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The consumption of phytochemicals, bioactive compounds in fruits and vegetables,

has been demonstrated to ameliorate obesity and related metabolic symptoms by

regulating specificmetabolic pathways. This review summarizes the progressmade in our

understanding of the potential of phytochemicals as metabolic signals: we discuss herein

selected molecular mechanisms which are involved in the occurrence of obesity that

may be regulated by phytochemicals. The focus of our review highlights the regulation

of transcription factors toll like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like

2 (Nrf2), the peroxisome proliferator-activated receptors (PPARs), fat mass and obesity-

associated protein (FTO) and regulation of microRNAs (miRNA). In this review, the effect of

phytochemicals on signaling pathways involved in obesity were discussed on the basis of

their chemical structure, suggesting molecular mechanisms for how phytochemicals may

impact these signaling pathways. For example, compounds with an isothiocyanate group

or an α, β-unsaturated carbonyl group may interact with the TLR4 signaling pathway.

Regarding Nrf2, we examine compounds possessing an α, β-unsaturated carbonyl group

which binds covalently with the cysteine thiols of Keap1. Additionally, phytochemical

activation of PPARs, FTO and miRNAs were summarized. This information may be of

value to better understand how specific phytochemicals interact with specific signaling

pathways and help guide the development of new drugs to combat obesity and related

metabolic diseases.

Keywords: phytochemicals, obesity, transcription factors, structure, metabolic signals

INTRODUCTION

Obesity, normally results from an imbalance between energy consumption and energy expenditure,
is one of the most prevalent problems challenging public health today. Obesity increases the risk of
diseases including type 2 diabetes (1), cardiovascular disease and some types of cancer (2). However,
no effective therapy has been developed for the treatment of obesity except for exercise and dietary
regimes. Pharmacological treatment has been used for the long-term treatment of severely obese
patients. Currently, orlistat, the world’s only weight loss drug approved by the US Food and Drug
Administration, has been used by some obese people (3). However, its application is limited for
the side effects such as diarrhea, and vomiting (4). Therefore, the search for novel food and food
compound interventions as a monotherapy or along with existing therapies is a main focus for
nutritionists (5).
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Phytochemicals, bioactive compounds in fruits and vegetables
are produced through primary or secondary metabolism. They
may be synthesized to protect plants from a variety of stresses,
such as pathogenic attacks, predators, and UV irradiation
(6). In recent years, there have been many studies on the
regulation of signaling pathways by phytochemicals, most of
which aim at the biological activity and physiological function
of phytochemicals; however, little attention has been paid to
the underlying molecular mechanism and preferred structure of
phytochemicals for pathway activation.

In this review, the structure-activity relationship of
phytochemicals on obesity and related chronic diseases
were discussed. We summarize the progress made in our
understanding of the anti-obesity effect of phytochemicals and
their mechanisms of action: the effect of phytochemicals on
transcription factors and some related molecular pathways. We
focus on the transcription factors toll like receptor 4 (TLR4),
peroxisome proliferator-activated receptors (PPARs), and
transcription factors nuclear factor (erythroid-derived 2)-like 2
(Nrf2). Additionally, the fat mass and obesity-associated protein
(FTO), and microRNA (miRNA) regulation of gene expression
are also discussed.

TOLL LIKE RECEPTOR 4 (TLR4)
SIGNALING PATHWAY

Toll-like receptors (TLRs) are a family of pattern-recognition
receptors (PRR) that trigger innate immune and inflammatory
responses in response to invading microorganisms and non-
microbial endogenous molecules (7). TLR4, one of the thirteen
TLRs identified in mammals, influences symptoms induced by
high fat diet-induced obesity, including insulin resistance (8–10),
inflammation (8, 11, 12), and hepatic lipid accumulation (13–15).

TLR4 molecular structure includes a leucine-rich repeat
(LRR) domain in the ectodomain, which is involved in the
recognition of pathogen-associated molecular patterns (PAMPs),
and a Toll/interleukin-1 receptor homology (TIR) domain in
the cytoplasm, in which highly conserved cysteine residues are
located (16). In addition to this cytoplasmic conserved region,
other cysteine residues also reside in the extracellular domain.

Cells of myeloid origin such as monocytes and macrophages
exhibit the highest levels of TLR4 expression (17). In liver,
TLR4 is expressed by hepatocytes and non-parenchymal cells
(NPCs), including liver sinusoidal endothelial cells (LSECs)

Abbreviations: TG, triglyceride; TC, total cholesterol; HDLC, high-density

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MCP-

1, monocyte chemoattractant protein-1; GSH, glutathione; SOD, superoxide

dismutase; CAT, catalase; T-AOC, total antioxidant capacity; GSH-Px, glutathione

peroxidase; MDA, malonaldehyde; WAT, white adipose tissue; FFA, free fatty acid;

ALT, alanine transaminase; AST, aspartate aminotransferase; IL-1b, interleukin-1b;

GTT, glucose tolerance test; ITT, insulin tolerance test; CRP, C-reactive protein;

TBARS, thiobarbituric acid reactive substance; eWAT, epididymal white adipose

tissue; HOMA-IR, homeostasis model assessment of insulin resistance; NEFA,

non-esterified fatty acid; CPT-1, carnitine palmitoyl transferase 1; PDK-4, pyruvate

dehydrogenase kinase-4; ABCA1, ATP-binding cassette transporter A1; ROS,

reactive oxygen species; IL-8, interleukin-8; FAS, fatty acid synthase; C/EBPα,

CCAAT-enhancer binding protein alpha; Ap2, adaptor protein 2.

and Kupffer cells (KCs) (18). Stimulation of TLR4 by ligands
such as lipopolysaccharides (LPS), leads to the activation
of two downstream signaling pathways: MyD88-dependent
and MyD88-independent (TRIF-dependent) signaling pathways.
Pro-inflammatory cytokines, such as tumor necrosis factor alpha
(TNFα), are typically themajor final product of the TLR signaling
pathway (Figure 1). TNFα plays an important role in lipid
metabolism as well as hepatocyte cell death in the development
of obesity (19–23), which promotes lipid accumulation in
hepatocytes induces insulin resistance, increases FFA levels, and
sustains intracellular lipid retention (19). On the other hand,
TNFα promotes hepatic cholesterol accumulation by inducing
expression of LDL receptor and by inhibiting efflux of cholesterol
(21). TLR4 knockout mice have been reported to protect against
insulin resistance induced by high fat diet (HFD) (8). In obese
individuals, elevated expression of TLR4 and the adaptor proteins
including MyD88, interleukin-1 receptor-associated kinase 1
(IRAK1) and factor receptor-associated factor 6 (TRAF6), was
observed to correlate with the elevated expression of TNF-α and
interleukin-6 (IL-6) (24, 25).

