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Objective: This study aimed to identify the risk factors and construct a reliable prediction model of 28-day all-cause mortality in 
critically ill patients with acute pancreatitis (AP) using machine learning techniques.
Methods: A total of 534 patients from three different institutions were included. Thirty-eight possible variables were collected from 
the Intensive care unit (ICU) admission for investigation. Patients were split into a training cohort (n = 400) and test cohort (n = 134) 
according to their source of hospital. The synthetic minority oversampling technique (SMOTE) was introduced to handle the inherent 
class imbalance. Six machine learning algorithms were applied in this study. The optimal machine learning model was chosen after 
patients in the test cohort were selected to validate the models. SHapley Additive exPlanation (SHAP) analysis was performed to rank 
the importance of variable. The predictive performance of the models was evaluated by the calibration curve, area under the receiver 
operating characteristics curves (AUROC), and decision clinical analysis.
Results: About 13.5% (72/534) of all patients eventually died of all-cause within 28 days of ICU admission. Eight important variables 
were screened out, including white blood cell count, platelets, body temperature, age, blood urea nitrogen, red blood cell distribution 
width, SpO2, and hemoglobin. The support vector machine (SVM) algorithm performed best in predicting 28-d all-cause death. Its 
AUROC reached 0.877 (95% CI: 0.809 to 0.927, p < 0.001), the Youden index was 0.634 (95% CI: 0.459 to 0.717). Based on the risk 
stratification system, the difference between the high-risk and low-risk groups was significantly different.
Conclusion: In conclusion, this study developed and validated SVM model, which better predicted 28-d all-cause mortality in 
critically ill patients with AP. In the future, we will continue to include patients from more institutions to conduct validation in 
different contexts and countries.
Keywords: all-cause mortality, machine learning, acute pancreatitis, prognosis, predict

Introduction
As one of the most common causes of gastrointestinal hospitalization, acute pancreatitis (AP) is a disease with a localized 
inflammatory state of the pancreas or a systemic inflammatory response mainly due to pancreatin overactivation.1 In 
developed countries, previous studies have shown that the incidence of AP is gradually increasing nowadays.2,3 The 
assessment of the severity of AP is usually based on the revised Atlanta classification and can be divided into three 
levels.4,5 Patients with mild AP progress slowly and have a relatively short clinical duration. However, approximately 20% of 
patients with mild AP may spontaneously progress to severe AP, which is often accompanied by systemic inflammatory 
response syndrome, infection, and persistent organ failure (including respiratory, cardiovascular, and renal systems) with an 
overall mortality rate of 20–40%.6 Moreover, previous study has reported that mortality rates were significantly higher 
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among critically ill patients with AP.7 The mortality in critically ill patients with AP can be reduced through early detection 
and tailored precision treatment. Evidence from previous research indicates that implementing precision treatment within 48 
hours of admission can markedly reduce the mortality rate in critically ill patients with AP cases.8 Therefore, it is essential for 
clinicians to assess the severity of AP disease earlier and to intervene in a timely manner to reduce patient mortality.

Machine learning (ML), a field of artificial intelligence, has been introduced to the development of precision medicine 
and has derived several tools to accurately predict outcomes and solve classification problems.9–11 ML can use a variety 
of algorithms to make predictions and incorporate a large number of previously unnoticed variables to improve 
predictions.12,13 In addition, ML-based models have often been rigorously validated against traditional statistical 
methods.14 Several studies have evaluated the use of ML as a predictive tool in conditions such as critical illness, 
chronic coronary disease and inflammatory bowel disease.15–18

Due to the complexity of ML models, many explanatory methods have been applied to help users better understand 
the results of ML models, including SHapley Additive exPlanation (SHAP) analysis.19 At present, the SHAP analysis is 
widely used in the medical field,20,21 and has also been applied as an interpretation approach for ML models.22,23

However, there are few studies that employ ML algorithms to predict mortality in critically ill patients with AP. 
Therefore, we collected relevant data on hospitalizations of patients with AP from different institutions. Then, the 
synthetic minority oversampling technique (SMOTE) algorithm was employed to construct the ML models. Our study 
aimed to develop various ML models based on relevant biological and clinical risk factors to predict 28-day-mortality in 
critically ill patients with AP, thus providing some help for clinical decision-making.

