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Abstract 

Background:  The Coronavirus Disease 2019 (COVID-19) pandemic has infected over 10 million people globally with 
a relatively high mortality rate. There are many therapeutics undergoing clinical trials, but there is no effective vaccine 
or therapy for treatment thus far. After affected by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), molecular signaling pathways of host cells play critical roles during the life cycle of SARS-CoV-2. Thus, it is 
significant to identify the involved molecular signaling pathways within the host cells. Drugs targeting these molecu-
lar signaling pathways could be potentially effective for COVID-19 treatment.

Methods:  In this study, we developed a novel integrative analysis approach to identify the related molecular signal-
ing pathways within host cells, and repurposed drugs as potentially effective treatments for COVID-19, based on the 
transcriptional response of host cells.

Results:  We identified activated signaling pathways associated with the infection caused SARS-CoV-2 in human lung 
epithelial cells through integrative analysis. Then, the activated gene ontologies (GOs) and super GOs were identified. 
Signaling pathways and GOs such as MAPK, JNK, STAT, ERK, JAK-STAT, IRF7-NFkB signaling, and MYD88/CXCR6 immune 
signaling were particularly activated. Based on the identified signaling pathways and GOs, a set of potentially effec-
tive drugs were repurposed by integrating the drug-target and reverse gene expression data resources. In addition to 
many drugs being evaluated in clinical trials, the dexamethasone was top-ranked in the prediction, which was the first 
reported drug to be able to significantly reduce the death rate of COVID-19 patients receiving respiratory support.

Conclusions:  The integrative genomics data analysis and results can be helpful to understand the associated 
molecular signaling pathways within host cells, and facilitate the discovery of effective drugs for COVID-19 treatment.
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Background
By June 29, 2020, there were over 2,500,000 confirmed 
cases (with > 120,000 deaths) of Coronavirus Disease 
2019 (COVID-19) in the U.S. and over 10 million cases 
(with > 500,000 deaths) globally, based on the COVID-19 
Dashboard [1] operated by the Center for Systems Sci-
ence and Engineering at Johns Hopkins University (JHU) 

(https​://coron​aviru​s.jhu.edu/map.html). The primary 
organ of infection is considered to be the lung, and the 
infection leads to acute hypoxemic respiration and ulti-
mately to multi-organ failure and death [2]. The mor-
tality rate of COVID-19 is relatively high [3], compared 
with the flu epidemic. So far, there is no newly FDA 
approved drug for the treatment of COVID-19. Recently, 
remdesivir, developed by Gilead Sciences, was recently 
approved for COVID-19 treatment. However, remdesivir 
can reduce the time of recovery and cannot significantly 
reduce the mortality rate [4]. To improve the outcome 
of COVID-19 patients, many existing drugs are being 
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evaluated in clinical trials globally, like chloroquine and 
hydroxychloroquine, azithromycin, and lopinavir–ritona-
vir, and dexamethasone. Thus, repurposing existing med-
ications is considered an important approach to speed up 
the drug discovery for COVID-19. A few days ago, dexa-
methasone, an existing FDA approved drug, was reported 
to be the first drug that can reduce the death rate, by one-
fifth to one-third, of COVID-19 patients receiving respir-
atory support [5], which was ranked No.1 in our analysis.

Although 1,570 clinical trials have been initiated glob-
ally for COVID-19 treatment by June 29, 2020, based on 
the data from the dashboard [6] of real-time clinical tri-
als of COVID-19 (https​://www.covid​-trial​s.org/), only 
one drug, dexamethasone, was reported to be able to 
significantly reduce the death rate of COVID-19 patients 
receiving respiratory support [5]. One possible reason 
is that most of the current clinical trials are based on 
limited knowledge of the disease and observed pheno-
types. The molecular mechanisms and signaling path-
ways within the host cells such as lung cells, which play 
critical roles in the life cycle of Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2) infection, 
remain unidentified. Thus, it is significant to uncover 
the mysterious molecular signaling pathways within host 
cells via computational data analysis. It is also important 
and needed to facilitate drug repurposing and design of 
new clinical trials. For example, in the recent studies [7, 
8] the cogena model (co-expressed gene-set enrichment 
analysis) was applied to identify the co-expressed differ-
entially expressed genes (DEGs) in the gene expression 
data of Bronchoalveolar Lavage Fluid (BALF) [9] sam-
ples of COVID-19 patients, and the activated signaling 
gene sets in KEGG [10–12] and Reactome [13]. Then two 
potentially effective anti-viral drugs, saquinavir and riba-
virin, were identified using connectivity map (CMAP) 
database.