Phytochemicals that inhibit the activation of TLR4, may
ameliorate obesity associated symptoms. It has been well-
documented that molecules with the α, β-unsaturated carbonyl
groups can react with biological nucleophiles such as a sulfhydryl
group (thiol group) by a Michael addition (Figure 2) (26–28).
Phytochemicals with α, β-unsaturated carbonyl groups including
withaferin A, kaempferide, isoliquiritigenin and curcumin were
reported to ameliorate obesity and related metabolic symptoms
by the suppression of TLR4.

Withaferin A, extracted from Withania somnifera plant, has
been verified to attenuate several metabolic diseases. Mohamad
reported that administrate with withaferin A (1.25 mg/kg/d) for
12 weeks protected against high-fat diet induced obesity through
reducing hepatic mRNA expressions of TLR4, NF-κB, TNF-α),
chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2
(COX2) (29).

Tang and colleagues found that obesity, glycolipid metabolism
disorder, inflammation, and oxidative stress were effectively
alleviated by kaempferide treatment for 16 weeks in HFD mice,
and the beneficial effects of kaempferide may be associated with
inhibition of the TLR4/IκBα/NF-κB signaling pathways (30).

Isoliquiritigenin is a flavonoid derived from Glycyrrhiza
uralensis, which was proved to improve HFD-induced adipose
tissue fibrosis with decreased expression of TLR4 (31).

The diarylheptanoid curcumin is a naturally occurring yellow
pigment found in the plant curcuma longa. It has been
reported that curcumin exhibited anti-inflammatory property by
interference with TLR4 and its downstream signaling pathway
in HFD-induced obese mice (32–34). The molecular interactions
between curcumin and TLR4 including: (1) Curcumin is also
known to inhibit the activation of IkB kinase β (IKKβ),
which is the main downstream of TLR4. The α, β-unsaturated
carbonyl group of curcumin reacts with thiol group containing
cysteine residue in the activation loop of IKKβ (35). (2) TLR4
dimerization is blocked by curcumin: the α, β-unsaturated
carbonyl group of curcumin interacts with free thiol groups in
cysteine residues in extracellular and cytoplasmic domains of
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FIGURE 1 | Potential TLR4 signaling pathway induced by phytochemicals.

FIGURE 2 | Reaction of thiol groups in the TLR4 signaling pathway with the α,β-unsaturated carbonyl group of phytochemicals.

TLR4. Therefore, curcumin can inhibit LPS-induced activation
of both MyD88- and TRIF-dependent pathways of TLR4, and
results in the inhibition of both NF-kB and interferon regulatory
factor 3 (IRF3) (36).

On the other hand, phytochemicals such as resveratrol,
epigallocatechin-3-gallate (EGCG), quercetin, luteolin, and
analogs of luteolin, do not inhibit TLR4 dimerization. Instead,
they inhibit TLR4 signaling by specifically inhibiting TANK
binding kinase 1 (TBK1) kinase activity and consequently
downregulate the expression of TBK1-targeted genes, including
TNF-α, and IL-6 (37). Nevertheless, a clear understanding of
the molecular determinants of TBK1 regulation and substrate
selection has not been achieved. TBK1 activity can be regulated
by phosphorylation of the serine 172 residue within the
kinase activation loop (38, 39). Future work is warranted to

investigate how specifically these phytochemicals regulated TBK1
kinase activity.

PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTORS
(PPARS) REGULATION

PPARs belong to a subfamily of the nuclear receptor superfamily
of ligand-inducible transcription factors (40). Three PPAR
subtypes including PPARα, PPARβ (also known as PPARδ), and
PPARγ, have been identified (41, 42). Peroxisome proliferator-
activated receptors control the expression of genes involved
in adipogenesis, lipid metabolism, inflammation, and the
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FIGURE 3 | An overview of phytochemical-derived agonists and the biological function of PPARs. (A) Agonists of PPARγ . (B) Agonists of PPARα. (C) Agonists of

PPARβ.

maintenance of metabolic homeostasis, as summarized in
Figure 3 (43).

The regulation of gene transcription is identical in all three
PPAR subtypes. Upon ligand binding, PPARs form heterodimers
with retinoid X receptor (RXR). The PPAR-RXR heterodimer
translocate to the nucleus, where it binds to peroxisome
proliferator response elements (PPREs) in the promoter region of
the target genes. The transcription process is then initiated, since
a conformational change in PPAR-RXR complexes cause the
dissociation of co-repressors and recruitment of transcriptional
cofactors, while in the absence of a bound ligand, the heterodimer
remains bound to the promoter region of its target genes in
complex with co-repressors and associated histone deacetylases
and chromatin-modifying enzymes, inhibiting the activation of
target genes (44, 45).

PPARγ is predominantly expressed in the adipose tissue and
plays a central role in lipid and glucose metabolism (46). PPARγ

is activated by binding with small lipophilic ligands, mainly
fatty acids. Synthetic PPARγ agonists, such as thiazolidinediones
(TZDs), which were first reported as insulin-sensitizing drugs
in the early 1980s (47), and have been widely used as a
therapeutic compound in the treatment of type 2 diabetes, but
their underlying mechanism remain unclear until the middle

1990s, when scientists found TDZs were ligands for PPARγ

(48).TZDs-induced activation of PPARγ regulates the production
and secretion of adipokines, including adiponectin, leptin, and
resistin, which impact insulin sensitivity through endocrine
signaling pathways (49–51).

