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Abstract: We conduct a case study in which we empirically illustrate the performance of different
classes of Bayesian inference methods to estimate stochastic volatility models. In particular, we
consider how different particle filtering methods affect the variance of the estimated likelihood. We
review and compare particle Markov Chain Monte Carlo (MCMC), RMHMC, fixed-form variational
Bayes, and integrated nested Laplace approximation to estimate the posterior distribution of the
parameters. Additionally, we conduct the review from the point of view of whether these methods
are (1) easily adaptable to different model specifications; (2) adaptable to higher dimensions of the
model in a straightforward way; (3) feasible in the multivariate case. We show that when using the
stochastic volatility model for methods comparison, various data-generating processes have to be
considered to make a fair assessment of the methods. Finally, we present a challenging specification
of the multivariate stochastic volatility model, which is rarely used to illustrate the methods but
constitutes an important practical application.

Keywords: Bayesian inference; Markov Chain Monte Carlo; Sequential Monte Carlo; Riemann
Manifold Hamiltonian Monte Carlo; integrated nested laplace approximation; fixed-form variational
Bayes; stochastic volatility

1. Introduction

The field of Bayesian statistics and machine learning has advanced in recent years
quite rapidly. The methods that have been developed do not often find fast assimilation
across different fields. In this review, we aim to provide the reader with methodologies
that try to solve the estimation problem in models with latent variables and intractable
likelihoods. We are in particular interested in the methods that can be used to estimate
nonlinear state-space models and in particular stochastic (latent) volatility models. There
are multiple studies that conducted review and comparison of the methods of estimation
of the stochastic volatility models [1-3]. We briefly mention some of the methods that have
been reviewed; however, most of the methods considered in this paper have not entered
those reviews. In this paper, we focus in particular on comparing methods that target
posterior distribution exactly and the methods that try to approximate it. We also conduct
the review from the point of view of estimating multivariate models with these methods
and discuss what the bottleneck is in each of them when extending to higher-dimensional
stochastic volatility (SV) models. We consider different data-generating processes for
simulating data in the empirical studies and conclude that the choice of the data-generating
process can heavily affect performance of a method. Thus, illustrating the performance of a
method on just one data generating process or one real-world data set is not sufficient.

In financial econometrics literature, GARCH-type models prevail since they are much
simpler to estimate. Stochastic (latent) volatility models, however, can be more natural
frameworks for modeling asset returns. They can provide flexible and intuitive tools for
applications in financial econometrics as well as some other disciplines. In particular,
multivariate stochastic volatility models offer an attractive framework for detection and
measuring volatility spillover effects. Volatility spillovers in this framework can be defined

Entropy 2021, 23, 466. https:/ /doi.org/10.3390/e23040466

https://www.mdpi.com/journal/entropy


https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23040466
https://doi.org/10.3390/e23040466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040466
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23040466?type=check_update&version=1

Entropy 2021, 23, 466

2 of 40

through Granger-causal links in the latent (unobservable) volatility process, which is mod-
eled with a Vector Autoregressive model (VAR(p)). Insights about the causal structure
can help to identify the relationship (Granger-causality or/and contemporaneous corre-
lation) between the financial markets. Such information can be insightful and helpful in
the decision-making process of portfolio managers and policymakers. These models are,
however, rarely considered in practice. Multiple Bayesian inference methods have been
proposed for the estimation of this class of models in recent years. In this paper, we identify
the bottlenecks in different classes of methods for the estimation of these models in the
multivariate case.

One of the stepping stones of estimation of the nonlinear state-space models in general
(and stochastic volatility models in particular) lies in the intractability of the likelihood,
which is the result of the presence of an unobservable process in the model and nonlinear
dependence between this process and the observed data. The likelihood can be estimated
with particle filter methods, also known as Sequential Monte Carlo. This is a computation-
ally intensive procedure; however, depending on the problem and the data, it can provide
excellent results. The second stepping stone of the estimation is the intractable posterior
distribution. A standard starting point for sampling from the posterior distribution is the
Metropolis-Hastings algorithm, which is a general method and can be applied straightfor-
wardly to different models. It works well when the number of parameters in the model is
small. However, the convergence of the algorithm can be slow in larger models, due to
inefficiency of the sampling with random walk proposals. Particle Metropolis-Hastings [4]
combines Sequential Monte Carlo for the likelihood estimation with Metropolis-Hastings
for the sampling from the posterior, which results in a state-of-the-art method in terms of
the estimation quality since it targets the exact posterior. The downside of this method
is that it is computationally extremely demanding. Note that, while we consider particle
Metropolis-Hastings in this paper, the class of methods from [4] is more general.

Two main downsides of particle Metropolis-Hastings are random walk behavior of
the proposals and computational burden. One of the possible solutions to the first problem
are the algorithms that use gradient information for the construction of the proposal
distribution and thus explore the parameter space more efficiently. An additional step in
improving these algorithms is defining them on a Riemann manifold instead of Euclidean
space as proposed in [5]. The resulting algorithm, which we consider for the comparison in
this paper, is Riemann Manifold Hamiltonian Monte Carlo. For extensive comparison of the
methods that exploit gradient information and Langevin dynamics—such as Metropolis-
adjusted Langevin algorithm, Hamiltonian Monte Carlo, Riemann manifold Metropolis
adjusted Langevin algorithm, andRiemann Manifold Hamiltonian Monte Carlo—we refer
to [5].

Thus far, we have discussed the methods that target the posterior distribution exactly
and have a high computational burden, which makes empirical investigation of their
performance in high-dimensional cases infeasible. In the last decade, a large number
of methods have been published on approximate posterior inference thaat allow much
faster computations, but lose in terms of precision of the estimation. In this paper, we
consider two such methods that deal with different types of approximation. Fixed-form
variational Bayes, proposed in [6], assumes hierarchical factorization of the prior and
posterior distributions, and the factorized distributions are approximated by an analytically
tractable distribution from a certain family of distributions 4(-). Then, instead of solving
integration problem, one solves the optimization problem of minimizing the Kullback-
Leibler divergence between q(-) and p(-), where p(+) is the target distribution. The second
approximate method that we consider is the integrated nested Laplace approximation
(INLA) [7]. The method relies on the nested version of the classical Laplace approximation.
It became very popular in recent years and made computations in many models feasible.

In this review paper, we focus our attention on the following methodologies and
provide a comparison for some of the methods via a simulation study. We consider how
the variance of the estimated likelihood is affected by choosing different particle-filtering
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algorithms. Unlike previous studies, we consider the variance of the estimated likelihood
over the whole parameter space and notice that it is affected by some parameters of the
model more than by the others. We compare particle Metropolis-Hastings with Riemann
Manifold Hamiltonian Monte Carlo as two state-of-the-art sampling methods for this type
of problem. We asses how well the INLA method performs in the task of the estimation of
the parameters of stochastic volatility model and finally, compare fixed-form variational
Bayes methods with sampling by RMHMC. All the between-methods comparisons are
performed on multiple simulated data sets with different underlying parameters. We
illustrate that, for fair comparison and performance assessment, illustration only on data
sets is not sufficient.

The paper is organized as follows. In Section 2, we introduce the model and its
different specifications. While in simulation studies we use univariate model, we do
introduce multivariate stochastic volatility models with Granger-causal feedback as the
model of interest for high-dimensional inference. In Section 3, we review the methods
that can be used for the estimation of this class of models. We introduce major ideas
behind these methods, and for the details of the derivations we refer to the original papers.
In Section 4, we perform empirical case study on different simulated data sets and compare
the methods on two real-world time series. We in particular focus on the precision loss of
parameter estimation when using approximate methods and how adaptable the methods
are to perform multivariate estimation and estimation of various model specifications.

2. Model
2.1. Univariate Stochastic Volatility Model

In this section, we introduce the model of interest that we will use in the simulation
studies. Stochastic volatility (SV) models are concerned with modeling asset prices or asset
returns depending on how the model is formulated. Let P; be the price of the asset at time
t or the exchange rate at time f (we consider two applications to real data in Section 3.5:
one to exchange rate and one to log-returns). Then the log-return y; is

P
yr = log(1+ R;) = log Ttl 1)

Stochastic volatility models are built in such a way that they can mimic stylized facts about
financial markets and log-returns y;. Stylized facts are empirically observed statistical
properties of asset prices and asset returns. Typical examples of stylized facts are

o Volatility clustering and persistence: the big changes in asset returns tend to be followed
by big changes, and small changes in asset returns tend to be followed by small
changes; in other words, there are periods of large fluctuations and small fluctua-
tions [8].

*  Leverage effect: the changes in stock prices may be negatively related to the changes in
volatility [9].

e Co-movements: different stocks tend to exhibit co-movements, which means that if the
volatility of one stock changes in a specific direction, volatilities of the other stocks
tend to change in the same direction [9].

One of the earlier works that received much attention in the financial literature and
proposed a mathematical model that tried to explain the dynamics of financial markets
is [10]. Numerous continuous-time stochastic volatility models have been proposed since
then, and among the first ones, multiple variants should be mentioned [11-14]. The model
we will be considering in this chapter can be viewed as a discrete version of the model
in [13] derived by using Euler-Maruyama approximation. The stochastic volatility model
in continuous time can be written as

ds(t) = o(t)dBy(t), 2)
Ino?(t) = p + Blno?(t)dt + oy dBy(t), 3)
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where s(t) is log of asset price, 0> (t) is the volatility, By (t) and By (t) are Brownian motions
that satisfy corr(B1(t), Bo(t)) = p. If p < 0, there is leverage effect present. Thus, log of
asset price follows diffusion and its volatility parameter also follows diffusion [15]. As we
often get the data in discrete time, usually the discrete time approximation of the model is
used in practice. The discrete model then follows by using Euler-Maruyama approximation

Yt = Ot€y, 4)
lrurtzJrl =u+ <]>lru7t2 + oyMe1, (5)

where y; is logarithmic return, €; = By(t +1) — B1(t), 1141 = Ba(t+1) — Ba(t), ¢ =1+ B.
Further, ; ~ N(0,1) and ; ~ N(0,1), corr(et, n4+1) = p-

