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Orthogonal moments are used to represent digital images with minimum redundancy. Orthogonal
moments with fractional-orders show better capabilities in digital image analysis than integer-order
moments. In this work, the authors present new fractional-order shifted Gegenbauer polynomials.
These new polynomials are used to define a novel set of orthogonal fractional-order shifted Gegenbauer
moments (Fr'SGMs). The proposed method is applied in gray-scale image analysis and recognition. The
invariances to rotation, scaling and translation (RST), are achieved using invariant fractional-order geo-
metric moments. Experiments are conducted to evaluate the proposed FrSGMs and compare with the clas-
sical orthogonal integer-order Gegenbauer moments (GMs) and the existing orthogonal fractional-order
moments. The new FrSGMs outperformed GMs and the existing orthogonal fractional-order moments
in terms of image recognition and reconstruction, RST invariance, and robustness to noise.
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Introduction

Orthogonal moments are widely used to represent signals and
images [1]. The orthogonal moments are divided into two main
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groups according to their coordinate systems, cartesian and polar
coordinates. Legendre moments [2], Gegenbauer moments [3],
and Gaussian-Hermite moments [4] are the most common orthog-
onal moments which defined in the cartesian coordinates. Zernike
moments [5], pseudo-Zernike moments [6], radial harmonic Four-
ier moments [7], and radial substituted Chebyshev moments [8,9]
are examples of circular orthogonal moments in polar coordinates.

Since, the digital images are generally defined using cartesian
pixels; therefore, the use of orthogonal moments is preferable
where no need for cartesian to polar image mapping. Abramowiz
and Stegun, [10] showed that Gegenbauer polynomials are generic
polynomials where the orthogonal polynomials of Legendre, Che-
byshev of the first kind and Chebyshev of the second kind are spe-
cial cases from Gegenbauer polynomials with oo = 0.5, = 0 and
o = 1, respectively.

Pawlak [11] showed that the scaling parameter, o > —0.5, of the
Gegenbauer polynomials is very useful in digital image processing,
where an improved image reconstruction can be achieved by
selecting the proper value of this scaling factor. Moreover, the
adjustable scaling parameter is used to control the relation
between the global and local image features where large values
results in local image representation while small values results in
global image features.

Hosny [3] proved that orthogonal Gegenbauer moments are
able to reconstruct digital gray-scale images with minimum recon-
struction error and robust to different noise. Based on these char-
acteristics, orthogonal Gegenbauer moments were used in object
recognition [12], character recognition [13], pattern recognition
[14], full-field strain and displacement measurements [15,16],
optics applications [17], SAR image classification [18,19], and
Galaxies images classification [20].

Based on the extensive studies in the fractional calculus, math-
ematicians concluded that non-integer order polynomials have
better abilities to represent image functions than the correspond-
ing integer-order polynomials [21]. This conclusion motives the
scientists to derive different sets of non-integer order polynomials
and utilize these polynomials and their moments/coefficients to
represent digital images. Xiao et al. [22] derived the fractional-
order Legendre moments (FrLMs). Zhang et al. [23] derived the
fractional-order Fourier-Mellin moments (FrFMMs). Benouini
et al. [24] derived the fractional-order Chebyshev moments
(FrCMs).

The attractive characteristics of orthogonal Gegenbauer polyno-
mials stimulate defining orthogonal fractional-order Gegenbauer
polynomials and deriving their moments. The RST invariances for
these new fractional-order Gegenbauer moments are derived
through the fractional-order geometric moments. The contribution
of this paper is summarized as follows:

1. A new set of fractional-order shifted Gegenbauer polynomials
(FrSGPs) is defined in the interval 0 < x < 1.

2. New orthogonal fractional-order shifted Gegenbauer moments
(FrSGMs) for gray-scale images are derived on the interval
D<x<1x[0<y<1].

3. No need for any kind of image mapping, since both the shifted
Gegenbauer polynomials and the digital images are defined in
the same cartesian domain, [0, 1] x [0, 1].