Aside from the availability of agonists, the transcriptional
activity of PPARγ is also regulated by its phosphorylation status
(52). The ability of ligand to suppress Ser273 phosphorylation
is well-correlated with their anti-diabetic effectiveness. TZDs
inhibit the Cdk5-mediated Ser273 phosphorylation of PPARγ in
adipose tissue (52), which in turn, down-regulate expression of
genes involved in obesity, including adipsin, a fat-cell-selective
gene, and adiponectin, an insulin-sensitizing adipokine (53).
PPARγ ligands with poor agonistic activity but potent anti-
diabetic effects were revealed to be strong inhibitors of the PPARγ

phosphorylation by Cdk5 (54). Consequently, suppression of
Ser273 phosphorylation of PPARγ was suggested as a promising
approach for development of a new generation of anti-diabetic
agents (53).

Activation of another set of genes leads to side effects of
PPARγ activation. For instance, TZDs induce the expression
of genes involved in adipocyte differentiation and fatty acid
storage, such as adipocyte fatty acid binding protein (aP2)
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(55), phosphoenolpyruvate carboxykinase (PEPCK) (56), and
lipoprotein lipase (LPL) (57). It has been reported that ectopic
expression of PPARγ in non-adipogenic cells converts them into
adipocytes (55), whereas PPARγ knockout mice are unable to
develop adipose tissue (58). TZDs promote fat accumulation in
type 2 diabetic patients is an example of these undesirable clinical
side effects (59).

TZDs was fallen into disuse for their side effects and adverse
events in recent years. Water retention was one of the serious
clinical events due to TZDs, as well as edema and heart failure
(60). The use of TDZs in diabetes clinic visits fell sharply as the
side effects reported repeatedly, from 41% in 2005 to 16% in
2012 (61). Therefore, the use of selective PPARγ modulators
is a potential way to prevent the side effects of some PPARγ

agonists. Different binding modes influence the recruitment of
coactivators and elicit a lower transactivation potential of the
receptor, which results in the maintenance of antidiabetic activity
while minimizing potential side effects of PPARγ modulators
(62). The PPARγ ligand binding domain (LBD) consists of
13 α-helices, H1–H12 and H2’, and one β-sheet region. Full
agonists stabilize H12 by forming hydrogen bonds with the
side chains of Ser 289, His 323, His 449, and Tyr 473. However,
selective PPARγ modulators stabilize the β-sheet through a
hydrogen bond with Ser 342 and helix H3 by hydrophobic
interactions (63, 64), while other selective PPARγ modulators
also display weaker interactions with the residues that
stabilize H12 (65).

Therefore, inhibition of phosphorylation of Ser 273 in PPARγ,
as well as the use of selective PPARγmodulators are two preferred
therapeutic strategies for improving insulin sensitivity while
preventing adipogenesis (53, 66).

Weidner et al. (66) found that amorfrutin, a family of
isoprenoid-substituted benzoic acid derivatives from edible
parts of Glycyrrhiza foetida and Amorpha fruticosa, possesses
powerful antidiabetic effect. In diet-induced obese and db/db
mice, amorfrutin treatment strongly improved insulin resistance,
decreased plasma triglycerides and inflammatory parameters
without concomitant increase of lipid accumulation or other
unwanted side effects such as hepatoxicity (66). It might because
that amorfrutins bind to and modulate PPARγ, which results
in selective gene expression and physiological profiles markedly
different from activation by synthetic TZDs. On the other hand,
amorfrutins block HFD-induced PPARγ Ser273 phosphorylation
in mouse adipocytes, leading to dysregulation of a large number
of genes whose expression is altered in obesity (52, 66). Other
natural products, such as honokiol, a lignan isolated from the
bark, seed cones, and leaves of trees belonging to the genus
Magnolia was also reported to improve metabolic parameters in
diabetic animal models, with reduced side effects in comparison
to TZDs agonists (54, 67).

PPARα is widely expressed in tissues with high fatty acid
catabolic activity, including adipose tissue, heart, muscle, liver,
kidney, and intestine (68). PPARα is also found to be widely
expressed in the digestive tract and hippocampus (69). Activation
of PPARα improves insulin resistance, promotes fatty acid
catabolism, and inhibits transcription of genes related to the
inflammatory response (70).

Several endogenous PPARα ligands have been proposed,
including phospholipid 1-palmitoyl-2-oleoyl-sn-glycerol-3-
phosphocholine, fatty acids such as palmitic acid, oleic acid,
linoleic acid, arachidonic acid, oleoylethanolamide, 3-hydroxy-
(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide
(69, 71, 72). Synthetic PPARα agonists such as fibrates lower
triglyceride levels and raise high density lipoprotein (HDL),
and are used to treat severe hypertriglyceridemia (73). PPARα

knockout mice display a fatty liver phenotype (74, 75).
Overexpression of PPARα improves glucose tolerance in
diet-induced obese mice (76).

Shay and Banz (77) suggested the effect of soy intake on
lipid metabolism may be due to isoflavones, the major bioactive
compound in soy, acting as activator of PPARα. Linalool, aroma
and flavors in most herbal essential oils and teas, was found to
act as a direct ligand of PPARα and reduce plasma TG levels,
and the reduction was markedly attenuated by silencing PPARα

expression (43). Ursolic acid, a natural triterpene compound
found in various fruits and vegetables, is a PPARα agonist and
was found to control the expression of genes related to lipid
metabolism (78, 79). Goto et al. (78) reported that farnesol,
a natural organic compound which is an acyclic sesquiterpene
alcohol, mediated improvement of obesity-associated metabolic
disorders through a PPARα-dependent manner. Picrasidine C,
a dimeric β-carboline-type alkaloid isolated from the root of
Picrasma quassioides, was identified as a selective PPARα agonist
by binding with PPARα LBD forming hydrogen bonds with
Cys276 and Thr279, therefore exhibiting potential in treating
hyperlipidemia, atherosclerosis, and hypercholesterolemia (80).