We get state-space representation of the model that is commonly used by defining
ht = Ino? and o = exp(hy)

yt = exp(ht/2)et, (6)
hiv1 = p+ Phe + 1141, ()

where y; are log-returns that are observed and volatility #; is latent and drives the dynam-
ics of y;. Figure 1 illustrates this structure of the model. Note that the latent volatility
process has an autoregressive form. However, unlike in the standard autoregressive model,
the latent volatility is not observed and thus has to be estimated together with the model
parameters y, ¢, and 0, which are the scale, the volatility persistence and the noise vari-
ance of the latent volatility process, respectively. The persistence parameter ¢ reflects one
of the stylized facts of financial returns, namely volatility persistence. The intuition is
as follows: if ¢ > 0 and exp(h;_1/2) is large, then exp(h;/2) will tend to be large too.
Hence, the model can account for volatility clustering. In this paper, we consider stationary
volatility cases with |¢| < 1. Finally, one can also incorporate leverage effects by defining
negative correlation between noise terms €; and 7;.1. Intuitive interpretation of the lever-
age effect goes as follows: bad news tends to decrease the price, which means that financial
leverage increases, the firm becomes riskier, and thus expected volatility also increases.
The leverage effects in this model have been studied in [16]. The stochastic volatility model
can be parametrized in multiple ways; often, the following alternatives are considered [2].
Other ways to parametrize this model are presented in Equarions (8) and (9). The left-hand
side version of the model corresponds to that of [17]. The right-hand side version is a
different way to define the scaling parameter; in this case, it is . For identifiability reasons,
only 8 or y as in Equation (7) should be included in the model.

ye = Ve ye = Bexp(hi/2)e; ©)
loght = u+¢loghi_1 +1; hy = ¢phy_1 + 1. )

Note that the authors of [17] define the leverage effect as correlation between €; and 7,
so the correlation between noise terms is contemporaneous while [16] model correlation
between €; and #;;1, which corresponds to correlation of the returns with one-step-ahead
volatility. Reference Yu [18] shows that the approach of [16] is preferable. In particular,
while in case of [16] the model is a martingale difference sequence, i.e., the past does not
help to predict the future of the time series, in the case of [17], it is not. Hence, in the latter
case, the efficient market hypothesis is violated.

In the remainder of this manuscript, we will work with either specification of the
model defined in Equations (6) and (7) or in right-hand side of Equations (8) and (9). These
models are equivalent, and we interchange the representation either for the convenience
of using some of the methods or for comparison with other work. In the literature, both
specifications are frequently used, and in some papers (for example, ref. [19]) the transition
from one specification to another is conducted by observing that f = exp(/2).
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Under the assumption that |¢| < 1, the unconditional first and second moments of
the latent process h; are

2
1—¢2

The challenge of the estimation of the model lies in the intractability of the likelihood
and posterior distribution. The likelihood factorizes as

E(h) = Lgb Var(hy) = (10)

T

L(ylo) = [ [ p(velyr:-1.6), (11)
t=1

where the terms in the product can be computed recursively, and it becomes clear that the
likelihood is a high-dimensional integral

p(yelyi:—1,6) /P vielhe, 0)p(hely1.4—1,0)dhy. (12)

There is no analytical solution to the integral in Equation (12), and in this paper, we consider
methods to estimate it using sequential Monte Carlo methods.

hy hy h3 ht—4 hrt
o
! Y2 Y3 Y1-1 yT

Figure 1. Graphical representation of stochastic volatility model. Observations y; represented by
shaded edges depend at each time point on the state of the latent volatility process h;.

2.2. Multivariate Stochastic Volatility Model

In this section, we introduce the multivariate stochastic volatility model, which is
rarely used in practice due to the challenges of estimation. One of the objectives of this
paper is to assess whether modern methods in Bayesian inference are capable of the
estimation of these models in high-dimensional case. Multivariate or high dimensional
application of this class of models can give insightful information to practitioners. We
deal with the same set-up as before; however, we now consider multiple time series of
logarithmic returns that are interconnected through the latent volatility process

Y, = ey, (13)

where €; ~ N(0,R) and R is a correlation matrix with entries r; = 1,i = 1,...,n on the
diagonal. Furthermore, (); is a diagonal matrix that contains time-varying volatilities that
are driven by an independent stochastic process h;,

Q; = diag(exp(ht/2)).

The process h; of log-volatilities follows a VAR(p) process
p
hi=p+) O (hy_i—p)+1, (14)
k=1
where @, = ((Pif/k)ijzl _ are n x n coefficient matrices. Introducing the matrices & =

(gbl-]-,k) i, allows us to model connectivity in financial time series through the concept
of Granger-causality in latent volatility process. We say that /; does not Granger-cause /;
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if all (gb,-]-,k) k=l,p = 0. The standard conditions on stationarity of a vector autoregressive

model apply: the root of HI — A®| = 0 should lie outside the unit circle, and the errors 7; are
independent and identically normally distributed with mean zero and variance-covariance
matrix ¥ = dia g(alz, ...,02). Equations (13) and (14) are multivariate extensions of the
model described in Equations (6) and (7). The representation from the right-hand side of
Equations (8) and (9) can be obtained by including a vector of parameters  into 3y and
removing y from Equation (14). As before, for identifiability, only one vector of the scale
parameters—either y or B—should be included in the model.

The above MSV model can also be viewed as a non-linear state-space model where (14)
is the state equation of the latent process h; and (13) is the observation equation that
depends non-linearly on the latent state. Note that, in this model, the time series are
interconnected and the relationship between them can be interpreted through the concept
of Granger-causality in latent volatility processes.

3. Methods
3.1. Bayesian Inference

In this paper, we review various methods that sample from or approximate the poste-
rior distribution of the parameters of the model 6. The sampling or approximate methods
are necessary since we are working in the framework when the posterior distribution and
the likelihood are analytically intractable. The Bayes’ rule allows us to write posterior
distribution in the form

7(6)g(y|6)

m(y)

where 77(0) is the prior distribution of the parameters of the model, ¢(y|0) is the likelihood
of the data given parameters of the model, and m(y) is the marginal density of y, which
can be viewed as normalizing constant and which we will ignore in this paper. In the
remainder of the paper we will work with the Bayes’ rule in proportionality terms:

p(0ly) = , (15)

p(0ly) < 7(8)g(y|0). (16)

Note that in the stochastic volatility model we have to estimate parameters of the model
0= we, (72) and the latent vector of volatilities k. Thus, we are interested in the following
form of the Bayes’ rule

p(0,hly) o< g(y|6,h)f(h|6)7(0). (17)

Multiple approaches can be used for the estimation of p(6, h|y). One of the challenges is
that neither posterior p(6, h|y) nor the likelihood g(y|6, h) is tractable. We start our review
by considering sequential Monte Carlo methods, also known as particle filtering, for the
estimation of the likelihood g(y|6, h). We then discuss Metropolis-Hastings algorithm for
sampling from the posterior and how these two algorithm can be combined into particle
Metropolis-Hastings for sampling from the posterior distribution. We continue the review
of the methods by considering RMHMC method in which the parameters and volatilities
are sampled within the same framework. Finally, we review two approximate methods:
integrated nested Laplace approdximation and fixed-form variational Bayes, two different
ways of approximating posterior distribution.

3.2. Sequential Monte Carlo for the Estimation of the Likelihood

The Sequential Monte Carlo (SMC) method, also known in the literature as particle
filtering, is considered a state-of-the-art method for estimation of the intractable likelihoods
in nonlinear state-space models. The general idea behind this method lies in the estimation
of the latent states by drawing multiple samples (particles) and then propagating them
in time according to corresponding importance weights. By combining the weights over
all time steps, one obtains a marginal likelihood estimate. Standard and well-known
schemes are Bootstrap particle filter (BPF) [20], Segiential Importance Sampling (SIS), and
Segiential Importance Resampling (SIR) [21]. Sequential Monte Carlo methods were elegantly
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combined with Markov Chain Monte Carlo in [4], and the method was named particle
Markov Chain Monte Carlo (PMCMC). This method provides a powerful and coherent
approach for Bayesian inference in a wide range of complex models. In the later subsections,
we will discuss how sequential Monte Carlo methods are combined with Markov Chain
Monte Carlo for fully Bayesian inference in stochastic volatility models. One of the concerns
when using and implementing SMC for the likelihood estimation is the variance of the
estimated likelihood. Standard SMC techniques such as SIS are prone to have high variance
of the estimated likelihood once the dimensionality of the problem increases [22]. A number
of studies have tried to address this problem. The common choice of proposal for sample
of particles in standard schemes is f(h¢|h;_1). Pitt and Shephard [23] propose an auxiliary
particle filter as a solution that is using proposal for particles which takes into account the
current observation ¢q(h¢|h;—1,y:) and not only the dynamics of the latent process itself.
Scharth and Kohn [24] suggest using efficient importance sampling [25] inside the PMCMC
procedure. Guarniero et al. [26] use twisted representation of the model and use the
look-ahead type of particle filtering to address the issue of high variance of the estimated
likelihood. Johansen and Doucet [27] compare sequential importance resampling (SIR)
with auxiliary particle filter and find that APF does not always outperform SIR. Often,
the variance of the estimated likelihood is analyzed in the true value of the parameters,
such as in [24]. However, when using particle Markov Chain Monte Carlo, it is also of
interest whether the same conclusions hold in different points of the parameter space.
In particular, we never start running the algorithm at the point of the true parameter values.
This means that if the variance of the estimated likelihood is much larger in some areas of
the parameter space, the convergence of the algorithm can be affected. Having insights
into how the variance of the estimated likelihood is different in the parameter space can
help to make a more efficient choice of the starting point for the algorithm.

We first review the sequential Monte Carlo methods for the estimation of the likelihood.
After that, we discuss Metropolis-Hastings algorithm and how SMC and Metropolis-
Hastings can be combined for Bayesian inference in general and stochastic volatility models
in particular.

3.2.1. Sequential Monte Carlo

Assume that we are in the framework with an observed time series process y; and a
latent Markovian process h;. Since we never observe the latent process, we need to infer
it. The objective that can be achieved with Sequential Monte Carlo (SMC) is also known as
particle filtering. The method operates in sequential manner with arriving observations y;.
The posterior distribution of the latent process can be computed sequentially

8(y1:tlhot) f (helhy—1)
p(yelyi-1) . (18)

p(ho:tlyie) = p(host—1lvo:e—1)

The denominator of Equation (18) is not analytically tractable, which can be also seen from
Equation (12) earlier. SMC allows us to estimate the posterior distribution p(ho.¢|y1.+) and
additionally get the estimate of the likelihood

L(yi.r) = /P(]/1:T,h1:T)dh1:T = /8(y1:T|h1:T)P(h1:T)dh1:T
T (19)
= /8(%hl)P(hl)llg(ytlht)f(htlht_1)dh1...hT.