4. The moment invariants to rotation, scaling and translation are
derived wusing the fractional-order geometric moment
invariants.

5. The new FrSGMs are robust to different kinds of images.

The remaining of this paper is: Preliminaries of classical
integer-order Gegenbauer polynomials and their moments are

presented in Section ‘Preliminaries’. The derivation of the new
fractional-order shifted Gegenbauer polynomials and their
fractional-order moments are presented in Section ‘The proposed
fractional-order gegenbauer moments’. Detailed experimental
work is presented in Sections ‘The proposed fractional-order
gegenbauer moments’. Finally, the paper is concluded in
Section ‘Experiments, results and discussion’.

Preliminaries

The classical integer-order Gegenbauer polynomials and the
GMs for gray-scale images are briefly described.

Classical orthogonal Gegenbauer polynomials

The classical Gegenbauer polynomials of integer-order, GI(,“) (%),
is [10]:
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These polynomials, G (x), satisfy the condition:
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where the mathematical symbols, I'() & d,, refer to the gamma and
the Kronecker functions respectively; the controlling parameter, o,
is a real number (—1.5 < «). The weight function, w(®(x), and the
normalization constant, C,(«), is defined as:

wo(x) = (1-x2)"°° (4)
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The G;“)(x) are computed using the three-term recurrence
relation:

2p+a) +20—1
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with Gy’ (x) = 1, and G{" (x) = 20x.

(6)

Integer-order Gegenbauer moments

The integer-order GMs of order (p,q)are [3]:
1 -1 1
to=cmeg | [ TG WG W owy)dxdy.
-1

(7)

where the indices, p & g, are non-negative integers.
Since G (x) are orthogonal over the square [-1,1] x [-1,1], the
image function, f(x,y), of the original input images must mapped

over the square [-1,1] x [-1, 1]. Theoretically, digital images could
be reconstructed using an infinite number of GMs using the form:

Fo9) =303 A G (0G 9) ®)

p=0 g=0
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In practice, finite summation is permitted in all computing plat-
forms and environments, therefore, only Eq. (8) is adapted as
follows:

=YD A G (), 9)

The value ofMax is defined by the user and the total number of
extracted features are:

Nrotar = (Max + 1) (10)

The proposed fractional-order Gegenbauer moments

This section presents a description of the proposed fractional-
order Gegenbauer Moments. Novel fractional-order shifted
Gegenbauer polynomials are derived. Then, the new FrSGMs for
gray-scale images derived. The mathematical derivation of RST
invariances is presented. Finally, the numerical integration
method for accurate and efficient computation of FrSGMs is
described.

Orthogonal fractional-order shifted Gegenbauer polynomials

Assume 1 is a real number (2 > 0). The fractional-order shifted
Gegenbauer polynomials,FrG;,“)(t), are derived by replacing the
variable x = 2t* — 1 with t € [0,1] in Eq. (1). Then, FrGy’(t) are
defined as:

FiGY(t) = G (2t — 1), (11)

The explicit form of the fractional-order shifted Gegenbauer
polynomials, FrG{” (t), of degree p is:

FrG (¢t ZBP,( @t —1)"*, (12)

The Fractional-order shifted Gegenbauer polynomials,FrG” (t),
are obeying the following recurrence relation:

2p+%) o, @ PH20-1) .
FrG, (t) = ) (2t* — 1)FrGy (1) o FrG”, (1),
(13)
withFrGy”(t) = 1, and FrG{” (t) = 20.(2¢" — 1).

The fractional-order shifted Gegenbauer polynomials, FrGS‘) (t),
are orthogonal over the square [0, 1] x [0, 1], where:

1
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The modified weight function, w*®(t), and the modified nor-
malization constant, C,(o), are defined as:

K r .\ =05
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Proof of orthogonality property:

Coo) = (15)

Proof. Assume x = 2t* — 1, then dx = 2/t*~1dt, substituting these
values in Eq. (3) yields:
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Fractional-order shifted Gegenbauer moments for gray-scale images

The FrSGMs of order (p, q)are:

_ 1 e @) TR O—
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where the functions, FrG;”(x), are the real-valued fractional order
Gegenbauer polynomial of the pth order.