As reviewed by Rigano et al., structurally related compounds
may have robust differences on binding affinity to PPARα.
For instance, daidzein or formononetin slightly activated
PPARα, while the metabolite 6-hydroxydaidzein exerted a much
higher agonistic PPARα activity. Similarly, 3′-hydroxygenistein
exhibited a more potent on PPARα activation than its precursor
genistein. Biochanin A, differing from genistein only by
methylation of the 4’OH group, was robustly more potent than
its precursor. In contrast, the metabolites dihydrogenistein and
dihydrodaidzein did not transactivate PPARα (69, 81). The
pentacyclic triterpene oleanolic acid was found to stimulate
PPARα activation in keratinocytes while the closely related
ursolic acid, differing only by the methylation pattern on
ring E, failed to exhibit this activity (82). The reason for the
differences is not well-understood: it may be related to an
increase in the bioavailability of the molecules, an improved
interaction with the binding site, different abilities to recruit
coactivators or co-repressors, and/or cross-activation of other
nuclear receptors (69).

As a phosphoprotein, PPARα can also be activated through
post-translational modification. The phosphorylation sites in
PPARα include Ser12, Ser21, Ser179, and Ser230 (83–87). The
increased transactivation of PPARα may occur via decreased co-
repressor interaction, such as NCoR, or increased interaction
with co-activators, such as Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α) (88). Since PGC-
1α is one of the major transcription factors of non-shivering
thermogenesis (89), phytochemicals that potential to activate
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its co-activator PPARα draws a lot of attention to induce
thermogenesis in rodent models. Li et al. (90) reported that
tyrosol, one of the main polyphenolic compounds in extra virgin
olive oil, acted as a ligand which binds with PPARα, and increased
its downstream genes expression, such as uncoupling protein 1,
iodothyronine deiodinase 2 and PGC-1α, resulted in reduced
body weight gain in HFD-induced obese mice.

Peroxisome proliferator-activated receptor β (PPARβ) is
expressed ubiquitously (91). PPARβ, also a lipid ligand-inducible
transcription factor, regulates lipid metabolism and glucose
homeostasis. PPARβ is also shown to suppress the activities
of several transcription factors, including NFκB, and activator
protein 1, thus regulating anti-inflammatory cellular responses
(92, 93). Compared to non-obese subjects, obese patients
exhibited reduced PPARβ expression in both the subcutaneous
and visceral adipose tissues (94). Previous reports have shown
that PPARβ agonists, such as GW501516, ameliorates insulin
resistance by increasing the expression of the insulin receptor, of
significance for treatment of insulin resistance in patients with
type 2 diabetes mellitus (95). Consistently, administered with
the PPARβ agonist MBX-8025 for 8 weeks, overweight patients
presented favorable trends in the body fat percentage, lean body
mass and waist circumference (96).

Resveratrol is a natural stilbene found in grapes and red wine.
Tsukamoto et al. (97) demonstrated that resveratrol treatment
activated PPARβ in bovine arterial endothelial cells. Qin et al. (98)
showed that resveratrol was able to regulate PPARβ expression
in retinal pigment epithelial cells in a dose-dependent manner.
In addition, Lu et al. suggest that the treatment of resveratrol,
modulated adipokine expression and improves insulin sensitivity
in adipocytes by down-regulating PPARβ (99).

Since the ligand binding domains among PPARs are 60–70%
identical (100), phytochemicals may act as dual agonists for
PPARs or as pan agonists. For example, D’Aniello et al. identified
cannabigerolic acid, cannabidiolic acid and cannabigerol from C.
sativa as PPARα/γ dual agonists (101). Amorfrutin has binding
affinities for PPARα, PPARβ, and PPARγ (66).

REGULATION OF KEAP1/NRF2/ARE
SIGNALING PATHWAY

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription
factor in the basic leucine zipper (bZIP) superfamily, is an
attractive target for obesity and metabolic syndrome treatment
and prevention. Dual roles of Nrf2 in obesity and related
metabolic diseases, including the regulation of antioxidant
defenses and hepatic fatty acid metabolism have been reported
(102, 103).

Nrf2 behaves as a cellular redox status sensor and under
normal circumstances, most Nrf2 is sequestered, bound to
the cytoskeletal-anchoring protein Kelch-like ECH-associated
protein 1 (Keap1), a cysteine rich, homodimeric zinc-finger
protein in the cytosol. Keap1 acts as a substrate adaptor
protein for the cullin 3-containing E3-ligase complex and targets
Nrf2 for ubiquitination, which leads to proteasome mediated
degradation of Nrf2. During the exposure of electrophilic

or oxidative stressors, Nrf2 releases from sequestration as
stressors interact with cysteine thiols of Keap1, followed by
translocation to the nucleus. Nrf2 dimerizes with small Maf
proteins or other leucine zipper proteins, binds to antioxidant
response elements (ARE) in the promoter or enhancer of target
genes, and thus regulates genes involved in the protection
against oxidative/electrophilic stress (104, 105). These target
genes include NAD(P)H dehydrogenase, quinone 1(Nqo1),
glutathione S-transferase (Gst), and heme oxygenase-1 (Ho-
1) (103). Electrophilic phytochemicals, such as curcumin and
sulforaphane, possess α,β-unsaturated carbonyl groups which
interact with thiol groups in cysteine residues of the Keap1
protein, releasing Nrf2 into the nucleus, thus activating
downstream genes (106).

Human Keap1 has at least 25 reactive thiols, most of which
are found in the IVR (intervening linker region) redox-sensitive
region (107, 108). Specially, seven critical cysteine residues,
including Cys151, Cys257, Cys273, Cys288, Cys297, Cys434,
and Cys613 (Figure 4A), are responsible for sensing of alkenals
and redox signals, which are required for the stimulation of
Nrf2 (109). Not all phytochemicals preferably interact with
the same region of Keap1 protein. Luo et al. found that for
isoliquiritigenin, the top reactive thiols on human Keap1 were
cysteine residues Cys151 and Cys266. However, for xanthohumol
(a prenylated flavonoid isolated from hops) and 10-shogaol
(pungent constituents of ginger), top reactive thiols on Keap1
were Cys151, Cys319, Cys613 and Cys151, Cys257, Cys368,
respectively (110). The different interactions between these
electrophiles with Keap1 might be due to their unique structures
and reactivities (Figure 4B). It is imperative to investigate the
reason for these differences.