The basic procedure of particle filtering in this setting can be summarized by three crucial
steps: prediction, updating, and resampling. The outline of a basic particle filter can be
summarized in the following way.

e Initialization: given the prior distribution 77(6y), we draw N independent random

samples {h?}N ; these samples we call particles.
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®  Prediction: we sample particles according to the importance density
n ~ qUely, ye). (20)
e  Updating: During updating, we assign a weight wgi) to every particle
(i) (i)7,(0)
wgi) _ p(yelhy ") f(hy k) 1)

p(y: |y1:t—1)qt(h£i) |h(()2—1)

and normalize these weights to sum to 1. Every weight can be interpreted as our
“confidence” about a particle.
¢ Resampling: resample the particles if the effective number of particles,

1

_ (22)
Zil\i1 (‘Ut(l) )2

Nefr =

is too low. In Equation (22), wt(l) is the normalized weight of particle i at the time
step k. The threshold for the resampling step is set depending on whether particle
degeneracy is a problem. In general, we perform resampling when N,sr < N/,
where c is a constant.

The resampling step is performed to find the trade-off between two well-documented
problems: particle degeneracy and particle impoverishment [28]. The former happens when
the resampling step is ignored or is not performed frequently enough. In this case, one
ends up with a particle set that has zero weights. The latter problem happens when the
particle set is resampled too frequently; then, eventually one gets one particle with a large
weight and hence the particle set lacks the diversity. The way to find the balance between
these two problems is resampling when the efficient number of particles is smaller than a
certain threshold.

In this paper, we consider two particle filters: bootstrap and auxiliary particle filters.
A generic particle filter is presented in Algorithm A1 [28]. The bootstrap filter is a variation
of a more general approach—sequential importance sampling (resampling). The distinction
of the bootstrap filter is the proposal mechanism for the particles. In the bootstrap particle
filter the proposals for the particles are made on the basis of the dynamics of the model

f(helhi—1). I q(helye, hi—1) = f(he|hi—1), then the term q{h(flltylt% is equal to 1. In the case
of the auxiliary particle filter, we also incorporate the current observation into the proposal
mechanism q(h¢|h;—1, y¢). Incorporating the current observation into the proposal for the
particles in some cases allows us to reduce the variance of the estimated likelihood. In our
case, there is no analytical expression for the proposal density. In the next subsection, we

discuss how it can be approximated as proposed in [23].

3.2.2. Auxiliary Particle Filter for SV Model

Incorporating knowledge of y; into proposals for particles q(h¢|h;—1,y:) can help to
reduce the variance of the estimated likelihood and improve the approximation of the
filtering distribution p(h|y1.r). Note, however, that it is not always the case as has been
shown in [27]. Only in the case of linear Gaussian state-space models does the proposal den-
sity from Equation (A2) have an analytical expression. Hence, for the stochastic volatility
models, this term must be approximated. Pitt and Shephard [23] propose using non-
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blind proposals for the next generation of particles by first expanding log g(y;41|h+1) to a
second-order term around y’t‘ 41 via Taylor expansion

dlog p(yer1lpk,q)

10g8(1/t+1|ht+1,#]f+1) = log P(}/t+1|]’l’;+l)/ x T +
| o Plogplyalit) k )
5 X (hey1 — i)' X i X (M1 — pigq)

For deriving the expression for log g(y1|ht1, ¥ 1), recall that y; ~ N(0, exp(h;)) and hence

R SR R/
g(ytlht)—\/m p{ 2eth(ht)}

(24)
V27 exp(hy) 2
and further note that f(h¢|h;_1) = N(u + ¢p(h—1 — p), 077); thus
1 hy —pu—p(hy_q — p))?
F(helhy_1) = exp{( (P ‘ﬁf,; ) } (25)
\/ 2707 7

It follows that the proposal for particles at time t 4 1 when taking into account the observa-
tion of the same period is

0.2 2
qlhesn |1 yesnfh) = N (Vﬁ'ﬁl +5 (th exp(—p{h) - 1),02) (26)

3.2.3. Metropolis-Hastings

In this section, we consider the problem of sampling from the posterior distribution
and a general algorithm to construct such a sampling scheme. With the Metropolis—
Hastings algorithm, we sample from the posterior distribution by proposing a transition
0 — 6" with the density q(6%|0), which we accept with probability

(0.6 — minf2, 20" (010°)
007 =minds, 550 e | @)

where fi(-) is a function proportional to our target distribution. A common choice for the
proposal distribution is a random-walk, which we also use when applying PMCMC later in
this paper, q(6%|0) = N(6*|6,X). The Metropolis—-Hastings algorithm is one of the off-the-
shelf MCMC methods in the statistical community. It is quite general and can be applied
to various problems. The implementation of the Metropolis—-Hastings algorithm requires
specification of multiple quantities. We need to specify a conditional density q(6*|6) that is
a proposal distribution, generally q(6|0) should be such that we can easily simulate from
it. In many applications, including ours, it is reasonable to take the Gaussian distribution
as proposal distribution. In this case, it is also symmetric, meaning q(6%|0) = ¢(6/6).
The Metropolis-Hastings iteration is outlined in the Algorithm 1.

In this algorithm, a(6, 8*) is the Metropolis—Hastings acceptance probability, where
0 is the current state of the chain and 6" is the candidate state of the parameter vector.
Generally, in the simulations, it is desired to have around 25% of proposed candidate
values accepted [29]. The idea is that when the proposal steps are too large (we make a
proposal that is far away from the current state, 0, in the Markov chain), we do not explore
local regions sufficiently well; moreover many of the candidates are then very likely to be
rejected. When the proposal steps are very small, the acceptance rate will be very high,
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however, then we are not likely to leave regions of the local maximum or the convergence
will happen very slowly.

Algorithm 1 Metropolis-Hastings Algorithm.

1: Given B(t),
2: Generate 0} ~ q(6* | 8(*)),
3: Take
p(t+1) _ 6;, with probability «(8"),6;)
0(") with probability 1 — w(0®),07),

where

" p(o) q(6]6%)
«(6,0") = mm(l 7 9)(9*“9)

The performance of Metropolis—Hastings depends on the choice of g(-) proposal
distribution. In the simulation studies, we consider random-walk proposals of the form
6* 1= = 0; + €;, where i is iteration of the algorithm and e; is assumed to be Gaussian. More
1nformat1on on the theoretical properties of this algorithm can be found in [30].

3.2.4. Particle Metropolis-Hastings

Particle Markov Chain Monte Carlo (PMCMC) methods were introduced in [4]. The ba-
sic idea is that MCMC methods, and in particular, Metropolis—Hastings algorithm, which
is of interest to us, can be combined with Sequential Monte Carlo to make draws from the
posterior distributions of the parameters. Algorithm 2 presents the particle Metropolis—-
Hastings algorithm. The difference from the standard Metropolis-Hastings is in the quantity
Pe* (y1.7), which is the estimate of the likelihood obtained with a particle filter conditioning
on the parameters vector 0. In this algorithm, q(8(i — 1)|6") is the proposal distribution
(which cancels out when it is symmetric), and 7t(+) is prior distribution.

Algorithm 2 Particle Metropolis-Hastings.

1: Initialize algorithm at i = 0 and initialize parameters 6(0)
2: Run an SMC algorithm targeting p ) (h1.7 | y1.7), sample hgo% ~ Poo) (- | y1.7) and let

A( )(yl 7) denote the marginal likelihood estimate for the initialized parameters

3: forz =1,...,Mdo
: Generate 0" ~ q(6* | 01~1),
5. Run an SMC algorithm targeting pg: (h1.7 | y1.7), sample hj.; ~ pg+(- | y1.7) and
let pp+ (y1.7) denote the marginal likelihood estimate for the proposed parameters 6*
6: With probability

D a+ A * (i—l) *
mind 1, -F° (yr) 7(6%) q(6"]6") -
Poi-1 (y1:1) (611 g(0* |60~ 1)

7. Setol) =%, b} = iz and P (y1:1) = Por (V1.1);

Otherwise set () = 9(i=1), hgl)T = hgl;l) and p i) (y1:1) = Pyi-1) (Y1:1)-
9: end for

3.3. MCMC with Gradient Information

In this section, we discuss Riemann Manifold Langevin Hamiltonial Monte Carlo
methods that are introduced in [5] and in particular can be applied to stochastic volatil-
ity models.

The method originates in physics statistical literature and provides a tool that allows
one to make large transitions with high acceptance probability, something that standard
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methods such as Metropolis—-Hastings fail to achieve. The idea of HMC is based on relation
between differential geometry and statistical theory (MCMC in particular). Girolami and
Calderhead [5] propose the Metropolis-adjusted Langevin algorithm and Hamiltonian
Monte Carlo sampling algorithms that are defined on the Riemann manifold. Their methods
allow us to overcome the problem of sampling from high-dimensional densities that may
show strong correlation. We further provide the general background and summary of the
algorithms together with the necessary quantities for their implementation in the case of
stochastic volatility models. It is not our goal to provide theoretical foundations of these
methods in this article. For deeper theoretical foundations, see [31-33].

In standard MCMC setting, one uses probability distribution to make a proposal for
the next state of the Markov chain. Hamiltonian Monte Carlo methods exploit physical
system dynamics to make proposals for the next state. It can improve the mixing drastically
and result in a more efficient algorithm. Especially since we are interested in multivariate
modeling, a more efficient exploration of the posterior distribution is of interest. Once
the dimension of the model grows with standard random walk, it is very hard to make
proposals that would be accepted frequently enough and result in a good mixing Markov
chain. We first introduce some basic ideas on which Hamiltonian Monte Carlo method is
built; for an extensive introduction, we refer to [33].