Digital images could be reconstructed using Frij‘)(x) and
FrSGMs in the square cartesian domain [0, 1] x [0, 1]:

xy:Z

p=0 ¢
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Or in approximate form based on Max as follows:

Max Max

S FrAyFrGY (x)FIGY (v), (18)
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where the total number of moments to be used for image genera-
tion is defined as in Eq. (10).

Fractional-order shifted Gegenbauer moment invariants

Fractional-order geometric moments

The fractional-order geometric Moments (FrGMs) of order
A(p+q) for the image function, f(x;,y;), with size, N x N, are
[22,24]:

N
GM;;q Z Z,f thj Mpg thj) (19)
i1 j=1
Mg (%1,;) = / /  syddy (20)
x—4ax ’ 7%
with 2 € R*.
The image centroid, (X,y) € [0,1], is
g=CMo g Mo g 21)
GMg, GMg,

Let 4 has an odd denominator and can be written as 23”1 with

a,b € n, where a#0. The translation invariant fractional-order cen-
tral moments are:
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N N
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with 2 should satisfy the odd denominator condition.
The fractional-order geometric moment invariants, G;,q, could be
expressed as:

N
:ﬁJ/Z Zf th] qu Xizy]) (24)

i-1 j-1

where
xitg ey R o
Voq (Xi,V;) = / / {[(x —X)cos0+ (y—y)sin0]”

[(y—¥)cos0— (x—X)sin0] "q}dxdy (25)

The normalization parameters 3, y and 0, are defined in [24]. For
2 =1, these parameters could be determined as follows:

M and 0 = 1tan*1 </2ZH/> (26)
Zy —Zy

2 2
Fractional-order shifted Gegenbauer moment invariants
This subsection studies the invariants of FrSGMs to the geomet-
ric transformations, RST. Using the relation between the FrSGPs
and the geometric basis {x*?y“4}. The FrSGMs can be expressed in
terms of GM’"' . Therefore, Eq. (16) can be reformulated as follows:

P g
(2) p(er)
C Z ZBp,kBqJW "(x

P k=0 [=0

A=GM},, 7=

FrAy, = w*‘“)(y)GM;q (27)

By replacing the GM,,, in the Eq. (27) by G,, of Eq. (24), the RST
invariants of FrSGMs, Wthh called FrSGMIs are

1 "~ N R R ()
_ o) (%) 4 4 (0t
- C*(oc)C*(oc) Z ZBp.kBq-lW

p q k=0 I=0

FrSGMI,, “ ()G, (28)

with the condition that 4 has odd denominators.
Accurate computation of the FrSGMs

In this section, the authors describe how the FrSGMs are com-
puted using the accurate Gaussian quadrature numerical integra-
tion methodology [25]. For gray-scale image f(x,y) of size N x N,
an image intensity function f(i,j) defined on a discrete domain ,
where i=1,2,3,..,N, and j=1,2,3,...,N. The image is mapped
to a domain of (x;,y;) €[0,1] x [0,1]. Therefore, the points of
mapped image coordinates (x;,y;) are defined as:

i Ax
Xi:N+7, (29)

_J
y =3+ (30)

with Ax =1/N and Ay = 1/N.

Inspired by the kernel-based approach for efficient computation
of orthogonal moments [26], the FrSGMs as given by Eq. (16) are
reformulated:

N N
Fray(f) = ( ZZTW X, ;)f (%, ;) (31)
p

i=1 j=1

where

Ny ey
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2
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Eq. (32) could be expressed using both x-and y-kernels as
follows:

N N
FrAp(f) = ZZ% Yo (v;)f (%i.3;) (33)
i=1 j=1
where
X+
i
IX,(x;) = / FGY (x)w*™ (x)dx (34)
)
"
IYy(y)) = / FG (y)w™® (y)dy (35)
yr%