Notably, electrophilic Nrf2 activators might be not highly
selective for Keap1 over other cytoplasmic ubiquitous cysteines
due to their action involving the covalent reaction with
cysteine thiols, which leads to non-specific effects by perturbing
multiple targets except for Keap1 (111). Alternatively, direct
and non-covalent disrupting of Keap1-Nrf2 protein-protein
interaction (PPI) has emerged as a rationale for selective
activation of Nrf2. The C-terminal Kelch domain of Keap1
is responsible for its binding with Nrf2 (109). Among Kelch
domain residues, three highly conserved arginine residues
(Arg380, Arg415, and Arg483) and other serine, glutamate
and asparagine residues (Ser363, Ser508, and Asn382) play
important roles in Keap1 binding to Nrf2 (112). Numerous
common natural phytochemicals (quercetin, EGCG, baicalein,
caffeic acid, sphaeropsidin A, dihydrokaempferol, rutin,
apigenin, and anthocyanins) can bind to Kelch domain through
the formation of non-covalent bonds (H-bond, π-π/H-π
interaction, hydrophobic effects, van der Waals and ionic bonds)
with the specific residues involving Tyr334, Ser363, Gly364,
Asn382, Arg415, Arg483, Ser508, Tyr525, Tyr527, Gln530,
Ser555, Ala556, Tyr572, Phe577, Ser602, and Gly603, thereby
directly disrupting Keap1-Nrf2 interaction to activate Nrf2
(Figure 4C) (106, 113–119). However, these interactions of the
Kelch domain of Nrf2 with phytochemicals were predicted based
on molecular docking, which should be further compared and
verified by using direct biomolecular interaction techniques, such
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FIGURE 4 | Summary of Keap1 protein structure and binding to phytochemicals. (A) Domain structures of Keap1 protein. Seven cysteine residues (Cys151, Cys257,

Cys273, Cys288, Cys297, Cys434, and Cys613) are responsible for covalent binding with phytochemicals to activate Nrf2. (B) Phytochemicals with α, β-unsaturated

(Continued)
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FIGURE 4 | carbonyl groups having highly potent binding with cysteine residues of Keap1 through covalent modification. (C) Non-covalent binding cavity and

residues of Kelch domain of Keap1 with phytochemicals. The reactive unsaturated carbonyl group of phytochemicals and potential non-covalent binding residues of

Kelch domain of Keap1 are highlighted using red font.

as isothermal titration calorimetry, surface plasmon resonance,
and biolayer interferometry.

Besides activating antioxidant genes, Nrf2 is also known to
participate in the regulation of hepatic fatty acid metabolism
in rodents, as a negative regulator of genes that promote
hepatosteatosis (120). Nrf2 has been reported to directly impact
the regulation of genes including ATP citrate lyase (Acly), acetyl-
CoA carboxylase 1 (Acaca), fatty acid synthase (Fasn) and
fatty acid elongase 6 (Elovl6) (104, 121). Hepatic lipogenesis is
negatively regulated by Nrf2 in mice administrated a high fat diet
(122, 123).

Activation of Nrf2 pathway via phytochemical
supplementation has been found to protect mice from obesity.
In a study by Okada et al. (124) sulforaphane supplementation
suppressed oxidative stress and hepatic fibrosis in mice
induced by MCD diet. Sulforaphane also activates lipolysis by
transcriptionally regulating genes related to lipid metabolism,
including adipose triglyceride lipase (Atgl) and hormone-
sensitive lipase (Hsl) (125). Nagata et al. (126), revealed the
anti-obesity effect of glucoraphanin, precursor of sulforaphane,
in HFD-fed mice, and found that 0.3% w/w glucoraphanin
for oral administration for 14 weeks significantly reduced
body weight, alleviated hepatic steatosis and improved insulin
sensitivity in wild type mice but not in Nrf2 KO mice. They
further investigated that whole body energy expenditure
was increased, accompanied with over expression of Ucp1
in WAT, but these results were not found in Nrf2 KO mice.
Thus, stimulation of energy metabolism by Nfr2 activation
was considered effective to combat obesity. Other natural
phytochemicals (i.e., sesamol, curcumin, Garcina cambogia,
timosaponin) that can activate Nrf2 are potential candidates
to prevent obesity and improve metabolic disease via Nrf2
pathway (127–130).

Interestingly, mice deficient in Nrf2 were protected from
high fat diet induced obesity, including improved glucose
tolerance, reduced hepatic triglyceride content and decreased
liver weight (131, 132). Chartoumpekis et al. (133) found that
Nrf2 knockout mice displayed decreased fat mass in association
with small adipocytes and are resistant to diet-induced obesity.
Xu et al. (134) found that enhanced Nrf2 activity induced insulin
resistance in leptin-deficient mice. The mechanisms proposed
include interaction of Nrf2 with other pathways (Fibroblast
Growth Factor 21, or lipid synthesis enzymes) mainly in liver and
white adipose tissue (135).

Despite contrary findings that both Nrf2 gain or
loss of function may protect from obesity, this likely
happens through distinct mechanisms/pathways. A detailed
assessment of obesity in mouse models with Nrf2 deletion
or overexpression is warranted to determine the molecular
pathways underlying the positive and negative effect
of Nrf2.

REGULATION OF FAT MASS AND
OBESITY-ASSOCIATED PROTEIN (FTO)
SIGNALING PATHWAY

Fat mass and obesity-associated protein (FTO) is a member
of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase
family, and is known for the strong association of the multiple
single-nucleotide polymorphisms located in its intron 1 with risk
of obesity (136). FTO knockout or loss-of-function mutations
lead to reduced body weight, and its overexpression contributes
to obesity (137). The mechanism of FTO-induced obesity is
summarized in Figure 5A: FTO expression in the brain positively
regulates food intake through neuropeptide Y (NPY) and ghrelin
(137, 138). FTO in the adipose tissue has been reported to control
the expression of uncoupling protein 1, a mitochondrial inner
membrane proton channel linked to thermogenesis, through
FOXO1 (139). Adipogenesis is promoted by FTO by targeting
Atg5- and Atg7-mediated autophagy as well as adipogenic
regulator factor Runx1t1 (140, 141). The role of FTO in
controlling thermogenesis and adipogenesis in the adipose tissue
largely depends on its regulation of m6A mRNA methylation,
which is the most abundant mRNA modification in mammals
and is involved in various biological processes including obesity
and obesity associated-metabolic disorders (139, 142).