Methods
Selection of Participants
Patients diagnosed with AP in the ICU were included in this study. These individuals were admitted to three institutions: 
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Hospital of Integrated Traditional Chinese and 
Western Medicine, and Xiamen Second Hospital, between July 2016 and October 2023. The study was conducted in 
accordance with the Declaration of Helsinki and received the necessary approval from the Institutional Review Board 
(IRB)/Ethics Committee of each hospital. As the data used for this research were anonymized, removing all personal 
identifiers, the requirement for written informed consent was waived. Exclusion criteria were as follows: (1) patients 
aged less than 18 years at the time of first admission; (2) patients with severe diseases such as end-stage renal disease, 
cirrhosis, or cancer; (3) patients with ICU length of stay <24 hours. In total, 534 patients were included in this study.

Data Collection
Based on the literature search and review, 38 potential risk confounders were identified and extracted from the medical 
records. The extraction of potential variables could be divided into six main groups: (1) demographics, such as age, sex, 
BMI. (2) Admission vital signs, including heart rate, mean arterial pressure (MBP), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), respiratory rate (RR). (3) Comorbidities, including hypertension, decompensated heart 
failure, obesity (BMI > 30kg/m2), diabetes, chronic obstructive pulmonary disease. (4) Laboratory indicators, including 
erythrocyte, erythrocyte distribution width (RDW), mean corpuscular volume, mean corpuscular hemoglobin concentra-
tion, mean corpuscular hemoglobin, hemoglobin, hematocrit, platelets, white blood cells, international normalized ratio 
(INR), total bilirubin, prothrombin time (PT), anion gap (AG), blood urea nitrogen (BUN), bicarbonate, serum calcium, 
serum potassium, serum chloride, serum sodium, serum creatinine, glucose. (5) Admission severity of illness scores, 
including Acute Physiology Score III (APSIII), Simplified Acute Physiology Score II (SAPS-II), Oxford Acute Severity 
of Illness Score (OASIS), and Sepsis-related Organ Failure Assessment Score (SOFA).24,25

Endpoint Events
Twenty-eight-day all-cause death after admission was the primary outcome of this study. Twenty-eight-day all-cause 
mortality was defined as the ratio of the total number of all-cause deaths during a 28-day hospital stay to the average 
population during the same period.
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Class Imbalance
There was a class imbalance in our study. The proportion of survivors is almost eight times that of non-survivors, 
resulting in a significant class imbalance. Currently, the main approaches are resampling, cost-sensitive learning and 
ensemble learning.26 SMOTE sampling is the most widely used algorithm, proposed by Chawla in 2002.27 The SMOTE 
method adds new non-existent samples by inserting them into a small number of similarly located samples. This 
approach, compared to random oversampling, can potentially mitigate the risk of overfitting. To address the issue of 
class imbalance, we employed the SMOTE method in the formation of our training cohorts.

ML-Based Modelling
To develop the ML models with several risk factors, the Least Absolute Shrinkage and Selection Operator (LASSO) 
logistic regression combined with 10-fold cross-validation was used to screen out the potential risk factors. LASSO 
regression, a penalized regression approach, could minimize the comparatively irrelevant risk factors’ coefficient to zero, 
thereby excluding those unimportant risk factors and calculating the optimal parameter λ value. Then, LASSO regression 
analysis results were employed to perform Cox regression analysis, and finally, variables of p < 0.05 were obtained. 
Selected variables were put into develop ML models. Six ML algorithms including eXtreme gradient Boosting (XGB), 
Naïve Bayes (NB), support vector machine (SVM), random forest (RF), Advanced Boosting (AdaBoost), and linear 
regression (LR) were applied to develop models using the training set.

Statistical Analysis
Continuous variables were expressed as either mean ± standard deviation (SD) or median (inter-quartile range) based 
on their distribution. Categorical variables, on the other hand, were represented as proportions. The Kolmogorov– 
Smirnov test was utilized to assess the normality of continuous variables. For the analysis of these variables, we 
applied either the t-test or the Wilcoxon rank test. Categorical variables were compared using the Chi-square test or 
Fisher’s exact test. In the case of variables with missing values, multiple interpolation was employed to generate an 
appropriate data set for filling in these gaps. The discriminative capacity of ML models was evaluated using the area 
under the receiver operating curve (AUROC), with a model deemed excellent if its AUROC value exceeded 0.80.28 