3.3.1. Metropolis-Adjusted Langevin Algorithm

Previously we have discussed the Metropolis-Hastings algorithm. The idea of the
Metropolis-Hastings algorithm is to make a new proposal 6* using random walk. Then
this proposal is accepted with probability.

o _ i 1 P(67) q(6]67)
«(6,0 )—mln{l, 5(0) q(G*IG)}' (29)

Although this algorithm benefits from desirable theoretical guarantees, the random walk
proposal is not efficient, especially when the number of parameters in the model becomes
large. Metropolis-adjusted Langevin algorithm (MALA), originally proposed in [34], is de-
signed to solve the same problem—sample from the target distribution. The big advantage
of MALA in comparison to Metropolis—Hastings is the construction for the proposal of the
candidate parameter 8*. The proposal mechanism for MALA originates from the stochastic
differential equation based on Langevin diffusion; the proposal mechanism reads

0" = 0" + >VgL(0")/2 +ez", (30)

where we define L(0") = log(p(0)) and z ~ N(z|0, I) and e—integration step size. Con-
vergence for this proposal is not guaranteed unless we employ a Metropolis acceptance
probability after every integration step. For convenience, let us define

2
w8 €)= 0"+ S VL(0"); (31)

then the proposal density can be written as q(0*|6") = N(6*|u(0",€),€*I). The standard
acceptance probability follows

min{1, p(6")q(6"|6%)/p(6")g(6"|6")}. (32)

The type of proposal in Equation (29) is inefficient for strongly correlated parameters 6.
To solve this issue, one can use a preconditioning matrix M

0" = 0" +e*MVoL(0")/2 + eV Mz". (33)

Unfortunately there is no principled way to choose matrix M. As we will see later, HMC
encounters the same problem. Generally, MALA iterates between two general steps.
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First, Langevin dynamics is used for the proposals, and it exploits the gradients of the
target. Second, the proposals are accepted or rejected similarly to those of the Metropolis—
Hastings algorithm.

3.3.2. Hamiltonian Monte Carlo Algorithm

The HMC algorithm [31] also uses gradient information for constructing the proposal
of the parameters in the MCMC scheme. In particular, it exploits the ideas from simulating
the behavior of the physical systems. Similarly to describing the behavior of the physi-
cal system, HMC performs sampling by exploiting Hamiltonian dynamics. A conceptual
introduction to this class of methods and its relationship to differential geometry can be
found in [33]. In this section, we discuss the general idea behind the algorithm without
performing detailed derivations. We focus on the final proposal machinery that can be
used in practice and investigate which quantities need to be manually computed before
implementing the algorithm and which variables need to be calibrated for the successful
performance of the algorithm. First, let us consider a general set-up. In Hamiltonian Monte
Carlo, we consider a Hamiltonian function

1 1 g,
H(6,p) = —log p(8) + 5 log{(27)" M} + Sp"M'p, (34)

which consists of potential energy in the system E(0) = —L(6) and kinetic energy K(p) =
$log{(2)P|M|} + pTM ! p; variables p are called momentum variables. The dynamics
of the system then evolves according to Hamiltonian equations

d0 _9H _

o P, (35)
dp  oH _
= e VeL(6), (36)

where by 7 in physical interpretation of the system we denote continuous time. Practical
implementation requires discretization, and the commonly used scheme for this purpose is
the leapfrog discretezation:

p(t+¢/2) = p(t) +€VaL{8(T)} /2, )
B(T+¢€)=0(t)+eM 'p(t+e/2), (38)
p(t+e)=p(t+e/2)+eVeL{O6(T+€)}/2. (39)

This scheme does not sample from the target distribution and to correct for that, implemen-
tation of Metropolis acceptance probability is necessary. For a proposal (6, p) — (6, p*),
acceptance probability in this algorithm is defined as

min{1,exp{—H(0",p*) + H(6,p)}.

Thus, HMC iterates between updating momentum variables, proposal for the parame-
ter values, additional update to the momentum variables, and then an acceptance/rejection
step. The Gibbs sampler provides a good understanding for the system evolution in this
algorithm:

PO ~ p(p"He") = p(p" ) = N(p" 0, M), (40)

6n+l ‘anrl ~ p(6n+1 |pn+1) (41)

Similarly to MALA, the choice of matrix M is crucial for good performance of HMC.
While the choice of the step size and the leapfrog steps can be tuned relatively easily by
considering acceptance rate, the choice of the matrix M is challenging, and there is no
principled way to define it. Leapfrog step and step size proposal are two variables that
need to be calibrated when implementing HMC. Usually, different combinations of these
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two variables are considered, and the combination leading to the highest acceptance rate
is picked.

3.4. Riemann Manifold Hamiltonian Monte Carlo

The further improvement of HMC and MALA can done by defining the algorithms
on Riemann manifold instead of Euclidean space. Proposals guided by Riemann metric
instead of Euclidean distance have the potential to explore parameter space more efficiently,
especially in the cases when the target density is high-dimensional or exhibits strong corre-
lation [5]. The method originally proposed in [5] and multiple algorithms were compared
in the paper: MALA, MMALA, HMC, and RMHMC. For detailed comparison between
these methods, we refer to [5], while in our simulation studies, we will focus on comparing
RMHMC and particle Metropolis—-Hastings for the estimation of parameters in stochastic
volatility models.

Girolami and Calderhead [5] define HMC methods in the form of Riemann manifold,
and this can be seen as generalization of HMC. The Hamiltonian on the Riemann manifold
is defined as follows

H(0,p) = ~log p(6) + 5 log((27)" | G(6) |) + 3p"G(6)p @)

with exp(—H(6,p)) = p(6,p) = p(0)p(p | 0) and the marginal target density

(o) [expl-Hio.p)ap = SELELA. e pTc0) pfay

V2" | G(8) |
= exp(log p(6)).
The general idea behind the updates in RMHMC is similar to that of HMC, and

the updates for the momentum variables and parameters of the model are defined in
Equations (44)—(46).

p(r+3) = p(r) - SVeH{0(T), p(r+5)}, (44)
0(x +¢) = 0(x) +¢/2[V, H{0(x), p(r+ 5)} + VyH{0(r +e) pr+ )}, 49)
p(t+e) :p(T+§)—gVeH{B(T+e),p(T+§)} (46)

Therefore, as in standard HMC algorithm, we iterate between half-step update of the mo-
mentum variables, and then we update position variables, and we finish iteration with ad-
ditional half-step update of the momentum variables and Metropolis acceptance/rejection
step with the probability

min{1,exp{—~H(6", p*) + H(6", p"*1)}}.
Similarly to HMC, RMHMC can be viewed as a Gibbs sampling scheme
p" " ~ p(p"e") = N{p" 1[0, G(6")}, (47)

6n+1|pn+1 ~ P(6n+1|}9n+1)- (48)

Recall that in the case of MALA and HMC, matrix M has to be chosen manually and
there is no principled way to choose it. In RMHMC, matrix G(6) is defined at each step by
underlying geometry; see for more details [5]. Below we discuss quantities that need to
be computed for the implementation of RMHMUC in the case of stochastic volatility model
and in particular G(0).
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Recall stochastic volatility model parametrized through
Yr = lBeXp(l’lt/Z)Gt, (49)

hiv1 = Phy + 141, (50)

et ~ N(0,1), 71 ~ N(0,0?), with hy ~ N(0,0%/(1 — ¢?)).
The joint likelihood of the model is
T T
p,h B ¢,0) =TTpW: [ 1 B) T T p(he | her, ¢, 0) (B () (o) (51)

t=1 t=2

The prior distributions are chosen as follows
Bocexp(B),  o*~ Inv—x*(10,005), (¢ +1)/2 ~ Beta(20,1.5). (52)

Further, following [5], we write the partial derivatives for L = p(y,h | B, $,0)

T 2

JL T y
o _ T v v 53
B B Fepln) 9
oL ¢ oh? Lohyq (e — phyq)
W @Aty e )
oL T (1 —¢*) L (b — phy_q)?
o o o3 + t; o3 ' ©5)

To implement the algorithms, we require the expressions for the individual components of
the metric tensor for the likelihood. Following [5], the expressions are

oL oL 2T oL oL 2T oL oL oL JL
{55 5 laear) o HFae) a0 O

oLoL) = 2¢ OLOL) 247 T-1
{an) - viee How cwopr i O

Furthermore, the expressions for the metric tensor for the likelihood and its partial
derivatives follow

& 0 0
2T 2¢
Ggop)=|0 2 | ©°8)
0 2¢ 24> 4+ I-1
P T2 1
_AT
e [ 00
S5=10 0o (59)
B
0 00
0 0 0
oG 4T 6¢
e - ol (60)
o 6¢ 0
0 — e
0 0 0
oG 2 4¢?
ai — 0 0 0.3(1_4)2) +0-3(1_¢2)2 . (61)
¢ 0 2 442 26(1+T) 64°

e R (e L L
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The proposal machinery in RMHMC provides advantages for exploring parameter
space efficiently. However, it is not easily adaptable for different model specifications,
especially when increasing the model’s dimensionality, as we discussed in Section 1.
In particular, although matrix G can be computed in the multivariate model specified in
Equations (12) and (13) exactly, it scales quadratically with the number of parameters. This
might be one of the reasons why the method has not been used on multivariate stochastic
volatility models we introduced in Section 1. However, probabilistic programming lan-
guages [35,36] and automatic differentiation possibilities developed in recent years allow
the efficient and adaptable implementation of these algorithms in practice.

3.5. Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation was introduced in [7]. The method is based
on the nested version of the classical Laplace approximation and was introduced for latent
Gaussian models (LGMs). It became a popular approach in Bayesian inference due to its
good performance in the variety of models in the class of LGMs and its computational
advantages over other methods in Bayesian literature. The computational appeal of
this method comes from the possibility of exploiting sparse matrix computations when
evaluating certain approximations. INLA has found its applications in many fields in the
models where high-dimensional problems arise. Stochastic volatility models have been
analyzed using INLA in [37,38]. Bivariate stochastic volatility model has been considered
in [39], where the authors present and solve some issues that arise in using INLA in the
multivariate case of the model. One of the conclusions of this study was that INLA loses its
computational advantage with increased dimensionality of the stochastic volatility model.
We further discuss the details of the method and the implementation shortcomings in
a multivariate case and present the reader with a simulation study that illustrates the
discussed approach’s performance.

Stochastic volatility model can be written in the form of LGMs

y b6~ 17l hi,61), (62)
ics
h |62~ N(u(62),Q7"(62)). (63)

As before, y; is the data that we observe and /; is the latent volatility process, and we are
interested in the posterior distribution of the parameters of the model 6 and the latent
process given the data

T

p(h,6 | y) o< p@)p(h|0)[[p(y|ht,6). (64)
t=1

The outline of the INLA approach can be summarized in the following steps [7,37]

1. Build an approximation p(6 | y)
2. Build an approximation to p(h; | 6,y)
3.  Compute an approximation to p(h; | y) using the approximations from steps 1 and 2.