For simplicity, the limits of the definite integrals are:

Ax Ax

Uin =Xit 5 Ui =Xi— 5 (36)
A A

Via=y+5, Vi=y - (37)

Egs. (34) and (35) can be expressed as follows:

Ui

Uit

X, () = / FrGy (x)w*® (x)dx = RX(x)dx (38)
Ui
Vi Vi

o) = [ EGP W midy = [ RY()dy (39)
Vj V/

where RX(x) = FG” (x)w*® (x) and RY(y) = FG” (y)w*® (y)

Since, the analytical evaluation of the finite integrals of the ker-
nels, IX,(x;) and IY,(y;), as defined in Egs. (38) and (39) is impossi-
ble, Therefore, the kernels, IX,(x;)and IY,(y;), are computed by the
accurate Gaussian quadrature [25] approximation. The definite
integral, fb h(z)dz, could be computed as:

a

/bh(z)dz ) ]W <a+b b;an) (40)

1=0

where the detailed implementation of this method could be found
in [27,28].
Substituting equation (40) into (38) yields:

X, (x;) = / " RX ()

U;
U1+1 - Czl:WIRX <U1+1 + Uz Ui+12_ Ui tl) (41)
=l
Similarly:
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Ui
IY, (yj) = / RY (y)dy

Ui

DR A R | ) ; LV
~ Wi Vi) 5 V) > wiRY (Vf“; Yy Vf“z Y r,) (42)
=0

Direct calculation of FrSGMs using Eq. (33) is time-consuming
task where heavy computational-costs of C,(c) which required
computing factorials and Gamma functions for each moment
order. The computational complexity of this equation could be
reduced by using the recurrence form.

(p—l+oc)(p71+20c)c*

Gy (o) = o0+ @) p-1(a), (43)
with
Cy(a) = 2L 2) (44)

Similarly, another recurrence relation is employed to compute
FrG{(x) and FrG" (y)for fast computation of IX,(x;) and IY,(y;).
Moreover, the successful 1-D moment computation [3] is
employed:

N
FrAp = 1Xp(Xi) Y, (45)
i=1
where
N
Yig =Y Yq)f (:.3)), (46)
=1

Experiments, results and discussion

This section presented the performed numerical experiments,
the obtained results and the discussion. Four experiments were
conducted to assess FrSGMs and compare its performance with
GMs [3] and the existing fractional-order moments such as FrLFMs
[22], FrFMMs [23] and FrCMs [24]. One experiment is performed
where a standard gray-scale image is reconstructed. This experi-
ment is used to assess the accuracy. The invariances to similarity
transformations, RST, of the proposed moments is tested in the sec-
ond group. Sensitivity to noise is assessed in the third experiment.
Finally, image recognition is quantitively measured in the fourth
experiment.

Image reconstruction

Image reconstruction using orthogonal moments is an essential
process in different image processing applications. This process
used to measure accuracy and numerical stability of the computed
moments. The reconstructed images are evaluated using the nor-
malized image reconstruction error (NIRE) [29] which is a quanta-
tive measure:

2
é\i—ol ZJN:—OI (f(l]) 7fReconmlcted(l~7j))
_ _ NNY)
zNzol Zszol i)

Continues decreasing of NIRE values reflects accuracy and sta-
bility of the computed moments.

The proposed fractional-order shifted Gegenbauer moments,
FrSGMs, and the orthogonal moments [3,22-24] used in recon-
structing the standard gray-scale image, “peppers”, using low
and high orders, 15, 25, 35, 45, 60, 80, 100, 150 & 200, with
o = 1.2, where Fig. 1 shows the values of the quantative measure.

NIRE = (47)

The reconstructed images with the corresponding NIRE values are
displayed in Fig. 2.

Figs. 1 and 2 show that the FrOFMMs [23] is not able to recon-
struct gray-scale images. For low order, max < 40, the integer-
order GMs [3] and the FrLFMs [22] can reconstruct gray-scale
images with moderate quality. On the other side, the proposed
moments, Fr'SGMs, and the FrCMs can reconstruct gray-scale
images for both low and higher-order moments.