For the completeness and accuracy of the results, accuracy, precision, recall, and F1-score were also calculated. 
Hosmer-Lemeshow test was introduced to test the model’s goodness-of-fit. Optimal cut-off values were obtained by 
Youden’s index, representing the maximum sum of specificity plus sensitivity, and further evaluated for sensitivity, 
specificity, and for positive and negative predictive values. Kaplan–Meier survival curves were conducted to compare 
the difference of 28-d all-cause mortality between high- and low-risk groups. Decision curve analysis (DCA) was 
employed to compare the net benefit of ML model through the difference between the number of true-positives and 
false-positives and consider the odds of a specific threshold probability.29 Additionally, a calibration curve was utilized 
to visually represent the correlation between the predicted probability and the actual probability, facilitated by the 
calculation of the calibration slope. To visually depict the importance of features in ML models, we implemented 
SHAP analysis. This method effectively demonstrated the most influential features for the ML model predictions and 
quantified their contribution to the overall model performance for a specific prediction.30 A double-sided p < 0.05 was 
regarded as statistically significant. All statistical analysis was conducted by the R software (version 4.0.2) and its 
packages, including fastshap package (version 0.0.7), tidyverse package (version 1.3.0) and tidyquant package (version 
1.0.2) and Python (version 3.6).

Results
Baseline Characteristics
A total of 534 patients were enrolled in our study. Among these, a total of 400 patients were from institution 1 consisted of 
the training set, and 134 patients were from the other medical centers consisted of the external test set (Figure 1). Twenty- 
eight-d all-cause death occurred in 72 cases (13.5%) in the whole cohort. It included 314 (58.2%) males and 220 (41.2%) 
females. The median age of all patients was 56.5 (44.0, 72.0) years. When compared to the survival group, non-survival 
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patients were older and had lower SBP, DBP, MBP, platelet, and bicarbonate, while higher RR, SOFA, APS-III, SAPS-II, 
OASIS, RDW, WBC, INR, PT, AG, and creatinine (p < 0.001) (Table 1). The baseline data of the training set and the 
external test set are displayed in Table 2. No significant difference was observed between the two groups (p > 0.05).

Figure 1 The flowchart of patients selection.

Table 1 Baseline Characteristics in the Survivors and Non-Survivors

Variables Total  
(N=534)

28-d Survivors  
(N=462)

28-d Non-Survivors  
(N=72)

P- value

Age 56.5 (44.0, 72.0) 55 (43.0, 68.0) 72.0 (57.0, 79.5) <0.001

Gender

Male 314 (58.8) 280 (60.6) 34 (47.2) 0.032
Female 220 (41.2) 182 (39.4) 38 (52.8)

BMI 28.9 (25.3, 34.1) 29.1 (25.4, 34.1) 28.5 (24.5, 34.1) 0.752

HR (beats/min) 95.9 (81.8, 108.3) 96.0 (81.2, 108.0) 94.5 (86.7, 110.9) 0.340
SBP (mmHg) 110 (101.1, 124.0) 112.4 (101.9, 126.2) 103.9 (95.4, 113.5) <0.001

DBP (mmHg) 65.5 (57.7, 74.1) 66.1 (58.6, 74.6) 61.3 (53.6, 66.8) <0.001

MBP (mmHg) 78.6 (71.6, 88.2) 79.3 (72.1, 89.3) 74.4 (68.3, 81.3) <0.001
RR (beats/min) 20.5 (17.9, 24.2) 20.2 (17.7, 23.9) 22.8 (19.2, 25.6) <0.001

SpO2 (%) 96.4 (95.0, 97.9) 96.5 (95.1, 98.0) 95.9 (94.2, 97.3) 0.0125

SOFA 6.0 (3.0, 9.0) 5.0 (3.0, 8.0) 10.0 (6.0, 13.0) <0.001
APSIII 51.0 (37.0, 73.0) 47.0 (35.0, 66.0) 80.5 (65.0, 95.0) <0.001

SAPSII 37.0 (26.0, 49.0) 33.0 (24.0, 45.0) 55.5 (45.5, 63) <0.001

Hypertension 0.665
No 284 244 40

Yes 250 218 32

Obesity 0.123
No 467 400 67

Yes 67 62 5

HF 0.011
No 442 390 52

Yes 92 72 20

Diabetes 0.341
No 375 321 54

Yes 159 141 18

(Continued)
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Table 1 (Continued). 