The first approximation p(6 | y) relies on the Gaussian approximation of the form

p(x|y,6) meXP{—;xTQerth(hf)}, (65)

where x = (p, h), g¢(ht) = log p(ys | ht,6). By matching the mode and curvature in the
mode, we obtain the Gaussian approximation for our model

pal | ,6) = Ky exp{ 3 (x = ) T(Q+ ding())(x = m) | (66
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where Kj is a normalizing constant, m is the modal value of p(x | y,6), the vector ¢ contains
the second order terms in the Taylor expansion of } g¢(/;) at the modal value m, and Q is
the precision matrix that has the form

L —¢
—¢ 149" —¢
Q= : (67)
—¢ 149> —¢
—¢ 1
The sparsity of the precision matrix above allows one to exploit efficient sparse matrix
computational methods and thus gain computational speed. Note that in the multivariate
case, this advantage disappears since the matrix Q is not sparse anymore.
When it comes to the estimation of stochastic volatility models, approximation of the
marginals p(h; | 6,y) is always the most challenging task. The solution that is proposed
in [7] is (simplified) Laplace approximation of the form

- 1 1
log pspa(x: | 6,y) = const — Ex% + 751)(9)% + 63{?7?(9) +..., (68)

where 'yt(l) and 'yt(3) are the terms in the Taylor expansion. The final step of the method is
to approximate p(x; | y) with the numerical integration scheme

plxe | y) =Y plxe | 05,9)p(0° | v) A, (69)
k

for some 6 of 6, where 6F is selected by creating a grid of points that covers the area of
high density for (0 | y). For more details on implementation of the simplified Laplace
approximation and the selection of grid of points for 6, see [7,37].

3.6. Fixed-Form Variational Bayes

In this section, we discuss how the posterior distribution can be approximated using
the fixed-form variational Bayes method proposed in [6]. The general idea of fixed-form
variational inference consists in assuming a certain factorization of the prior distribution,
which naturally leads to the factorized structure of the posterior. The factorizing distri-
butions of the posterior are then assumed to come from a certain parametric family of
distributions (for example, exponential) and instead of a sampling task, as in the previous
section, we would perform the optimization task of minimizing the distance between the
approximating distribution and the unknown posterior distribution.

As before, assume we observe a process {y;}_; that is driven by an unobservable
or latent process {/;}!_;. Recall that Bayes’ rule gives us the posterior distribution of the
parameters of the system

p(h|y) < gy | h)m(h). (70)

In the Bayesian framework, we formulate our prior beliefs, which we update once we
acquire more data. In general, Variational Bayes methods focus on approximating the
posterior distribution p(h | y) with some distribution g(4 | y). Further, it is common to
choose blocks of the parameters and impose independence for these blocks

p(hly)~qh|y)=q(h|y)gha|y). (71)

By construction, the posterior of the blocks of the parameters is independent. In the
literature, this is referred to as the mean-field assumption. To find the optimal approximation,
we minimize the Kullback-Leibler (KL) divergence from g(h | y) to p(h | y)

p(h|y) = argmin KL(q(h1 |y)q(ha |y) (| p(h|y)). (72)
g(in|-)q (2]
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Distributional approximation can be viewed as an optimization problem; i.e., an optimal
distribution has to be chosen from the space of all possible distributions, and the KL
divergence is chosen as a loss function [40]. Salimans et al. [6] propose a specific approach
to the minimization problem of KL divergence, which is based on the similarities between
the optimal solution to the problem and linear regression. The general idea of the approach
is summarized as comprising the following steps:

* initialize all the posterior approximations 4(6);

*  jterate over the parameters updating every one of them given the others;

¢  repeat until convergence.

Consider the stochastic volatility model
vr = Bexp(hi/2)e; (73)

hep1 = Qhe + 11111, (74)
with iy ~ N(0,6%/(1 —¢?)) and €; ~ N(0,1), 7 ~ N(0, 0'%). We specify our a priori
beliefs in the following manner

p(B) xB'  (¢+1)/2~ Beta(20,15), o ~ IG(5,0.25). (75)

To apply the Variational Bayes method, we need to specify the posterior approximations
q(0). It is convenient to assume a hierarchical structure of the prior, in which case it
factorizes to

p(9.0% B, f) = p(@)p(c®)p(f | ¢, 0*)p(y | ), (76)

where f = (log(B),h’). The hierarchical structure of the prior leads to the following
factorization of the posterior approximation

(o7 | 9)p(f | ¢,0)q: (v | f)

reler, £19) = arlopacf | g,®) = AT @)
Thus, the posterior approximations can be chosen as follows
9¢((9 +1)/2) = Beta(&1, &), (78)
9e(0” | 9) ~ IG(G3, &4+ E5¢), (79)
q(log(B), 1 | ¢,0%) = N(m, V), (80)

where
V= DP(¢,0%) + &, m=V-1g,

with P(¢, 0?) precision matrix of p(log(B),h | ¢,0?).

Once the posterior approximations are initialized, we proceed with the next step and
iterate over the parameters. The parameters are updated in blocks that correspond to the
factorization of the posterior approximations. First, we update the block for the persistence
parameter in the latent process gz (¢)

¢* =51(E,z}), with s;() and z} such that ¢?* ~ q,:(a2 | ¢), (81)
0% =s,(¢,25,¢"), with sp() and z} such that ¢>* ~ q§(0'2 | ¢"), (82)
Ci = Vels1(8,21)] V[ Ta(¢™)], (83)

§1~ Vels1(,21){Vyllog p(¢*) +log gz (y | ¢*,0™*) —logae(0** [ ¢*)]}.  (84)

Second, we update the block for the variance of the latent process gz (0 | ¢)

G = Velsa(E,23,97) V2 [Ta(07)] (85)
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§2 % Vels2(C, 25", ¢")|V 2 llog p(0™) +log ge(y | ¢*,07)], (86)

where T»(0*) are the sufficient statistics of gz (0% | ¢). The last update is the update of the
likelihood approximation

a1 = (1 = w)ar + Wy (540 2 [V log p(y | £)], (87)
Zi41 = (1 — CU)Zt + WE%(H‘P*"TZ*) [f], (88)

o1 = (1= w)8er — WEy (r1p 02) [V Vlog p(y | £)], (89)
87441 = Ap41 + Co b 412841+ (90)

For more extensive derivations of the updates, we refer the reader to [6]. Further, one might
wonder how the latent process is estimated in this procedure. Salimans et al. [6] propose
using the Kalman filter to estimate the filtering distribution. Even though it is a valid
approach that is also undertaken in quasi-maximum likelihood method [41], its weakness
lies in the linearization of the observation equation which implies that the distribution of
the noise process is not longer Gaussian.

4. Results

In this section, we present results for the comparison of the discussed methods. We
compare two particle filters (bootstrap and auxiliary particle filters) on the basis of bias,
variance and on the estimated effective number of particles. We choose the better per-
forming procedure of the two for using in the particle Metropolis—Hastings algorithm.
We compare particle Metropolis-Hastings (PMH), Riemann Manifold Hamiltonian Monte
Carlo (RMHMC), integrated nested Laplace approximation (INLA), and fixed-form varia-
tional Bayes (VB) on the basis of how well the posterior distributions obtained with these
methods capture the ground truth (e.g., true parameter values). The ability of the methods
to recover ground truth is assessed based on five simulated data sets with different under-
lying parameters. We additionally provide effective sample sizes for the comparison of
the sampling methods (PMH and RMHMOC). For illustration purposes, we also provide
comparison on two real-world data sets.

4.1. Variance of the Estimated Likelihood

As we mentioned before, the marginal likelihood can be approximated sequentially
through particle filtering. The marginal likelihood approximation of the parameters 0 reads

p(y1.710) = [ [ p(vily1:4-1,0), 91)
t

where the right hand side is obtained by running particle filter presented in Algorithm Al.
In practice, usually the log-likelihood

T
log pe(y1.T) = log pa(y1) + }_ log pe(yt|y1:1—1) (92)

t=2

is estimated for the purpose of numerical stability (as the product of small weights would
lead to unstable results). The estimate of the log-likelihood is the by-product of the particle
filtering, as it is the average over log-weights that are assigned to the particles at every
time step. In this section, we compare the bootstrap (BPF) and auxiliary particle filters
(APF) in terms of bias, variance, and number of effective particles. Both of them can be
used for obtaining simulated likelihood estimates, which can be further used in the particle
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Metropolis—Hastings algorithm. We denote by L the estimate of the likelihood obtained
with a particle filter. Then, the bias and the variance can be estimated as follows

K M . .
Bias = 5000"" Y Y " (log L/ —log L(y')), (93)
i=1j=1
K M N .
Variance = 5000 Y_ } " (log I/ —log L(y'))?, (94)
i=1j=1

where y; is the i-th time series, and log L is the “true” log-likelihood value. For the compar-
ison, we use K = 50 different time series generated from the stochastic volatility model and
M = 100 Monte Carlo iterations. We use N = 100, N = 1000, and N = 10,000 number of
particles for this study. As the true value of the likelihood is not available, we substitute it
with an estimate that is obtained with N = 1,000,000 number of particles. First, we conduct
the analysis of the variance of the estimated likelihood in true parameter values as dis-
cussed in [24]. The authors of, ref. [27] showed theoretically that the asymptotic variance is
not always smaller for the APF in comparison to the BPF. We run additional simulation
studies to examine whether the variance of the estimated likelihood varies in the parameter
space. Since we are interested in using the estimated likelihood in the Markov Chain Monte
Carlo setting, it is relevant how the variance behaves in different points of the parameter
space. If we start far away from the true value and the variance of the estimated likelihood
is larger in that part of the parameter space, it can affect the convergence and calibration of
the algorithm. Table 1 shows variance of the estimated likelihood for bootstrap and auxil-
iary particle filters. N indicates the number of the particles that we used for the estimation
of the likelihood. It is clear that, on average, APF performs better in terms of the variance
of the estimated likelihood. Table 2 indicates results for a similar experiment, but on the
level of individual times series. We consider different data-generating processes and find
that, in particular, higher variance of the latent volatility process is associated with higher
variance of the estimated likelihood. Finally, in Figures 2—4, we illustrate that the variance
of the estimated likelihood changes depending on the location in the parameter space, and
these changes can be specific to a data-generating process. These figures correspond to
the experiments with time series 2, 3, and 4 from Table 2. The likelihood was estimated
with N = 1000 particles. We observe that the variance of the latent process has a strong
effect on the landscape of the variance of the estimated likelihood in the parameter space.
From Figure 4c,d, we see that the variance of the estimated likelihood obtained with the
bootstrap particle filter appears to be more strongly affected by the location in the parame-
ter space than the variance of the estimated likelihood obtained with the auxiliary particle
filter. In Figure 3, we observe that the variance of the estimated likelihood is affected by
the scale parameter 8 in the case of auxiliary particle filter, but not so much in the case
of the bootstrap particle filter. Thus, initialization of PMCMC and the choice of number
of particles should be considered with care for the optimal performance of the algorithm
as the variance of the estimated likelihood can differ in the parameter space, and these
changes can vary across different time series.