Both FrSGMs and FrCMs show the similar ability for low orders
while for higher orders, the proposed FrSGMs outperformed all
other existing methods. These results ensure the accuracy and sta-
bility of the proposed method.

Invariance to RST

Invariances to RST, are essential characteristics for pattern
recognition and computer vision applications. Each invariance is

25 T T
: —*— GMs [3]
FriFMs [22]
2t ¥ FrOFMMs [23] |
. —&—FrCMs [24]
—+# —Proposed FiiGMs

NIRE

0 50 100 150 200
Moment order

(a)

i3 v v v ]
025+ i
w
x
=
U 1 1 1 1
0 5 10 15 20 25
Moment order
W 0.004 4
&
< 0.002 4
St { ) e e e e s e e e Gt e st o e e s e -
198.5 199 199.5 200
Moment order

Fig. 1. The NIRE values of FrSGMs, the orthogonal moments [3,22-24], for the
Peppers’ image of size 128 x 128, (a): The original curves, (b): Zoom-in-curves.
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Max. Order
GMs [3]

'
0.0817 0.0523 0.0340 0.0241
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NIRE

FrCMs [24]
a=12

~ =
NIRE 0.0622 0.0350 0.0213 0.0135
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=
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=
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=
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-
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Fig. 2. The reconstructed images using the proposed FrSGMs and the orthogonal moments [3,22-24].

assessed by an individual experiment, where these invariances
could be evaluated using the following quantitative measure.

Max Max

DD (IFra ()

MSE =
LTatal p=0 q=0

~ [Frfgg (£")])” (48)

where L, is an integer refers to the total number of the indepen-
dent moments; the terms |FrAp, (fm"s') | and |FrA,,(f)| are the values

of the magnitudes of the utilized moments for both transformed
and original images.

First experiment: the gray-scale image of “Lena” with size
256 x 256 is rotated by different angles from 0° to 90° in the
counter-clockwise direction. The proposed FrSGMs, GMs |[3],
FrLFMs [22], FrOFMMs [23] and FrCMs [24] are calculated for each
image, original & rotated, using maximum moment order equal to
20. The MSE for the five groups of orthogonal moments where
evaluated where the plotted curves are displayed in Fig. 3.

The plotted curves in Fig. 3 show that the MSE values of FrLFMs
[22] and FrOFMMs [23] are high, which reflects their lousy perfor-
mance. The existing methods, GMs [3]| and FrCMs [24] have rela-
tively small MSE values, which indicate good rotation invariance.
On the other side, the proposed FrSGMs have the lowest values
of MSE and the best rotation invariance performance.

Second experiment: the well-known COIL-20 dataset [30] is
used in this experiment. The gray-scale image of the object
obj4_0 of size 128 x 128 is scaled using 3 reduction scaling factors,
0.25, 0.5, & 0.75; and 4 magnification scaling factors,1.25, 1.5, 1.75,
& 2.0. The proposed FrSGMs, GMs [3], FrTLFMs [22], FrOFMMs [23]
and FrCMs [24] are calculated for original, reduced and magnified
images of the selected object using maximum moment order equal
to 20. Fig. 4(a and b) shows the MSE values for reduced and mag-
nified images. The proposed FrSGMs results in the smallest values
of MSE.

Third experiment: the gray-scale image of the object obj3_0
[30] is translated using various translation parameters in horizon-
tal and vertical directions. The proposed FrSGMs and the orthogo-
nal moments [3,22-24] are calculated where Fig. 5 shows the MSE
for all moments.

%10
g T r T T T T T
7F
//E\\\ﬁ*' VVVVV M
L aedak = R © ANAETR
6 /B’ ..... Lo A g—--u.o_
R —— GMs [3] T~
gl ha — — FiLFMs [22] E
g S FOFMMs [23]
w ;’ —8—FICMs [24]
o 4+ s
= / * — Proposed FrGMs
£
St f
f
or f
rf M
,__.-*-""'*' e
__—',_..--0' "0'-—-...~__
U 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Rotation angle

Fig. 3. The MSE values for rotation angles using the proposed FrSGMs and the
orthogonal moments [3,22-24].