Variables Total  
(N=534)

28-d Survivors  
(N=462)

28-d Non-Survivors  
(N=72)

P- value

COPD 0.029
No 509 444 65

Yes 25 18 7

RBC (m/uL) 3.3 (2.8, 3.9) 3.3 (2.8, 3.9) 3.3 (2.8, 3.8) 0.885
RDW (%) 14.9 (13.9, 16.3) 14.8 (13.8, 16.0) 16.3 (14.9, 17.8) <0.001

MCV 92.0 (88.0, 97.0) 92.0 (88.0, 97.0) 92.7 (88.5, 97.5) 0.802

MCHC 33.0 (32.0, 33.9) 33.0 (32.0, 33.9) 33.2 (32.0, 34.1) 0.375
MCH 30.4 (28.9, 32.1) 30.4 (28.9, 32.1) 30.5 (29.2, 31.5) 0.729

Hemoglobin (g/L) 10.0 (8.6, 11.6) 10.0 (8.6, 11.6) 9.6 (8.6, 11.4) 0.933

Platelet (K/uL) 218.0 (147.0, 325.0) 225.5 (150.0, 337.0) 176.5 (104.5, 255.6) <0.001
WBC (K/uL) 11.9 (7.8, 17.2) 11.5 (7.7, 16.4) 16.0 (9.1, 22.4) <0.001

INR 1.3 (1.1, 1.5) 1.3 (1.1, 1.5) 1.5 (1.2, 2.0) <0.001

PT (s) 14.3 (12.7, 16.1) 14.1 (12.7, 16.0) 16.0 (13.8, 20.7) <0.001
AG (mEq/L) 14.0 (12.0, 17.0) 14.0 (12.0, 16.0) 17.0 (14.0, 20.5) <0.001

TBIL (mg/dL) 0.9 (0.5, 2.3) 0.9 (0.5, 2.3) 1.2 (0.6, 2.7) 0.510

Bicarbonate 24.0 (21.0, 27.0) 25.0 (21.0, 27.0) 21.0 (17.5, 23.0) <0.001
Bun (mg/dL) 19.0 (11.0, 35.0) 17.0 (10.0, 28.0) 41.5 (25.0, 65.0) <0.001

Calcium (mg/dL) 8.2 (7.8, 8.7) 8.2 (7.8, 8.7) 8.2 (7.4, 8.6) 0.123

Chloride (mg/dL) 103.0 (99.0, 107.0) 103.0 (99.0, 107.0) 103.5 (98.5, 107.0) 0.903
Creatinine (mg/dL) 1.0 (0.7, 1.7) 0.9 (0.6, 1.5) 1.8 (1.2, 3.1) <0.001

Glucose (mmol/l) 124.0 (102.0, 157.0) 122.0 (102.0, 155.0) 132.5 (100.0, 163.0) 0.478
Sodium (mEq/L) 139.0 (136.0, 142.0) 139.0 (136.0, 142.0) 138.8 (135.5, 141.0) 0.487

Potassium (mEq/L) 4.0 (3.7, 4.3) 3.9 (3.6, 4.3) 4.1 (3.8, 4.7) 0.008

Hematocrit 30.4 (26.2, 34.9) 30.6 (26.2, 34.8) 29.6 (26.1, 36.2) 0.838

Abbreviations: SBP, spontaneous blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; RR, respiratory rate; SOFA, 
Sequential Organ Failure Assessment; APSIII, acute physiology score III; SAPSII, simplified acute physiological score II; HF, heart failure; COPD, 
chronic obstructive pulmonary disease; RBC, red blood cell; RDW, red cell volume distribution width; MCV, Mean Corpuscular Volume; MCHC, 
mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; WBC white blood cell; INR, international normalized ratio; 
PT, Prothrombin time; AG, anion gap; TBIL, total bilirubin; Bun, blood urea nitrogen.