Table 1. Variance, bias, and number of effective particles N, ff for the estimated likelihood with
bootstrap particle filter (BPF) and auxiliary particle filter (APF) averaged over 50 time series. Ny is
computed as in Equation (22). Variance and bias are computed as in Equations (93) and (94).

Variance Bias Ness
BPF APF BPF APF BPF APF
N =100 778.46 3.36 19.95 —0.68 64.07 23.52
N =1000 805.79 0.20 20.32 —0.07 640.23 224.65

N =10,000 808.40 0.02 20.36 —-0.01 6402.11 2233.59
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Table 2. Variance of the estimated likelihood for 10 different data-generating processes (T'S). We
consider different settings for the number of particles N.

Bootstrap Particle Filter Auxiliary Particle Filter True Parameters

TS N=100 N=1000 N=10000 N=100 N =1000 N =10,000 B ¢ oy
1 511.26 556.01 559.85  2.436 0.251 0.017 036 096 0.13
2 128.50 138.05 139.19  0.688 0.040 0.005 1.18 095 0.08
3 18,1430  18,883.0 18,9450  259.3 9.669 0993 193 089 0.43
4 79.085 84.045 83510 0517 0.045 0.005 09 096 0.07
5 51.753 52.112 52.078  0.066 0.005 0.001 093 076 0.08
6 42531 4.2704 42961  0.026 0.003 0.000 143 0.79 0.04
7 26842 2780.2 27905  5.076 0.339 0.032 158 091 027
8 137.22 140.65 14048  0.210 0.018 0.002 0.09 085 0.11
9 8.5151 13.541 13419  0.808 0.067 0.008 094 098 0.10
10 3601.2 3665.6 36704  25.32 2.614 0291 055 084 021
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Figure 2. Variance of the estimated likelihood in different points of the parameter space for T'S = 2
from Table 2.
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Figure 4. Variance of the estimated likelihood in different points of the parameter space for T'S = 4
from Table 2.

4.2. Particle Metropolis—Hastings and Riemann Manifold Hamiltonian Monte Carlo

In this section, we compare particle Metropolis—Hastings (PMH) and Riemann Mani-
fold Hamiltonian Monte Carlo. We evaluate the algorithms based on how well they recover
the true parameters of the model B, ¢, and ;; and on the basis of the effective sample size.
We obtained 20,000 samples and discarded the first 1000 as burn-in. Further, Figure 5 and
Figures A1-A4 show results for both samplers: trace plots, histograms, and autocorrelation
function are depicted. Table 3 presents the moments and highest posterior density intervals
for the parameters of the model. The marginal likelihood in PMH was estimated with
auxiliary particle filter as discussed in [23]. The Metropolis-Hastings part of the algorithm
was calibrated to achieve 20-40% acceptance rate. RMHMC was implemented as in [5] with
openly available implementation of the method by the authors. Both PMH and RMHMC
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require careful calibration of the step-size, and RMHMC additionally needs calibration
of the number of the leapfrog steps; thus in Table A1, we additionally present results for
the no-u-turn sampler (NUTS). NUTS is an extension of HMC algorithm that allows one
to tune the algorithm automatically. From Figure 5 and Figures A1-A4, we observe that
autocorrelation of the samples indicated in the third column of the plots decreases faster
for PMH than for RMHMC, in particular for the parameters ¢ and ;. Effective sample
size is similarly high for parameter § for both samplers. Effective sample size for the
parameters ¢ and oy, is lower in the case of RMHMC. However, if we compute the ESS
per second as presented in the last column of Table 3, this advantage disappears. This
result is not surprising since PMH is the most computationally intensive procedure we
are considering. Both the likelihood and the posterior use sequential sampling methods,
which makes computations very demanding. Nevertheless, PMH allows us to recover the
underlying parameters more accurately. In particular, in most of the presented examples,
true variance of the latent volatility process lies inside the 95% highest posterior density
interval for PMH. RMHMC tends to overestimate this parameter. As Table Al indicates,
the highest posterior density intervals obtained with NUTS are larger than those obtained
with PMH and RMHMC. Number of gradient evaluations for RMHMC are 69718, 70042,
69802, 69801, and 70041 for Experiments 1-5, respectively.

Table 3. Posterior moments for the samples obtained with particle Metropolis—-Hastings (PMH)
and Riemann Manifold Hamiltonian Monte Carlo (RMHMC) for the parameters 8, ¢ and oy, of the
stochastic volatility model. Experiments 1, 2, 3, 4, and 5 correspond to TS 2, 4, 5,9, and 10 from
Table 2.

Experiment 1: Posterior Moments Obtained with PMH

Mean Mode  95% HPD; 95% HPD, True ESS  ESS/s

B 1.1985 1.2140 1.0771 1.3034 1.189 2783.2 0.054

¢ 0.9713 0.9732 0.9392 0.9987 0.959 1516.8 0.029

oy 0.0537 0.0514 0.0260 0.0828 0.089 2280.7 0.044
Experiment 1: Posterior Moments Obtained with RMHMC

Mean Mode  95% HPD;,  95% HPD, True ESS  ESS/s

B 118628  1.16608 1.10609 1.26526 1.189 3580.7 50.57

¢ 0.83824  0.78390 0.71272 0.93643 0959  188.6244 2.66

o, 0218389  0.17203 0.14846 0.30072  0.0828 93.5265 1.32

Experiment 2: Posterior Moments Obtained with PMH

Mean Mode  95% HPD;  95% HPD, True ESS  ESS/s

B 0.8629 0.8780 0.7870 0.9385 0.903 2909.6 0.045

¢ 0.9644 0.9843 0.9077 0.9987 0.967 1157.2 0.017

oy 0.0534 0.0504 0.0233 0.0912 0.076 1694.3 0.026
Experiment 2: Posterior Moments Obtained with RMHMC

Mean Mode 95% HPD;, 95% HPD, True ESS  ESS/s

B 085071  0.82888 0.79927 0.90418 0.903 4108.8 76.26

¢ 079293  0.73992 0.62454 0.92638 0967  186.8240 3.46

oy 022291  0.23163 0.14751 0.30825 0.076 72.6236 1.34
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Table 3. Cont.
Experiment 3: Posterior Moments Obtained with PMH
Mean Mode 95% HPD; 95% HPD,, True ESS ESS/s
B 0.9579 0.9623 0.9090 1.0043  0.938 3330.7 0.071
¢ 0.9079 0.9583 0.7974 0.9885  0.764 2178.9 0.046
oy 0.0429 0.0317 0.0184 0.0725 0.08 2690.1 0.057
Experiment 3: Posterior Moments Obtained with RMHMC
Mean Mode  95% HPD; 95% HPD, True ESS ESS/s
B 094395  0.90574 0.89572 0.99246  0.938 81122  164.83
¢ 067333  0.43245 0.42649 0.88097  0.764  116.9159 2.37
o; 019759  0.18142 0.13385 0.27098 0.08 98.9095 2.0
Experiment 4: Posterior Moments Obtained with PMH
Mean Mode  95% HPD;  95% HPD, True ESS  ESS/s
B 0.8865 0.8932 0.7297 1.0485  0.942 3046.7 0.057
¢ 0.9826 0.9892 0.9672 0.9961  0.981 1781.9 0.033
oy 0.1100 0.1011 0.0702 0.1503 0.1 1609.9 0.031
Experiment 4: Posterior Moments Obtained with RMHMC
Mean Mode  95% HPD; 95% HPD, True ESS ESS/s
g 090560  0.80476 0.74840 1.07499  0.942 445.7 9.22
¢ 096391  0.96149 0.93865 0.98672  0.981 336.5 6.96
o 017588  0.15766 0.13452 0.22005 0.1 130.0 2.69
Experiment 5: Posterior Moments Obtained with PMH
Mean Mode  95% HPD;  95% HPD, True ESS  ESS/s
B 0.5836 0.5893 0.5359 0.6293  0.553 2733.8  0.0552
¢ 0.9497 0.9970 0.8890 0.9970  0.840 2733.8  0.0552
oy 0.0756 0.0525 0.0294 0.1331  0.215 1589.1 0.032
Experiment 5: Posterior Moments Obtained with RMHMC
Mean Mode 95% HPD; 95% HPD,, True ESS ESS/s
g 056805  0.57215 0.53372 0.60258  0.553 3276.6 75.41
¢ 077895  0.79364 0.60134 0.92411  0.840 130.7 3.0
op 022905  0.21974 0.14799 0.31755  0.215 64.9 1.49
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Figure 5. Results of the sampling from the posterior distribution with PMH and RMHMC for TS = 2
from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column corresponds to
autocorrelation function for the samples.
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4.3. Integrated Nested Laplace Approximation

We provide two simulation studies for the integrated nested Laplace approximation.
First, we replicate and extend the simulation study provided in [38] by analyzing data-
generating processes with different values of i and 0y, since the estimation of the variance
parameter appears to be a challenge for existing methods. Table 4 replicates results from [38]
with the parametrization of the model with the scale parameter y, and Table 5 presents
results for the parametrization with the scale parameter § and different data-generating
processes. Both Monte Carlo studies are conducted with 1000 iterations. Our findings
are comparable to those of [38]: the mean of the volatility process and the persistence
parameter are estimated quite accurately, while the variance of the latent volatility process
estimated with INLAis biased—usually, it is overestimated. Second, we provide the
posterior moments for INLA similarly to Table 3 for PMH and RMHMC. These results are
presented in Table 6. These results also suggest that the variance of the latent volatility
process tends to be overestimated with INLA to a larger degree than with RMHMC, which
also overestimates this parameter, as can be seen from the Table 3. Moreover, highest
posterior density intervals for the parameter ¢ obtained with INLA are larger than those
obtained with PMH and RMHMC.

Table 4. Bias and square root of the mean squared error for integrated nested Laplace approximation
(INLA) parametrized with scale parameter ji.

