and illustrated its potential by developing Bayesian counterparts
to three popular ordinal tests: the rank sum test, the signed rank test, and Spearman’s
ρs. Supplementary material, including simulation study results, R-code for each method
and the example data used, is available at https:https://osf.io/gny35/. In the near future
we intend to make these tests available in the open-source software package JASP (e.g.
[26]; jasp-stats.org), which we hope will further increase the possibility that the tests
are used to analyze ordinal data sets for which the traditional parametric approach is
questionable.

https:https://osf.io/gny35/
http://jasp-stats.org


3004 J. VAN DOORN ET AL.

Note

1. More precisely, let θ be a true parameter value and α,β ∈ (0, 1) fixed, then we denote by
NT(α,β , θ) the number of samples necessary for a generic test statistic T at level α to reach the
desired power of 1 − β under θ computed using the asymptotical variance of the test statis-
tic. The ARE of the parametric test over the Mann-Whitney-Wilcoxon U test is defined as
ARE = Npar(α,β , θ)/NU(α,β , θ).
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