Again, the proposed orthogonal FrSGMs show small MSE values
which ensure the highly accurate invariances to the RST geometric
transformations. These new fractional-order moments outper-
formed the integer-order orthogonal moments [3] and the existing
fractional-order moment [22-24].

Robustness against noise

In this subsection, three experiments were performed to test
the sensitivity of the proposed FrSGMs to noise. Different levels
of ‘salt & peppers’, white Gaussian, and speckle noise are added
to the standard gray-scale image of the object obj17_0 [30] where
Fig. 6 shows the standard and contaminated images.

MSE values are computed using the proposed FrSGMs and the
orthogonal moments [3,22-24] for contaminated images and dis-
played in Fig. 6(b-d). FrSGMs are less sensitive to noise than the
integer-order Gegenbauer moments, GMs [3]| and the existing
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Fig. 4. The MSE values for scaling invariance using the proposed FrSGMs and the orthogonal moments [3,22-24]: (a) Reduction, (b) Magnification.
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Fig. 5. MSE for the translated images calculated by using the proposed FrSGMs and
the orthogonal moments [3,22-24].

fractional-order moments, FrLFMs [22], FFOFMMs [23] and FrCMs
[24].

Image recognition

In this subsection, the recognition ability of the proposed
FrSGMs moments is evaluated using the well-known dataset of
birds [31]. This dataset is consisting of six classes with 100 differ-
ent size images in each class. For simplicity, images are resized to a
unified size 512 x 512.

The recognition rate, RT(%) [9] is used to quantitively measure
the ability of the proposed FrSGMs moments to recognize the sim-
ilar gray-scale images. It is defined as:

(Y x 100)

RT(%) =

(49)

where Qr and Y refers to query and correctly identified images. To
avoid any biased results, 5 distance similarity measures, L;-norm,
L,-norm, square-chord, y?, and Canberra are used in computing
RT(%).

The proposed FrSGMs, and the orthogonal moments [3,22-24]
were computed in 4 experiments. The first experiment is called
“normal” where all images are not subjected to any kind of trans-
formations and noise-free. The second experiment is called “rota-
tion” where all images are rotated. In the third and the fourth
experiments, all images are scaled and contaminated with noise.

In the performed experiments, the maximum moment’ orders
were selected to unified the length of feature vectors. The
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maximum value, Max = 5, is used with the FrLFMs [22], FrOFMMs
[23] which results in 66 features. Finally, the maximum value,
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Max =7, is used for the proposed FrSGMs and FrCMs [24], which
results in 64 features.

Table 1
Recognition rates R (%) of (|[FrSGMs|), and the orthogonal moments [3,22-24] for the normal dataset of Bird, with a = 1.2.
Similarity measure Methods
GMs [3] FrLFMs [22] FrOFMMs [23] FrCHMs [24] Proposed FrSGMs
L1-norm 68.43 55.39 45.94 72.56 75.57
L[2-norm 70.78 57.15 47.41 74.68 77.60
Square-chord 68.49 53.35 42.24 72.38 74.66
X2 69.41 54.76 42.86 73.55 76.37
Canberra 67.35 52.81 38.53 71.28 73.69
Mean recognition rate 68.89 54.69 43.40 72.89 75.58