Mtrue Ptrue  Oytrue bias () smse (u) bias(¢) smse(¢) bias(cy) smse (o)

0.1366 09 0.0186 —0.0672 0.01804 —0.6138 0.5403  0.29183 0.0912
—0.2143 09 0.0366 —0.0565 0.0092 —0.5803 0.4953 0.2739 0.0815
—0.0658 0.9 0.0636 —0.0664 0.0151 —0.5817 0.5176 0.2494 0.0704
—0.0289 095 0.0186 —0.0675 0.0151 —0.6354 0.5550 0.2883 0.0900

0.0203 095 0.0366 —0.0705 0.0207 —0.5796 0.4843 0.2677 0.0795
—0.0630 095 0.0636 —0.0931 0.0333 —0.4142 0.3250 0.2129 0.0592
—0.0174 098 0.0186 —0.0763 0.0222 —0.6173 0.5458 0.2788 0.0874

0.1343 098 0.0366 —0.1534 0.0797 —0.4329 0.3650 0.2228 0.0654

0.0584 098 0.0636 —0.2596 0.1379  —0.2095 0.1710 0.1280 0.034

Table 5. Bias and square root of the mean squared error for INLA parametrized with scale parameter p.

Btrue @Ptrue Oytrue bias (u) smse () bias(¢) smse(¢p) bias(cy) smse(cy)

0367 0965 0.134 —0.2295 0.0526 —0.0083 0.0001 0.4725 0.2233
1.188 0959 0.088 0.2000 0.0400 —0.1909 0.0364 0.3466 0.1201
1.937 0.897 0.433 1.6162 2.6122 —0.0021 0.0000 0.5926 0.3512
0902 0966 0.075 —0.1888 0.0356 —0.3049 0.0930 0.3153 0.0994
0938 0.764 0.080 —0.0515 0.0026 —0.4921 0.2421 0.1468 0.0215
1435 0.793 0.048 0.6014 0.3616 —0.3872 0.1499 0.2155 0.0464
1.588 0919 0.275 0.2539 0.0644 0.0202 0.0004 0.4786 0.2291
0.092 0.857 0.109 —0.0841 0.0070 —0.7490 0.5610 0.1341 0.0179
0942 0980 0.100 —0.3246 0.1054 0.0192 0.0003  95.8384 9185. 0
0553 0.840 0214 —0.2384 0.0568 —0.3904 0.1524 0.1918 0.0368
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Table 6. Posterior results for estimation of the stochastic volatility (SV) model with INLA. Experi-

ments 1,2, 3,4, and 5 correspond to TS 2, 4, 5,9, and 10 from Table 2.

Experiment 1

mean mode 95% HPD; 95% HPD,, true

B 1.1786 1.1753 1.0937 1.2797 1.189

¢ 0.7717 0.9986 0.2029 0.9945 0.959

o'l 0.4368 0.4918 0.3048 0.6665 0.089
Experiment 2

mean mode 95% HPD; 95% HPD,, true

B 0.8457 0.8426 0.7807 0.9367 0.903

¢ 0.7480 0.9993 —0.0844 0.9996 0.967

oy 0.4155 0.9111 0.2631 0.7726 0.076
Experiment 3

mean mode 95% HPD; 95% HPD, true

B 0.9446 0.9403 0.8672 1.0798 0.938

¢ 0.3827 0.9999 —0.7491 0.9999 0.764

oy 0.2328 45772 0.1327 0.5202 0.080
Experiment 4

mean mode 95% HPD; 95% HPD,, true

B 0.0892 0.0893 0.0847 0.0939 0.942

¢ 0.1266 1.0000 —0.9470 0.9994 0.981

oy 0.2405 0.3196 0.1407 0.4447 0.100
Experiment 5

mean mode 95% HPD; 95% HPD,, true

B 0.5614 0.5604 0.5286 0.5993 0.553

¢ 0.4567 0.9980 —0.3055 0.9726 0.840

oy 0.4067 0.4538 0.2888 0.5680 0.215

4.4. Fixed-Form Variational Bayes

In this section, we discuss results for the simulation study with fixed-form variational
Bayes. We consider the same time series as in the case of comparison between PMH and
RMHMC. In Table 7, we present estimated variational parameters and in Figure 6, com-
parison of the posterior with fixed-form variational Bayes (in blue), RMHMC (histograms
from the posterior samples), and INLA (green). It is clear that in some cases, the variational
Bayes method performs quite well; in particular, parameter § is very well estimated in
most of the cases. Only in Figure 6j is the approximate posterior for g far from the truth.
The variance parameter is underestimated in all cases with VB; this is less severe in the
cases when the true variance is relatively small. However, when the true variance is rela-
tively large, the discrepancy between VB estimate and the true value increases, as can be
seen from Figure 60. We observe the opposite picture with INLA: it tends to overestimate
the variance of the latent volatility process. Overestimation of the variance of the latent
volatility process for stochastic volatility models with INLA has been previously reported
in [38]. Additionally, it is reported in [38] that this effect decreases with larger values of
0y. The source of this has to be investigated further. RMHMC overestimates the variance
to a lesser degree than INLA, and as can be seen from Figure 60, this is also connected to
the value of the ground truth for o;: with larger true value of ¢;;, RMHMC provides more
accurate results.
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Figure 6. Illustration of the Fixed-form Variational Bayes in comparison to RMHMC and INLA.
Subfigures illustrate the posterior distributions estimated with different methods for the different
data-generating processes. (a—c) correspond to Experiment 1 from Tables 2 and 6, (d-f) correspond to
Experiment 2, (g—i) correspond to Experiment 3, (j-1) correspond to experiment 4, and (m-o) corre-
spond to Experiment 5. Red vertical lines indicate true parameter values.
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Table 7. Parameters of the posterior distribution obtained with fixed-form Variational Bayes. Exp. 1-5
correspond to the Experiments 1-5 in Tables 3 and 6.

Exp. g1 G2 G3 [ s
1 31.1347 9.3573 19.1852 0.4658 —0.2051
2 28.2720 5.2039 12.6658 0.4510 —0.1812
3 30.3353 7.1038 13.9647 0.4563 —0.2039
4 38.8151 2.1501 17.9035 0.7568 —0.4296
5 38.8151 2.1501 17.9035 0.7568 —0.4296

4.5. Comparison of the Methods on the Real Data

In this section, we present posterior distributions of the parameters estimated with
different Bayesian inference methods on two real-world time series. First, we consider
the mean corrected log-returns of the Australian dollar against the US dollar. The data
range from January 1994 to December 2003 with a total of 519 weekly observations. Re-
sulting posterior distributions obtained with different inference methods are presented in
Figure 7. Second, we consider daily log-returns for the DAX index from 3 January 2000
until 17 May 2001, which in total constitute 1000 observations. We provide descriptive
statistics for both time series in Table A2. Resulting posterior distributions for this time
series are presented in Figure 8. The main discrepancies between the methods are largest
in the estimation of the parameter ¢y for both time series, and the results are consistent
with the simulation studies in terms of the difference of these discrepancies. As we can see
from Figures 7c and 8d, the posterior distribution of ¢; obtained with variational Bayes
is concentrated in smaller values in comparison to the other methods. INLA suggests the
higher values for ¢; in comparison to the other methods. The posterior samples obtained
with RMHMC are concentrated in values higher than the ones obtained with PMH. Both
sampling methods appear to give results larger than VB but smaller than INLA for the
parameter oy.

In Table 8, we present results for efficient sample size (ESS) for both empirical applica-
tions and both samplers. Similarly to what is found in simulation studies, ESS is higher
in the case of the PMH algorithm. However, if the computational time were taken into
account, this advantage would have disappeared, similarly to the results in Table 2.

Table 8. Efficient sample size (ESS) for PMH and RMHMC in real-world time series applications:
weekly log-returns for the exchange rate of Australian/US dollars and daily log-returns of DAX index.

Australian/US Dollars Exchange Rate

ESS PMH ESS RMHMC
B 33739 906.2
¢ 1546.4 481
oy 2439 208.3

DAX Index

ESS PMH ESS RMHMC
B 3868.4 3962.3
¢ 915.3 134.6

oy 2439 79.6
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Figure 7. Comparison of PMH (pink), VB (blue), INLA (green), and RMHMC (yellow) on the
weekly log-returns of the Australian dollar against the US dollar. Subfigures illustrate the posterior
distributions for different parameters of the model obtained with different methods. (a) Corresponds
to the posterior distribution for the parameter . (b) Corresponds to the posterior distribution of the
parameter ¢. (c) Corresponds to the posterior distribution of the parameter o;,.
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Figure 8. Comparison of PMH (pink), VB (blue), INLA (green), and RMHMC (yellow) on the daily
log-returns of DAX index. Subfigures illustrate the posterior distributions for different parameters
of the model obtained with different methods. (a,b) correspond to the posterior distribution of the
parameter B. (c) corresponds to the posterior distribution of the parameter ¢. (d) corresponds to the

posterior distribution of the parameter ;.
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5. Discussion

This paper reviewed multiple methods for the estimation of nonlinear state-space
modes and stochastic volatility modes in particular that appear in Bayesian statistics
and machine learning. We in particular focused on representative inference methods
from different classes: methods that can recover the posterior distribution ‘exactly” and
the ones that build an approximation. We discussed which methods have the potential
to be applied in a multivariate or high-dimensional situation and why they have this
potential. Finally, we discovered that while stochastic volatility models are common for
use in simulation studies for demonstrating the performance of the methods, usually
not enough possible data-generating processes are considered to make a fair comparison.
In particular, the performance of the methods is heavily connected to the variance of the
latent volatility process.

State-space models can be powerful tools for modeling latent variables in different
scientific fields. However, already for univariate time series, they are challenging to
estimate. This paper’s main aim was to review and understand the existing classes of
methods of estimation (targeting exact posterior or approximating it) and define the
direction one can undertake for the estimation of multivariate nonlinear state-space models.
The challenge arises from both statistical and computational perspectives. By this, we
mean it is hard to develop methods that both provide sufficiently good results from the
estimation point of view and are computationally feasible. We have reviewed a number of
methods that allow a trade-off between these two aspects. In particular, we have considered
particle Markov Chain Monte Carlo and reviewed multiple particle filtering approaches for
this method, Riemann Manifold Langevin Hamiltonian Monte Carlo, Integrated Nested
Laplace Approximation, and Variational Bayes. All these methods are equipped with the
ability to estimate models with intractable likelihoods.