In order to better understand the transcriptional 
response of lung cells to the SARS-CoV-2 infection, 
Albrecht and tenOever laboratories profiled the RNA-
seq gene expression from human NHBE (Normal Human 
Bronchial Epithelial) cells, A549 lung cancer cells (no 
ACE2 expression), A549_ACE2 (A549 lung cancer cells 
transduced with a vector expressing human ACE2), and 
CALU-3 lung cancer cells (with ACE2 expression), and 2 
human lung samples infected by SARS-CoV-2 [14]. The 
data are valuable sources for identifying genetic pathways 
and biological processes that become dysregulated dur-
ing active infection. More importantly, the data allows 
for the identification of activated signaling pathways that 
can be targeted by existing pharmaceutical agents. In 
this study, we aimed to identify activated signaling path-
ways within lung host cells affected by SARS-CoV-2 and 
repurpose existing drugs for COVID-19 treatment using 

a novel integrative data analysis approach, integrating 
transcriptional response [14], signaling pathway [10], 15, 
gene ontology [16], drug-target interactions from drug-
bank [17] and reverse gene signature data from connec-
tivity map (CMAP) [18–20]. These results, including the 
identified signaling pathways, activated GOs, and drugs, 
can be helpful to facilitate the experimental screening 
and clinical trial design to speed up the therapeutic dis-
covery for COVID-19.

Methods
RNA-seq data (gene expression) from NHBE (Nor-
mal Human Bronchial Epithelial) cells, A549 (no ACE2 
expression) cells, A549_ACE2 cells (A549 lung cancer 
cells transduced with a vector expressing human ACE2), 
and CALU-3 lung cancer cells (with ACE2 expression) 
cells infected by SARS-CoV-2 were obtained from GEO 
(GSE147507) [14]. This data was generated by Drs. Albre-
cht and tenOever’s at the Icahn School of Medicine at 
Mount Sinai. Specifically, for each cell line, 3 control (no 
SARS-CoV-2 infected) and 3 SARS-CoV-2 infected sam-
ples were used respectively. The DEseq2 [21] tool was 
used to calculate the fold change and p-value of indi-
vidual genes in the NHBE (normal tissue), A549_ACE2, 
and CALU-3 lung cancer cells respectively before- and 
after- viral exposure. The data of A549 cell was not used 
considering that the ACE2, with which SARS-CoV-2 
interacts to enter host cells, is not expressed in A549 cell.

For the signaling network analysis, the 307 KEGG 
(Kyoto Encyclopedia of Genes and Genomes) [10–12] 
signaling pathways were extracted using the ‘graph-
ite’ R package [22, 23]. To identify the activated signal-
ing network for NHBE, A549_ACE2 and CALU-3 cells 
respectively, the signaling paths, i.e., the shortest paths 
link source signaling genes (starting genes on the sign-
aling pathways) and the sink signaling genes (ending 
genes on the signaling pathways) within the 307 KEGG 
signaling pathways were first identified. For each signal-
ing path, the average fold change of genes on the signal-
ing path was calculated. Then the signaling paths with 
the average fold change score greater than the mean 
score + 1.25 standard deviation threshold were selected 
to construct the activated signaling network. To remove 
the potential tumor-specific signaling pathways, the 
common and intersection signaling pathways between 
NHBE and A549_ACE2 cell lines, and the common sign-
aling between NHBE and CALU-3 cell lines were then 
combined as the potential activated signaling pathways 
associated with the viral infection. To identify potential 
drugs that can inhibit the signaling genes on the acti-
vated signaling pathways, the drug-target interactions of 
FDA-approved drugs were downloaded from the Drug-
Bank [17] database. Then drugs targeting the activated 

https://www.covid-trials.org/
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signaling pathways were identified as potential effective 
drug candidates for COVID-19 treatment.