Table 2 Baseline Characteristics in the Training and External Test Set Cohort

Variables Training Set (N=400) Test Set (N=134) P- value

Age 57 (44.0, 71.5) 55.0 (45.0, 72.0) 0.723

Gender
Male 236 (59.0) 78 (58.2) 0.872

Female 164 (41.0) 56 (41.8)

BMI 29.1 (25.4, 34.1) 28.5 (24.8, 33.7) 0.661
HR (beats/min) 95.4 (81.6, 107.5) 96.5 (82.2, 113.4) 0.377

SBP (mmHg) 117.2 (107.6, 129.5) 116.5 (106.2, 131.7) 0.661

DBP (mmHg) 65.3 (58.4, 73.7) 66.3 (55.5, 75.6) 0.864
MBP (mmHg) 78.6 (72.0, 87.7) 78.7 (70.1, 89.9) 0.977

RR (beats/min) 20.5 (18.0, 24.1) 20.6 (17.6, 24.7) 0.777

SpO2 (%) 96.4 (95.0, 97.8) 96.4 (95.0, 98.0) 0.523
Body temperature 37.0 (36.7, 37.4) 37.0 (36.7, 37.4) 0.846

SOFA 6.0 (3.0, 9.0) 6.0 (3.0, 10.0) 0.511

APSIII 50.0 (37.0, 71.0) 84.0 (38.0, 82.0) 0.179
SAPSII 36.0 (26.0, 48.0) 37.5 (25.0, 58) 0.207

(Continued)
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Feature Selection
A total of 38 variables were obtained from the medical records. With the optimal alpha parameter, the LASSO was 
employed to decrease the dimension of the variables and filter out the best variables. After compressing variable 
coefficients to avoid models’ overfitting and collinearity problems by LASSO analysis, 38 variables were reduced to 
17. To further control the influence of confounding factors, the 17 variables were further analyzed using the Cox 
proportion regression analysis (Table 3). Finally, 8 variables were obtained, including white blood cell, platelet, body 
temperature, age, BUN, red blood cell distribution width, SpO2, and hemoglobin.

Table 2 (Continued). 

Variables Training Set (N=400) Test Set (N=134) P- value

Hypertension 0.650

No 215 (53.8) 69 (51.5)
Yes 185 (46.3) 65 (48.5)

Obesity 0.510

No 352 (88.0) 115 (85.8)
Yes 62 (12.0) 19 (14.2)

HF 0.613

No 333 (83.3) 109 (81.3)
Yes 67 (16.7) 25 (18.7)

Diabetes 0.395

No 277 (69.3) 54 (73.1)
Yes 123 (30.7) 18 (16.9)

COPD 0.198

No 384 (96.0) 125 (93.3)
Yes 16 (4.0) 9 (6.7)

RBC (m/uL) 3.3 (2.8, 3.8) 3.3 (2.8, 3.9) 0.402

RDW (%) 14.9 (13.9, 16.3) 15.0 (14.0, 16.3) 0.532
MCV 92.7 (88.0, 97.0) 91.5 (88.0, 96.0) 0.491

MCHC 33.0 (32.0, 33.9) 32.9 (31.8, 34.0) 0.682
MCH 31.0.0 (29.0, 32.3) 30.3 (28.8, 31.7) 0.246

Hemoglobin (g/L) 10.0 (8.5, 11.5) 10.0 (8.7, 11.9) 0.667

Platelet (K/uL) 223 (149.5, 324.0) 210.5 (135, 342) 0.551
WBC (K/uL) 11.9 (7.6, 17.0) 11.6 (8.4, 17.5) 0.434

INR 1.3 (1.1, 1.5) 1.3 (1.1, 1.5) 0.541

PT (s) 14.3 (12.8, 16.1) 14.5 (12.6, 16.6) 0.849
AG (mEq/L) 14.0 (12.0, 17.0) 14.0 (12.0, 17) 0.997

TBIL (mg/dL) 0.9 (0.5, 2.3) 1.0 (0.6, 2.5) 0.553

Bicarbonate 24.0 (21.0, 27.0) 24.0 (20.0, 28.0) 0.777
Bun (mg/dL) 19.0 (11.0, 36.0) 19.0 (11.0, 33.0) 0.857

Calcium (mg/dL) 8.2 (7.8, 8.7) 8.2 (7.7, 8.6) 0.322

Chloride (mg/dL) 103.5 (99.0, 107.0) 103 (100.0, 107.0) 0.611
Creatinine (mg/dL) 1.0 (0.7, 1.8) 0.9 (0.6, 1.5) 0.185