Following the determination of the FTO crystal structure by
Chai’s group in 2010 (Figure 5B) (143), FTO is widely viewed
as an attractive biological target; potentially a small-molecule
inhibitor specifically targeting FTO could be developed for the
treatment of metabolic disorders such as obesity and diabetes.
Some synthetic compounds, such as CHTB, FB23, and diacerein,
occupying the αKG and/or substrate binding site have been
identified as potent inhibitors of FTO, potentially regulating
obesity (144, 145). Peng et al. (139) used a structure-based
hierarchical virtual screening approach to identify potential
FTO inhibitors from 1,323 FDA-approved drugs, and found
entacapone as a chemical inhibitor of FTO which directly
binds to FTO and inhibits its demethylation activity, mediating
metabolic regulation through FOXO1. Development of FTO-
specific inhibitors from natural phytochemicals is a promising
strategy to avoid the side effects of synthetic drugs for treatment
of obesity and other chronic diseases (146). The natural
phytochemical Rhein was identified as the first FTO inhibitor
that disrupts FTO activity by directly binding to the catalytic
domain, which blocks access to the ssRNA substrate (Figure 5C)
(147), and rhein remarkably suppresses adipogenesis in the stage-
specific and dose-dependent manners (https://pubmed.ncbi.
nlm.nih.gov/34790688/). But, side-by-side comparison analysis
revealed that the rhein treatment and FTO knockdown triggered
the differential gene regulatory patterns, though both resulting
in impaired adipocyte formation, suggesting separate regulation
of global m6A pattern and adipogenesis mediated by rhein
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FIGURE 5 | Summary of molecular mechanism of FTO-induced obesity, FTO protein structure and its binding with rhein. (A) Mechanism of FTO-induced obesity

through regulating food intake, thermogenesis and adipogenesis. (B) Domain structures of FTO protein. Seven amino acid residues (Arg96, His231, Asp233, His307,

Arg316, Arg322, and Ile370) are responsible for FTO activity. (C) Binding cavity and residues of FTO protein with rhein. The potential binding residues of FTO are

highlighted using red font.

(148). So, the interrelation of rhein-FTO- adipogenesis remain
elusive. Epigallocatechin gallate has been shown to inhibit
adipogenesis by regulating FTO expression in an mRNA
m6A-dependent manner (149). Baicalin has been reported to
ameliorate high-fat diet-induced obesity and hepatic steatosis
through carnitine palmitoyltransferase 1 (CPT1) (150), of
which mRNA serves as a potential substrate of FTO for m6A
modification, predicted by m6A-Atlas (151). Zhong et al. (152,
153), reported that Angelica sinensis alleviated HFD-induce
obesity through altering expression of FTO gene. Betaine was

also found to decrease FTO expression and improved m6A
methylation in adipose tissue of wild-type mice with high-fat
diet, resulting in decreased final body weight and improved
glucose tolerance (154). In another human trial included
214 participants revealed that, Garcinia cambogia supplement
with 1,000 mg/day for 6 months significantly reduced body
weight and improved serum lipid profile, but these beneficial
effects were hampered by polymorphisms of FTO gene (155).
Suggesting that, FTO may at least partially involved in this anti-
obesity process.
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TABLE 1 | Phytochemicals targeting specific signaling pathway act against obesity and related symptoms.

Phytochemicals Target molecular Major results References

Curcumin TLR4↓ - Anti-inflammation (↓macrophage infiltration of adipose tissue) and insulin sensitizer (↓serum

glucose in GTT) in HFD-mice (0.4% of diet, 14 weeks)

(34)

Kaempferide TLR4↓ - Anti-obesity, anti-hyperlipidemia, anti-hyperglycemia, anti-inflammation and anti-oxidation

(↓body weight, ↓serum TG, TC, HDL-C, LDL-C, glucose, TNFa, MCP-1; ↑serum adiponectin;

↑liver GSH, SOD, CAT, T-AOC, GSH-Px; ↓liver MDA) in HFD-mice (10 mg/kg bw, p.o., 8

weeks).

(30)

Withaferin A TLR4↓ - Anti-obesity, insulin sensitizer, anti-inflammation and anti-oxidation (↓body

weight;↓epididymal WAT weight;↑serum adiponectin, ↓serum leptin, TC, TG, FFA, ALT, AST;

↓serum glucose in GTT and ITT; ↓serum IL-6, TNFa, IL-1b, CRP, MCP-1; ↑liver GSH, SOD,

CAT, T-AOC, GSH-Px; ↓liver TBARS) in HFD-mice (1.25 mg/kg bw, p.o., 12 weeks).

(29)

Isoliquiritigenin TLR4↓ - Attenuated adipose tissue inflammation in a co-culture model composed of adipocytes and

macrophages (↓NF-kB activation, Akt phosphorylation).

- Attenuated adipose tissue fibrosis in HFD-induced obese mice (↓ fibrotic area of eWAT).

(31)

Amorfrutin A1 PPARγ–

agonist (AG)

- Anti-hyperglycemia and insulin sensitizer (↓body weight; ↓blood glucose; ↓HOMA-IR, ↓blood

glucose and insulin in GTT; ↑pancreatic insulin; ↓plasma ALT,TG, FFA) in HFD-obese mice, and

↓ plasma insulin; ↓plasma TG; ↑pancreatic insulin in db/db mice (100 mg/ kg bw, p.o., 3

weeks).

- Anti-steatosis (↓body weight; ↓plasma insulin, leptin; ↓liver TG) in HFD-obese mice (37 mg/

kg bw, p.o., 15 weeks).

(66)

Amorfrutin B PPARα–AG

PPARδ–AG

PPARγ–AG

- Anti-hyperglycemia, insulin sensitizer (↓blood glucose, ↓plasma insulin, ↓HOMA-IR index,

↓blood glucose and insulin in GTT; ↓plasma TG and NEFA) in HFD-diabetic mice (100 mg/kg

bw, p.o., 27 days).

(179)

Soy isoflavones PPARα–AG

PPARα–AG

- Anti-hyperlipidemia (↓liver weight, ↓liver cholesterol, ↓liver TG, ↓plasma cholesterol).

- Insulin sensitizer (↓plasma insulin (male), ↓serum glucose in GTT) in obese Zucker rats (0.75

g/kg of diet, 11 weeks).