For the gene ontology (GO) [16] analysis, the Fisher’s 
exact test, with a threshold p-value = 0.05, was used to 
identify the statistically activated GOs based on the up-
regulated genes. Since there are many activated GOs, 
and some of them are semantically close and sharing the 
common set of genes, it was difficult to identify the most 
important GOs. To solve this challenge, we first manually 
removed many of the activated GOs that were not related 
to biological signaling processes or general diseases. In 
addition, we defined the super-GOs, which are defined as 
sub-groups of GOs that have similar or related biological 
processes. Specifically, after the calculation of GO-GO 
similarity using the semantic similarity [24] (GOSemSim 
R package) between activated GOs, the affinity propa-
gation clustering [25] (APclustering) was used to divide 
the activated GOs into sub-groups (named super-GOs). 
Then, the genes that were up-regulated within each 
super-GO were used as signatures to identify potential 
drugs that can inhibit the activation of the super-GOs. 
These gene signatures were fed into the updated connec-
tivity map (CMAP) [18, 19] database to identify potential 
drugs, which included the gene expression profiles on a 
set of cancer cell lines before and after perturbation of 
2,513 drugs and compounds. Then the gene set enrich-
ment analysis (GSEA) [26] was applied on the z-profiles 
(gene expression variation before and after treatment 
with 2,513 drugs and investigational agents) of 9 cells [18, 
19] in the updated CMAP to identify gene set signature-
specific inhibitory drugs. The top ranked FDA drugs, 
based on the average GSEA scores, that can potentially 
inhibit the up-regulated gene signatures associated with 
the super-GOs were identified as potential candidates for 
repurposing for COVID-19 treatment.

Results
Activated signaling pathways and associated inhibitory 
medications
The KEGG signaling pathway analysis was conducted 
to identify the potentially activated signaling pathways 
within the lung host cells after SARS-CoV-2 infec-
tion (see Fig. 1-Upper). As seen, the IRF7/IFR9, NFkB1, 
NFkB2, STAT1, TNF, MAPK3K8, MAPK8, and MAPK14 
related signaling pathways that were identified as the 
major activated transcription factors (TFs), which can 
potentially activate the activation of other predicted sign-
aling pathways, including those mediated by CXCR6/
CXCL1/CXCL2/CXCL3/CXCL10, MYD88, CREBBP, 
JAK1/JAK2, STAT and MAPK signaling pathways. 
Also, the WNT4/WNT7A and SMAD signaling path-
ways are also identified to be activated. Moreover, the 
PDGFB-EGFR and TUBB1C/2B/3 proliferation signaling 

pathways are also predicted as the COVID-19 related 
signaling pathways.

Based on the drug-target interaction data derived from 
DrugBank and the identified signaling network, 220 
drugs were identified to inhibit 97 target genes on the 
signaling network (with 71 drugs targeting the PTGS2 
gene specifically) (see Additional file  1: Table  S1). As 
seen, Chloroquine and hydroxychloroquine were found 
to be able to potentially inhibit MYD88 immune signal-
ing based on their targets, TLR7 and TLR9 that directly 
interact with the MYD88 target on the signaling network. 
Also, acetylsalicylic acid, thalidomide, pranlukast, trif-
lusal, glycyrrhizic acid and fish oil have targets in NFkB 
signaling pathway. Some reported studies showed the 
importance of predicted signaling pathways. For exam-
ple, the NFkB signaling pathway was previously reported 
as a potential signaling pathway target for SARS [27] 
treatment, and can also potentially inhibit IRF7 activity. 
For example, the drug thalidomide, inhibiting NFkB and 
TNF, was reported as potential treatment for COVID-19 
[28]. Moreover, the tumor necrosis factor (TNF) identi-
fied in this study was reported in the Lancet [29] to be 
an important therapeutic target for COVID-19. Also, 
JAK1/2 pathways were also reported as important tar-
gets, and their inhibitors, ruxolitinib, tofacitinib, barici-
tinib and fostamatinib, could be effective for COVID-19 
treatment. Particularly, baricitinib, an arthritis drug, 
could help reduce the out-of-control immune response 
(https​://www.wired​.com/story​/ai-uncov​ers-poten​tial-
treat​ment-covid​-19-patie​nts/, and https​://www.clini​caltr​
ialsa​rena.com/news/eli-lilly​-to-study​-baric​itini​b-for-
covid​-19-treat​ment/), was reported in the Lancet [30] as 
a COVID-19 suitable treatment. In addition, the MAPK1, 
AKT and PRKCA inhibitors such as isoprenaline, arse-
nic trioxide, vitamin e, and midostaurin could be also 
effective. Moreover, the IL6R inhibitor tocilizumab was 
reported for COVID-19 treatment [31], and another IL6R 
inhibitor, sarilumab, is being evaluated in clinical tri-
als (ClinicalTrials.gov Identifier: NCT04327388). Lastly, 
STAT1 and IFANR1 were identified as potential targets 
for COVID-19 treatment and were reported by another 
group as well [32]. These evidences support the predicted 
signaling pathways. In summary, the identified activated 
signaling pathways provided potential molecular mecha-
nisms that facilitate the viral replication life cycle, and 
thus can be potential therapeutic targets to identify effec-
tive drugs for COVID-19.