Glucose (mmol/l) 123.0 (103.0, 157.5) 125.0 (99.0, 153.0) 0.833

Sodium (mEq/L) 139.0 (136.0, 142.0) 139 (136.0, 142.0) 0.915
Potassium (mEq/L) 3.9 (3.6, 4.3) 4.0 (3.7, 4.3) 0.260

Hematocrit 30.1 (26.1, 34.7) 30.7 (26.5, 35.8) 0.480

Abbreviations: SBP, spontaneous blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; 
RR, respiratory rate; SOFA, Sequential Organ Failure Assessment; APSIII, acute physiology score III; SAPSII, 
simplified acute physiological score II; HF, heart failure; COPD, chronic obstructive pulmonary disease; RBC, red 
blood cell; RDW, red cell volume distribution width; MCV, Mean Corpuscular Volume; MCHC, mean corpus-
cular hemoglobin concentration; MCH, mean corpuscular hemoglobin; WBC white blood cell; INR, international 
normalized ratio; PT, Prothrombin time; AG, anion gap; TBIL, total bilirubin; Bun, blood urea nitrogen.
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Diagnostic Performance of ML Models
These 8 variables were put into developing six ML models. As shown in Figure 2a and b, all six ML models performed well 
in predicting 28-d all-cause death in the training and test set, and we also further calculated the relevant scores of models, 
including accuracy, precision, recall, F1-score, positive and negative likelihood ratios, diagnostic odds ratio, and Matthews 

Table 3 Multivariate COX Proportional Hazard Ratio Regression of 
Risk Factors for Death Within 28-d in Patients with Acute 
Pancreatitis

Variables Multivariable COX

HR Lower 
95% CI

Higher 
95% CI

P - value  
Wald’s test

Sex 0.769 0.410 1.441 0.412

Obesity 0.507 0.160 1.612 0.250
Respiratory failure 1.678 0.739 3.811 0.216

Age 1.030 1.011 1.050 0.002

SBP 0.985 0.965 1.005 0.147
Body temperature 0.571 0.367 0.889 0.013

SpO2 0.857 0.786 0.934 0.000

WBC 1.037 1.000 1.075 0.049
Anion gap 1.040 0.978 1.106 0.210

Bun 1.019 1.009 1.030 0.000

Hemoglobin 1.341 1.135 1.585 0.001
MCHC 1.098 0.904 1.332 0.346

Platelet 0.996 0.993 0.999 0.020

RDW 1.195 1.081 1.321 0.000

Abbreviations: SBP, spontaneous blood pressure; WBC, white blood cell; Bun, blood 
urea nitrogen; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell 
volume distribution width.

Figure 2 ROC curves of 5 machine learning models in predicting 28-d all cause death for AP patients. (a) ROC curves of the machine learning models using the 10-fold 
cross-validation in the AP training cohort. (b) ROC curve analysis of machine learning algorithms for prediction of 28-d all cause death AP patients in the test set. 
Abbreviations: RF, random forests; AdaBoost, Adaptive Boosting; SVM, support vector machines; NB, naïve Bayes; XGBoost, eXtreme Gradient Boosting; LR, linear 
regression; ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.
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correlation coefficient (Table 4). The ROC results demonstrated that RF was the highest in the training set and SVM was 
the highest in the test set. However, the AUC indicator focused on the predictive accuracy of the models and could not 
discriminate whether the model was clinically applicable or which one of the two is more suitable.31,32 Then the DCA and 
Hosmer-Lemeshow were further analyzed among these algorithms. The DCA curve showed that SVM had better clinical 
suitability across a range of reasonable high-risk thresholds (Figure 3). The Hosmer–Lemeshow goodness-of-fit test 
demonstrated that the SVM had good calibration (Hosmer–Lemeshow test: χ2=2.557, P=0.959). Comprehensive analysis 
demonstrated that SVM could be considered the optimal model.

The Kaplan-Meier curve and calibration curve were also plotted to visualize the prognostic performance of the SVM 
algorithm. With the optimal cut-off value, the included patients were divided into a high-risk group (n = 78) and low-risk 
group (n = 56). The Kaplan–Meier method was employed to demonstrate that the 28-d death differed significantly 
between the high- and low-risk group (Figure 4a). The calibration plots demonstrated good agreement between the SVM 
prediction and the actual observed death in the external test cohorts (Figure 4b).