(180)

Linalool PPARα–AG - Anti-hyperlipidemia (↓plasma TG) in Western-diet fed C57BL6J and apoE2 mice but not in

PPARα -deficient mice (100 mg/kg bw, p.o., 3 weeks).

(43)

Tyrosol PPARα–AG - Anti-obesity (↓body weight, ↓liver weight, ↓plasma TG, TC, and glucose) in obese mice

(0.2% of diet, 16 weeks).

Ursolic acid PPARα–AG - Anti-hyperlipidemia (↓TG and TC content) in HepG2 cells (5–100mM). (79)

Picrasidine C PPARα–AG - Promoted PPARα transcriptional activity and induced the expression of CPT-1, PPARα,

PDK4, and ABCA1 in HepG2 cells (1–20µM).

(80)

Vaticanol C

(resveratrol

tetramer)

PPARα

and PPARβ/δ–AG

- Activated PPARα and β/δ in bovine arterial endothelial cells (1.25–10µM).

- Upregulated hepatic expression of PPARα-responsive genes and muscle PPARβ/δ-responsive

genes in wild-type, but not PPARα-knockout mice in HFD-fed mice (0.04% of diet, 8 weeks).).

(97)

Resveratrol PPARα

and PPARδ–AG

- Anti-inflammation (↓ROS, ↓IL-8) in retinal pigment epithelium cells (25µM). (98)

(Continued)
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TABLE 1 | Continued

Phytochemicals Target molecular Major results References

Honokiol PPARγ–AG - Induced glucose uptake but not adipogenesis in 3T3-L1 cells (1–10µM).

- Decreased blood glucose levels in diabetic KKAy mice with simultaneous suppression of

weight gain.

(181)

Glucoraphanin Nrf2↑ - Anti-obesity, anti-hepatic steatosis, insulin sensitizer (↓body weight; ↓fat mass;↑energy

expenditure; ↓liver weight, TG, FFA, AST, ALT; ↓serum glucose in GTT and ITT; ↓HOMA-IR

index) in HFD-fed wild-type mice but not in HFD-fed Nrf2 knockout mice (0.3% of diet, 14

weeks).

(126)

Sesamol Nrf2↑ - Anti-obesity (↓body weight, eWAT, iWAT; ↓serum ALT, glucose, FFA, LDL-C; ↑energy

expenditure) in HFD-mice (100, 200 mg/kg bw, p.o., 12 weeks).

- Stimulated expression of UCP1 in wild-type adipocyte but not in Nrf2 knockout cells.

(127)

Curcumin Nrf2↑ - Anti-oxidation (↓serum MDA; ↓mitochondria MDA; ↓muscle MDA, ROS); Insulin sensitizer

(↓serum glucose in GTT and ITT; ↓HOMA-IR index) in HFD-mice (50 mg/kg bw, p.o., 18

weeks).

(128)

Garcinia cambogia Nrf2↑ - Anti-hepatic steatosis, anti-hepatic apoptosis (↓serum ALT, AST, TG, TC) in HFD-mice (200,

400 mg/kg bw, p.o., 8 weeks).

- Reduced lipid accumulation, apoptosis, ROS level in FFA-induced HepG2 cells (20–80 ug/ml,

24 h).

(129)

Timosaponin Nrf2↑ - Anti-oxidation (↓serum MDA; ↑serum T-AOC, GSH-Px; ↓liver ROS, MDA; ↑liver GSH-Px;

- Anti-obesity (↓body weight, epididymal and retroperitoneal fat weight, number of adipocytes

in epididymal and retroperitoneal fat) in HFD-mice (0.1, 0.4 g/kg bw, p.o., 11 weeks).

(130)

EGCG FTO↓ - Anti-adipogenesis (↓adipocyte differentiation, lipid accumulation) in 3T3-L1 cells (50–200µM,

30 h).

(149)

Clausine E FTO↓ - Inhibition of FTO activity in-vitro. (182)

Garcinia cambogia FTO - Anti-obesity (↓body weight, fat mass, visceral fat; ↓serum TC, TG, glucose; ↑basal metabolic

rate) in obese humans (214 participants, 1,000 mg/day, 6 months), the presence of

polymorphisms FTO might hamper these beneficial effects.

(155)

Angelica sinensis FTO↑ - Anti-obesity [↓body weight (10 g/kg bw)] and promoted methylation of CpG island in the FTO

promoter in HFD-mice (2, 5, 10 g/kg bw, p.o., 4 weeks).

- FTO expression in high dose group (10 g/kg bw) were significantly higher than control.

(153)

EGCG ↓miR-33a

and miR-122

- Increase ABCA1 mRNA and protein level, not altered FAS mRNA, slightly decreased FAS

protein level in HepG2 cells (50µM).

(171)

Resveratrol ↑miR-33a

and miR-122

- Increased ABCA1 protein level, and increased FAS mRNA and protein in HepG2 cells (50µM). (171)

(Continued)
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TABLE 1 | Continued

Phytochemicals Target molecular Major results References

Zerumbone ↓miR-146b - Anti-obesity, insulin sensitizer (↓body weight; ↓eWAT; ↓adipocyte size; ↓serum triglyceride;

↓serum insulin; ↓glucose; ↓HOMA-IR) (0.01%, 0.025% of diet, 8 weeks).

- Anti adipogenesis in 3T3-L1 cells (↓C/EBPα, PPARγ, FASN, Ap2) (5, 10µM for 48 h).

(173)

Fisetin ↓miR-378 - Anti-hepatosteatosis (↓body weight; ↓serum cholesterol and triglyceride; ↓fat accumulation

and triglyceride levels of liver in HFD-feed mice (0.5% of diet, 10 weeks).

(174)

Polyphenols

extracted from

Hibiscus sabdariffa

↓miR-103

and miR-107

- Anti-obesity, anti-hepatic steatosis, insulin sensitizer (↓body weight; ↓adipocyte size of eWAT;

↓serum insulin, glucose, HOMA-IR) in HFHC-feed mice.

(175)

↑, increased; ↓, decreased.