Moreover, the identified drugs inhibiting the pre-
dicted signaling pathways were compared with drugs 
used in the clinical trials for COVID-19 treatment. 
Specifically, drugs that have been tested or are cur-
rently being tested in clinical trials globally were 
identified from the covid-trials dashboard (Data: 

https://www.wired.com/story/ai-uncovers-potential-treatment-covid-19-patients/
https://www.wired.com/story/ai-uncovers-potential-treatment-covid-19-patients/
https://www.clinicaltrialsarena.com/news/eli-lilly-to-study-baricitinib-for-covid-19-treatment/
https://www.clinicaltrialsarena.com/news/eli-lilly-to-study-baricitinib-for-covid-19-treatment/
https://www.clinicaltrialsarena.com/news/eli-lilly-to-study-baricitinib-for-covid-19-treatment/
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table_trials-2020-05-27 05_38_12.csv, and the updated 
drugs: table_trials-2020-06-29 22_20_46.csv. Some 
drugs cannot be found in the table_trials-2020-06-29 
22_20_46.csv because drug names were replaced by 
using category names, e.g., ruxolitinib was replaced by 
JAK inhibitor), and compared with the drugs identified 
from the signaling pathway analysis. Based on the dash-
board of clinical trials for COVID-19 treatment, 114 
FDA approved drugs were reported from 1,132 clini-
cal trials globally (see Table  1). Among the 108 drugs, 
31 of them are in the predicted drugs list. These drugs 
are: hydroxychloroquine, chloroquine, tocilizumab, 
sarilumab, canakinumab, ruxolitinib, oxygen, siroli-
mus, ibuprofen, anakinra, acalabrutinib, baricitinib, 
ibrutinib, lenalidomide, tirofiban, acetylsalicylicacid, 
simvastatin, siltuximab, bevacizumab, tinzaparin, nap-
roxen, celecoxib, tofacitinib, adalimumab, thalidomide, 
dalteparin, nadroparin, minocycline, lithium, indo-
methacin, and nintedanib. In summary, the predicted 
signaling network could be helpful to understand the 
molecular mechanisms within lung host cells after 
SARS-CoV-2 infection. Drugs targets on the signaling 
targets might be effective (some might also have harm-
ful effects and cautions). Drug combinations (drug 
cocktails) targeting on different targets can be poten-
tially synergistic for COVID-19 treatment.

Activated gene ontologies (GOs)
Based on the fold change and p-value obtained from the 
DEseq2 analysis of NHBE, A549_ACE2, and CALU-3 
cells before and after the viral infection, the up-regulated 
genes in each cell were identified respectively. Since only 
a small number of up-regulated genes will be obtained 
for NHBE cells using threshold of fold change 2.0. We 
set the fold-change threshold as 1.25 for the NHBE cell 
line empirically. Specifically, for the NHBE cells, 558 
genes had a statistically significant increase with a fold-
change >  = 1.25 with a p value <  = 0.05. For the A549_
ACE2 cells, 916 up-regulated genes were identified with 
a fold-change >  = 2.0 and with a p value <  = 0.05. For the 
CALU-3 cells, 1335 up-regulated genes were identified 
with a fold-change >  = 2.0 and with a p value <  = 0.05.