5.1. Sequential Monte Carlo

We compared the auxiliary particle filter with the bootstrap particle filter in terms of
the variance of the estimated likelihood. We found that the auxiliary particle filter outper-
formed the bootstrap particle filter for most of the data-generating processes. As discussed
in [27], auxiliary particle filter does not always have a smaller variance of the estimated like-
lihood. Additionally, we looked into how the variance of the estimated likelihood changes
in the parameter space. We found that, in particular, the variance of the latent process
affects the variance of the estimated likelihood. This implies that one has to find the balance
for the number of particles used in Sequential Monte Carlo and a clever way of finding
initial parameter values for the sampling from the posterior, especially when considering
multivariate models. The advantage of the auxiliary particle filter from the methodological
point of view is that it takes into account current observation y; when constructing the
proposal for the particles q(h; | ht—1,y¢). The method that we did not include in our simu-
lation study, but that possibly can solve the problem with the variance of the estimated
likelihood, is the iterated auxiliary particle filter (iAPF): for the proposal of the particles,
it uses not only current observation y;, but all observations q(h¢ | h;—1,y1.7). A backward
sequential procedure with an optimization step is used in this proposal mechanism for
the particles, which makes the algorithm computationally intensive. The multivariate
application of the stochastic volatility model in [26] considers only diagonal case of the
matrix ®, and the proposed procedure for the particle proposals does not incorporate such
dependence. While this method does introduce an additional computational burden on
already computationally intensive method (particle Metropolis-Hastings), it is promising
for getting state-of-the-art results for the task of parameter estimation.

5.2. Particle Metropolis-Hastings

Metropolis-Hastings is a general MCMC method that is easy to implement and works
well for the univariate model. The estimation results are satisfying when it is properly
calibrated, and good mixing of the chains is achieved. It works well in low-dimensional
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problems but is unlikely to be successful in the case of multivariate stochastic volatility
models. Considering the non-diagonal matrix ¢ in a five-dimensional case, we would
have 45 parameters to be estimated. The random walk proposal would be very inefficient
even with a reasonable sparseness assumption on ®. Nevertheless, in the low-dimensional
model, we get the best estimation results with particle Metropolis—-Hastings, where the
particle filtering scheme is chosen to be an auxiliary particle filter. From the methods
considered in this paper, particle Markov Chain Monte Carlo methods are easiest to adapt
to different specifications of the model and are easiest to implement.

5.3. Riemann Manifold Hamiltonian Monte Carlo Methods

Hamiltonian Monte Carlo is a very attractive method for high-dimensional problems
as it allows us to explore the parameter space efficiently. In particular, the gain in efficiency
comes from avoiding random walk behavior in the proposals. The disadvantage comes
from the need of careful calibration since there is no principled way of choosing matrix
M. RMHMC avoids this problem by exploiting underlying geometry in the proposal
mechanism. In our study, we notice that RMHMC results in good mixing of the Markov
chains, and the method is generally easy to calibrate, but the estimation of the parameters
is not very good. In particular, it appears that the variance of the latent volatility process is
challenging for the method. It is not surprising that the PMH algorithm performs better
in terms of parameter estimation since we use an auxiliary particle filter for the volatility
process estimation and thus take current observation y; for the particle proposals. RMHMC
does not benefit from similar information when estimating model parameters. Therefore,
improved estimation of the volatility process can be one of the directions for improving the
performance of RMHMUC for the parameter estimation of stochastic volatility models.

5.4. Variational Bayes

As one can see from the illustrative example, in some cases, variational Bayes performs
quite well; however, there are also situations when it is far off from the underlying truth.
The challenge with stochastic volatility models remains the same: it is difficult to estimate
the latent states. In the approach of [6], this is done via Kalman filtering. Therefore, the
drawback of linearization of the model will remain and will show in the final results. In this
respect, the possible combination of VB and SMC can be of interest. Some advances in this
direction have already been made [42].

5.5. Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation is another approach that works well consid-
ering how fast the method is, but it clearly overestimates the variance of the latent volatility
process. Additionally, the sparse matrix computation that is used in univariate models is
not applicable to the multivariate case. In the multivariate case, the precision matrix in
Equation (67) is not sparse, and thus, the method does not benefit from fast sparse matrix
computation. An approach that we have not considered in this paper is the Expectation
Propagation algorithm. In particular, the authors of [43] propose a way to improve ap-
proximate marginals p(x; | 6,y) in latent Gaussian fields by using EP. The motivation of
the approach builds on the fact that EP can give better approximations than the Laplace
approximation in this case. The improvements, however, would come at computational
costs. In the univariate case, the extra computational costs do not play a significant role as
the algorithm can be parallelized. However, it is hard to say how big the difference would
be in the multivariate model, both in terms of improvement in the estimation and loss in
computational speed.

6. Conclusions

We reviewed multiple Bayesian inference methods, which both target the exact poste-
rior distribution and approximate it. By comparing methods on various data-generating
processes, we notice that variational Bayes tends to underestimate the latent volatility
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process variance, while INLA and RMHMC, in the cases considered, overestimated this
parameter. We also get similar disposition of the results on two real-world data sets. We
achieved the best performance with PMH in terms of recovering ground truth and uncer-
tainty quantification. In PMH, the particle filtering step was performed with an auxiliary
particle filter. This indicates that filtering with look-ahead approaches, which include
current (or future) observations into proposal machinery can improve the performance
of the inference method. It is important to note that different data-generating processes
for simulation studies would indicate different performance results. Thus, we stress that
when using stochastic volatility models, more than one data-generating process should
be considered for methods comparison. This practice would allow indicating in which
situation a method can fail or perform differently. Our results indicate that fixed-form
variational Bayes tends to underestimate the variance of the latent process, while RMHMC
and INLA overestimated this parameter. To estimate the stochastic volatility model in the
multivariate case, the combination of different strategies appears to be necessary. In a
high-dimensional case, the random-walk proposal would become extremely inefficient.
At the same time, approximate methods lose their outstanding computational advantage
(for example, INLA), and the implementation of these methods in the multivariate case is
not straightforward.
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Figure Al. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 4 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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Figure A2. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 5 from Table 2. The first column corresponds to the trace plots, the middle column to histograms

obtained with the samples from the posterior distribution, and the last column to autocorrelation

function for the samples.
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Figure A3. Results of the sampling from the posterior distribution with PMH and RMHMC for
TS = 9 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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Figure A4. Results of the sampling from the posterior distribution with PMH and RMHMC for TS =
10 from Table 2. The first column corresponds to the trace plots, the middle column to histograms
obtained with the samples from the posterior distribution, and the last column to autocorrelation
function for the samples.
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Appendix A.2.

Although we do not give details for the NUTS sampler [44] in the main text, we
present here experiments for this sampler using the same experiments as in the main
text. The results in Table A1l are obtained with the sampler implemented in RStan [45].
The method provides large confidence intervals for the parameters ¢ and 0. Similarly to
RMHMC, the variance of the latent volatility process tends be overestimated based on the
mean and the mode of the posterior distribution. The confidence intervals obtained with
NUTS appear to be quite large, especially for the parameters ¢ and ¢;. The multivariate
version of the stochastic volatility model can provide additional challenges since different
parameters might require different step sizes and the sampler can get stuck in the regions of
space where a small step size is needed to achieve target acceptance rate. In the univariate
case, NUTS appears to be more efficient than both PMH and RMHMC as can be seen from
the last two columns of Table A1. The applicability of this particular implementation can
be limited due to the large 95% highest posterior intervals as uncertainty about parameters
¢ and 0, is very large in most cases.

Table A1. Posterior results for estimation of the SV model with INLA. Experiments 1, 2, 3, 4, and 5
correspond to TS 2,4, 5,9, and 10 from Table 2.

Experiment 1

mean mode 95% HPD; 95% HPD, true ESS ESS/s

B 1.1785 1.1779 1.1053 1.2567 1.189 18794 87.31

¢  0.6266 0.8366 0.0886 09773  0.959 18704 86.89

oy 0.3117 0.2985 0.0961 0.5397  0.089 18534 86.10
Experiment 2

mean mode 95% HPD; 95% HPD,, true ESS ESS/s

B 0.8498 0.8509 0.7978 0.9004  0.903 18694 42.08

¢  0.4033 0.7162 —0.3309 09912 0967 17888 40.26

oy 0.2944 0.3064 0.0547 0.5127  0.076 18789 42.29
Experiment 3

mean mode 95% HPD; 95% HPD,, true ESS ESS/s

B 0.9510 0.9510 0.9074 0.9960  0.938 19001 42.31

¢  0.0188 —0.2263 —0.8129 0.8727  0.764 18168 40.46

oy 0.1259 0.0276 0.0000 0.2906  0.080 19001 42.31
Experiment 4

mean mode  95% HPD; 95% HPD,, true ESS  ESS/s

B 0.9096 0.9042 0.7178 1.1550  0.942 18587 39.88

¢ 09753 0.9784 0.9525 0.9965  0.981 18529 39.75

oy 0.1398 0.1317 0.0876 0.1923  0.100 18397 39.47
Experiment 5

mean mode 95% HPD; 95% HPD,, true ESS ESS/s

B 0.5631 0.5632 0.5329 0.5958  0.553 18819 42.40

¢  0.2804 0.3784 —0.3789 0.8847  0.840 18703 42.14

oy 0.3648 0.3910 0.1657 0.5445  0.215 18248 41.11

Appendix A.3.

Algorithm Al is a generic particle filter. We use auxiliary version of it proposed in [23].
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Algorithm A1 Approximation of marginal likelihood with ASIR algorithm.

1: Draw N samples h(()i) from the prior

W)~ (hy | 0), i=1,...,N (A1)
andsetw(()i) =1/N,foralli=1,...,N.

2: Foreacht =1,...,T do the following
3: Draw samples hgl) from the importance distribution
WY~ (e | WY yr,0), i=1,...,N. (A2)

4: Compute the following weights

Lo _ sl m o fm? |10, 6)

t a(n” |y, 0) )
and compute the estimate of p(y: | y1.4—1,0) as
pye | yra1,0) = LWl (Ad)
i
5. Compute normalized weights as
W o« W ), (A5)

6: If the effective number of particles is too low, perform resampling.

Appendix A.4.

Table A2. Descriptive statistics for time series from the empirical example in Section 3.5: daily
log-returns for DAX index and weekly log-returns for Australian/US dollar exchange rate.

DAX Australia/US
Mean —0.001 —0.04
Std.dev. 0.013 1.00
Skewness 0.202 0.06
Kurtosis 3.253 3.37
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