MICRORNA (MIRNAS) PATHWAY
REGULATION

The miRNAs are a class of regulatory RNAs. They are small
non-coding RNA molecules, averaging 22 ribonucleotides in
length, and may repress gene expression post-transcriptionally
by binding to untranslated regions and coding sequences of
target mRNAs (156). The class of RNA was first discovered in
Caenorhabditis elegans in 1993, and then identified in vertebrates
and plants (157).

The miRNA coding sequences are transcribed by RNA
polymerase II to yield primary miRNAs (pri-miRNAs) in
the nucleus, and further processed by Drosha RNAse III
endonuclease and microprocessor complex subunit DGCR8 to
release precursor miRNAs (pre-miRNAs), which are about 60–70
ribonucleotides long. The pre-miRNAs are transported into the
cytoplasm by Exportin-5 and cleaved by Dicer complex, another
RNase III enzyme, to generate miRNA/miRNA double stranded
molecules (158). Upon separation of the two strands, the guide
strand binds to an Argonaute (Ago) protein and is integrated into
the RNA-induced silencing complex (RISC), where it targets and

binds to the 3
′
-untranslated region (3

′
UTR) of target mRNAs

via base pair complementarity (159). This binding leads to
degradation or translational repression of target mRNAs (160).

Thousands of different miRNAs have been identified, and
miRNAs are now recognized as one of the most abundant classes
of gene-regulatory molecules in multicellular organisms (161).
Computational and experimental studies have shown that some
miRNAs play a role in lipid metabolism and glucose homeostasis,
therefore, may be influencing the pathogenesis of metabolic
diseases (162).

MicroRNA-122 (miR-122), an abundant liver-specific
miRNA, accounts for approximately 70% of total miRNAs in the
liver. microRNA-122 is the first miRNA to be linked recently
to fat and cholesterol metabolism, suggesting it as a therapeutic
target for metabolic diseases (163, 164).

Temporary miR-122 inhibition resulted in reduced plasma
cholesterol levels in both normal and diet-induced obese

mice (163, 165), by down-regulating hepatic gene expression
including HMG-CoA reductase and phosphomevalonate kinase
(PMVK), which are involved in cholesterol biosynthesis (163).
Consistently, a study of non-human primates demonstrated
that miR-122 inhibition caused a dose-dependent decrease in
plasma cholesterol, indicating a therapeutic potential in the
treatment of hypercholesterolemia in humans (166). A study
fromWang et al. found that in young adults, elevated circulating
miR-122 is positively associated with obesity and insulin
resistance (167).

Excessive retention of triglyceride within hepatocytes was
observed in miR-122-knockout mice. Hsu et al. found that
both liver-specific and germline miR-122 knockout mice
exhibited increased hepatic triglyceride accumulation and
progressive steatohepatitis, which was not seen in the mice
with temporary miR-122 inhibition (168). The underlying
mechanism may be due to the up-regulation of triglyceride
biosynthesis related gene expression in the liver: 1-acylglycerol-
3-phosphate O-acyltransferase 1 (Agpat1) and monoacylglycerol
O-acyltransferase 1 (Mogat1), (168) and the reduction of
microsomal TG transfer protein (Mttp) (169), which normally
functions to enhance the rate of lipid transfer between
vesicles (170).

Phytochemicals which modulate the expression of miR-122
possess the potential to regulate lipid metabolism associated
with obesity and metabolic syndrome. Epigallocatechin-3-gallate
was found to decrease miR-122 expression. Using 1H NMR
spectroscopy, EGCG was observed to bind directly to miR-
122 through an interaction with all of the rings of the EGCG
molecule (171). However, resveratrol was found to bind directly
to miR-122 primarily through an A ring interaction, which
increases the expression of miR-122. It is hypothesized that
the size and chemical structure of these molecules deferentially
influenced the expression of miRNA, which may account for
the opposite effects of resveratrol and EGCG on miRNA
modulation (171).

Other phytochemicals were reported as modulators of miRNA
levels. Polyphenols in acai and red muscadine grape protect
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human umbilical vascular endothelial cells from glucose and
lipopolysaccharide-induced inflammation, partly acting through
the upregulation of miR-126 expression (172). Zerumbone,
a phytochemical isolated from the subtropical Zingiberaceae
family, was reported to reverse high-fat diet-induced adiposity
by restoring AMPK-regulated lipogenesis and the regulation
of miRNA-146b mediated adipogenesis (173). Fisetin, which
present in fruits and vegetables such as strawberries, apple,
cucumber, persimmon, grape and onion, was shown to
suppresses the expression of hepatic miR-378, a miR located
in intron of the peroxisome proliferator-activated receptor
gammacoactivator-1 beta (PGC-1β), resulting in preventing
obesity and hepatic lipid accumulation induced by high fat diet
in mice (174). Polyphenols derived fromHibiscus sabdariffa were
reported to regulate the expression of miR-103, miR-107 and
miR-122 and attenuated weight gain, liver steatosis and insulin
resistance in hyperlipidemic mice (175).

Emerging data suggest that phytochemicals alter the
expression of miRNAs involved in regulation of cancer
pathobiology by modulating the expression of miRNAs through
mechanisms including epigenetic, transcriptional, and miRNA
processing (176). However, relatively little is known about
how phytochemicals regulate miRNAs related to obesity and
metabolic syndrome (177). It is hypothesized that similar
mechanisms might be involved, although more investigation is
needed. Since each mammalian miRNA may regulate a large
number of target genes, it can be that several different miRNAs
can act synergistically at multiple target sites of a single Mrna
(178). Thus, it is imperative to manipulate multiple candidate
miRNAs in different combinations rather than changing one
miRNA at a time for a full functional characterization of their
regulatory impact.

CONCLUSION

Plenty number of phytochemicals have been reported as
candidates for the management of obesity. However, the role of
the structure of phytochemicals in specific signaling pathways
remains unclear. In this review, we discussed the regulation of
phytochemicals on five different signaling pathways involved
in obesity and related symptoms (Table 1). In particular, we
discussed specific molecular structures required for regulation
to occur. We suggest that, in the future, more attention should
be paid to the preliminary research on the correlation between
structures of phytochemical and specific target molecular using
accessible methods, such as molecular docking by computer or
in vitro kinetic measurements. Although the current evidence
is limited, we suggest that in some cases, the optimal molecular
structure for a specific pathway to become activated or regulated
may ultimately be deduced.
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