Table 2
Recognition rates R (%) of (|[FrSGMs]), and the orthogonal moments [3,22-24] for the randomly rotated dataset of Birds, with a = 1.2.
Similarity measure Methods
GMs [3] FrLFMs [22] FrOFMMs [23] FrCMs [24] Proposed FrSGMs
L1-norm 69.85 55.91 47.15 74.21 76.15
[2-norm 71.59 57.53 48.23 75.75 77.98
Square-chord 67.75 54.24 4337 72.26 74.53
x2 69.37 55.32 43.81 73.55 76.373
Canberra 67.24 53.19 39.45 71.43 73.74
Mean recognition rate 69.16 55.24 44.40 73.44 75.76
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Table 3
Recognition rates R (%) (JFrSGMs|), and the orthogonal moments [3,22-24] for randomly scaled dataset of Birds, with a = 1.2.
Similarity measure Methods
GMs [3] FrLFMs [22] FrOFMMs [23] FrCHMs [24] Proposed FrSGMs
L1-norm 70.63 56.58 48.23 74.60 77.32
L2-norm 72.29 57.97 49.34 76.03 79.11
Square-chord 68.65 54.82 46.75 72.81 75.85
x2 69.36 55.79 47.32 73.86 77.52
Canberra 67.75 53.64 40.86 71.77 74.90
Mean recognition rate 69.74 55.76 46.50 73.82 76.94
Table 4
Recognition rates R (%) of (|[FrSGMs|), and the orthogonal moments [3,22-24] for the noisy dataset of Birds with & = 1.2.
Level of noise Similarity measure Methods
GMs [3] FrLFMs [22] FrOFMMs [23] FrCMs [24] Proposed FrSGMs
Noise-free L1-norm 73.15 54.03 47.56 75.56 77.89
L[2-norm 74.43 53.57 49.05 76.84 79.24
Square-chord 71.19 51.10 43.69 73.60 75.82
%2 72.33 52.24 44.36 74.74 77.02
Canberra 69.97 51.62 39.97 72.38 74.53
g =0.05 L1-norm 72.06 52.53 45.03 7447 76.73
L2-norm 71.94 53.94 45.33 74.35 76.61
Square-chord 69.27 51.03 42.43 71.68 73.79
%2 71.20 51.65 42.72 73.61 75.83
Canberra 69.24 50.97 39.23 71.65 73.76
c=0.1 L1-norm 71.08 50.68 43.62 73.49 75.70
L2-norm 71.70 52.01 44.58 74.11 76.35
Square-chord 68.71 49.66 42.13 71.12 73.19
x2 70.73 49.48 42.65 73.14 75.33
Canberra 67.26 48.39 36.77 69.67 71.66
o =0.15 L1-norm 67.37 48.69 40.34 69.78 71.78
L2-norm 69.33 49.44 41.39 71.74 73.85
Square-chord 66.97 47.25 39.53 69.38 71.36
%2 68.15 49.23 39.38 70.56 72.61
Canberra 66.02 47.69 35.28 68.43 70.36
c=02 L1-norm 65.79 48.33 38.26 68.20 68.28
L2-norm 67.66 49.41 39.3 70.07 70.20
Square-chord 65.60 48.04 36.47 68.01 68.08
x2 66.45 47.61 37.07 68.86 68.96
Canberra 65.79 47.24 34.61 68.20 68.28
Average recognition rate L1-norm 69.89 50.85 42.96 72.30 74.08
L[2-norm 71.01 51.67 43.93 73.42 74.87
Square-chord 68.35 49.41 40.85 70.76 72.45
%2 69.77 50.04 41.24 72.18 73.95
Canberra 67.65 49.18 37.17 70.07 71.72

The obtained results for the normal, rotated, scaled, and noisy
query images are shown in the Tables 1-4, respectively. The pro-
posed FrSGMs achieved higher recognition rates than the GMs
[3], FrTLFMs [22], FrOFMMs [23] and FrCMs [24].

Conclusion

Novel orthogonal fractional-order shifted Gegenbauer polyno-
mials and moments are presented to analyze and recognize gray-
scale images. The proposed fractional-order moments show excel-
lent capabilities in image reconstruction with lower and higher
moment orders, which is an essential characteristic for image pro-
cessing applications. The proposed FrSGMs are insensitive to noise
and invariant to RST, which improve their recognition capabilities.
Based on the obtained results, the proposed FrSGMs are very useful
descriptors.
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