Table 4 Diagnostic Accuracy for the Five Machine Learning Algorithms with the External Test Data Set of AP Patients

28-d All-Cause Death

Accuracy 
Score

Precision 
Score

Recall 
Score

F1- 
score

AUC MCC Diagnostic  
Odds Ratio

PLR NLR Youden 
Index

XGBoost 0.612 0.288 1 0.447 0.833 0.394 - 2.172 - 0.540
AdaBoost 0.753 0.364 0.762 0.492 0.824 0.398 9.714 3.075 0.316 0.514

NB 0.746 0.356 0.762 0.485 0.787 0.389 9.269 2.969 0.320 0.505

RF 0.716 0.340 0.857 0.486 0.833 0.407 13.371 2.768 0.207 0.547
SVM 0.724 0.357 0.952 0.519 0.877 0.467 42.778 2.989 0.069 0.634

LR 0.723 0.351 0.904 0.506 0.870 0.441 21.171 2.921 0.138 0.595

SOFA 0.716 0.319 0.714 0.441 0.735 0.328 6.328 2.522 0.399 0.431
APSIII 0.723 0.351 0.904 0.507 0.820 0.441 21.171 2.922 0.138 0.595

OASIS 0.821 0.452 0.667 0.538 0.804 0.445 11.294 4.433 0.392 0.516

SAPSII 0.813 0.450 0.857 0.590 0.855 0.526 24.818 4.402 0.177 0.663

Abbreviations: SVM, support vector machine; AdaBoost, adaptive boosting; XGBoost, eXtreme gradient machine; NB, Naïve Bayes; RF, random forest; LR, linear 
regression; SOFA, Sequential Organ Failure Assessment Score; OASIS, Oxford Acute Severity of Illness Score; SAPSII, Simplified Acute Physiology Score; AUC, area under 
curve; MCC, Matthews correlation coefficient; PLR, positive likelihood ratios; NLR, negative likelihood ratios.

Figure 3 Decision curves analyses for 5 machine learning models to predict the 28-d all cause death of the patients. The gray line shows the net benefit of recommending 
intervention to every patient, and the black line was no-intervention taking.
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Model’s Explainability
Figure 5a depicts the SHAP values, combining the importance and effects of features for all individuals, based on the 
Support Vector Machine (SVM) model. Each point on the diagram symbolized a feature and its corresponding Shapley 
value, indicating the contribution of each feature to the model’s predicted output. The contributions of each individual 
were represented by two dot types, with red dots indicating high-risk values and blue dots indicating low-risk values. The 
feature values were color-coded, and their importance was ordered from top to bottom along the Y-axis (as shown in 
Figure 5b). The current SHAP results indicated that the WBC count was the most significant feature in predicting the 
Shapley value, followed by the platelet count. A lower platelet count (depicted in pink) was associated with Shapley 
values and served as a positive predictor of all-cause mortality at 28 days. Similarly, a lower temperature and higher age 
were associated with Shapley values and served as positive predictors of cognitive decline. In summary, the SHAP 
analysis revealed that WBC, age, BUN, Red Cell Distribution Width (RDW), and hemoglobin were positive predictors of 
all-cause death at 28 days. Conversely, platelet count, body temperature, and SpO2 were negative predictors of all-cause 
death at 28 days.

Figure 5c and d displayed the individual SHAP plot for predicting specific patient 28-days all-cause death. We 
presented several random cases. Figure 5c demonstrated the SHAP plot to correctly predict 28-days all-cause death; the 
predictive model was supported by the Shapley value of, older age, higher value of BUN and RDW. Figure 5d SHAP plot 
to correctly predict survival; the prediction model was supported by the Shapley value of higher platelets and temperature 
and the lower values of WBC and BUN.

Discussion
Given its computational prowess and capacity to handle vast data volumes, ML has been harnessed in the advancement 
of precision medicine, serving as a conduit for in-depth analysis. In the present study, we developed and validated 
a precise ML model to predict 28-day mortality in AP patients in critical condition. Specifically, our analysis using 
LASSO and SHAP revealed that higher age, WBC count, BUN, RDW, and lower counts of platelets, body temperature, 
and SpO2 were factors more likely to be associated with all-cause mortality at 28 days.

Figure 4 (a) Survivor (percent) during the follow-up for the y-axis of the graph and follow-up Time for the x-axis; (b) The calibration curve of the SVM for the 28-d all cause 
death probability.
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Previous studies suggested that age is a potential contributing factor related to worse prognosis in patients with AP.33 

Elderly patients have a higher proportion of chronic diseases, cardiac and pulmonary dysfunction, resulting in a worse 
outcome. Several studies have also suggested that elderly patients with AP are likely to have atypical clinical presenta-
tion and poor prognosis, mainly due to existing comorbidities.34–37

Moreover, abnormal vital signs including temperature and SpO2 were associated with worse prognosis.38,39 Basic 
medical information is commonly employed in ICUs, which means that vital signs are accessible and could be included 
in many prediction models. Body temperature was another important variable in our model, which potentially leads to 
excessive oxygen molecules that cannot be fully utilized by the tissue.40 According to its SHAP analysis, lower body 
temperature was an important predictive factor for 28-d mortality. Regarding laboratory tests, five variables were selected 
to develop models. Several published studies have confirmed that some variables were associated with prognosis. For 
example, O’Connell et al41 indicated that RDW could be used to identify patients at risk of severe disease condition on 
the presentation to the emergency department. Zheng et al42 concluded that white blood cell count can be employed to 
construct tool to predict the severity of AP. Tokoro et al43 suggested that platelets play a pivotal role in the mechanism of 
disease progression in AP. The merit of these models lies in their ability to contextualize the clinical features of newly 
admitted patients within similar clinical experiences. This provides a reliable foundation for physicians, particularly those 
who may be unfamiliar with the patients’ conditions.44 Believable models are of need to provide trustworthy, available, 
and efficient health management, and the models we have developed are paving the way for that process.

In our current research, we employed various ML algorithms, among which the SVM model demonstrated superior 
performance compared to other algorithms. This superiority was established after a thorough comparison of AUC, DCA, 

Figure 5 SHAP interprets the model. (a) Attributes of features in SHAP. Each line represents a feature, and the abscissa is the SHAP value. Pink dots represent higher 
eigenvalues and blue dots represent lower eigenvalues. (b) Feature importance ranking as indicated by SHAP. The matrix diagram describes the importance of each covariate 
in the development of the final prediction model. (c) SHAP plot to correctly predict all cause death in a specific patient. (d) SHAP plot to correctly predict survivor in 
a specific patient. Red box represents predictors of active status of disease activity, while blue represents predictors of remission.
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and goodness-of-fit test. Nonetheless, comprehending the ML prediction model in its entirety posed a challenge. 
Consequently, we applied the SHAP methodology to the SVM model to achieve optimal predictive power and 
interpretability. This allowed us to identify some key variables associated with the prognosis of critically ill patients 
suffering from AP.

The SVM model was developed using patient routine indicators. The patients were identified as high-risk patients 
would preferentially receive more positive intervention. In clinical settings, the developed model could be integrated to 
enhance several aspects of patient care. Initially, upon hospital admission, the model could generate a predictive score 
from vital signs, and laboratory results, all of which are routinely available. This use of ML to predict clinical outcomes 
could effectively prioritize patients at high risk, ensuring they receive prompt clinical and supportive care. Furthermore, 
in cases of AP patients presenting with complicated or rare conditions, particularly in regions where medical resources 
are limited, the application of ML model can assist clinicians in making decisions regarding clinical management.

Our study was a multi-institution research, which is a common way of efficiently evaluating a new technique and 
could provide a reliable foundation for the subsequent generalization of our models. However, several limitations of this 
study should be acknowledged. First, due to its retrospective nature, selection bias of patients was inevitable. Given that 
our study was multi-center study with a limited sample of patients with AP, it is imperative to conduct future prospective 
studies with larger-sample patients to further validate these findings. Thirdly, some variables such as the level of 
interleukin, albumin and CRP were not considered in our study due to their unavailability of these variables, might 
result in confounding bias; however, the ML models analyzed up to 38 variables potential variables including vital signs, 
admission laboratory tests, demographics, and comorbidities, representing that the included variables were comprehen-
sive. For another thing, missing values were unavoidable in this database, and these missing values would influence the 
study’s conclusions.

Conclusions
In conclusion, this study screened out 8 important variables associated with 28-day all-cause mortality and developed an 
SVM model that may provide clinicians with a better tool for timely intervention in critically ill patients with AP. The 
predictive model outperformed conventional scoring systems and provided assistance for first-line clinicians to identify 
high-risk patients.
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