Based on the three up-regulated gene sets, the activated 
GOs with enriched genes in the three gene sets were 
identified respectively with a p-value <  = 0.05 (obtained 
from the Fisher’s exact test) and the number of genes in 
GOs between 10 and 1000. Then the common activated 
GOs between NHBE and A549_ACE2 cells and between 
NHBE and CALU-3 cells were unified. After empirically 
removing the unrelated and general GOs, 73 GOs were 
kept. The full list of enriched GOs was provided in the 
supplementary file (Cell-line-GO.txt). Then, the cluster-
ing analysis was employed to divide the activated GOs 

Table 1  FDA approved drugs in clinical trials for COVID-19 treatment

Zidovudine Linagliptin Chlorpromazine Bevacizumab Sofosbuvir

Hydroxychloroquine Telmisartan Lenalidomide Tinzaparin Vitamina

Lopinavir Anakinra Methotrexate Naproxen Metformin

Tocilizumab Vitaminc Tirofiban Ritonavir Berberine

Sarilumab Zinc Clopidogrel Tacrolimus Licorice

Atazanavir Almitrine Acetylsalicylicacid Celecoxib Bromhexine

Tranexamicacid Sitagliptin Fondaparinux Tofacitinib Minocycline

Alteplase Ciclesonide Ramipril Pirfenidone Lithium

Canakinumab Acalabrutinib Progesterone Hydrogenperoxide Formoterol

Ruxolitinib Etoposide Captopril Sildenafil Indomethacin

Colchicine Ketamine Eculizumab Ixekizumab Selenium

Leflunomide Losartan Sevoflurane Dexmedetomidine Nintedanib

Oxygen Valsartan Nitazoxanide Lipoicacid Spironolactone

Sirolimus Baricitinib Sargramostim Tranilast Imatinib

Povidone-iodine Fluoxetine Ribavirin Adalimumab Estradiol

Fluvoxamine Vitamind Nivolumab Thalidomide Chloroquine

Ibuprofen Bicalutamide Melatonin Fingolimod Azithromycin

Aviptadil Ivermectin Simvastatin Suramin Dexamethasone

Doxycycline Sodiumbicarbonate Dapagliflozin Itraconazole Oseltamivir

Enoxaparin Ibrutinib Amiodarone Mefloquine Amoxicillin

Prazosin Levamisole Verapamil Dalteparin Clavulanate

Isotretinoin Deferoxamine Siltuximab Nadroparin Darunavir

Heparin Methyleneblue Defibrotide Iloprost



Page 5 of 13Li et al. BMC Med Inform Decis Mak           (2021) 21:15 	

Fig. 1   (Upper) Activated signaling pathways (with 244 genes) within NHBE and also appeared in lung A549_ACE2 and CALU3 cells after 
SARS-CoV-2 infection. Red nodes are transcription factors (TFs); green—receptors; purple—ligands; orange—activated target genes of TFs; and 
cyan—the linking genes. (Lower) 220 drugs (cyan) (with 97 target genes) targeting on the activated signaling pathways
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into 5 sub-groups (named super-GOs). Among the 73 
GOs, 212 up-regulated genes were kept. Figure 2 shows 
the network of the 212 up-regulated genes, 73 activated 

GOs and 5 super-GOs. Genes associated with the GOs 
in each super-GO are collected as gene set signatures for 
drug discovery analysis. In addition to the viral process 

Table 2  Twenty-seven common FDA approved drugs derived from signaling network analysis and super-GO analysis

Caffeine Lenalidomide Naproxen Sunitinib Talniflumate

Lovastatin Dextromethorphan Phenylbutazone Resveratrol Fostamatinib

Lidocaine Diclofenac Thalidomide Nimesulide Chloroquine

Gefitinib Chloroquine Naloxone Pazopanib

Sorafenib Simvastatin Dasatinib Tofacitinib

Nabumetone Imiquimod Lapatinib Afatinib

Fig. 2  Network of 212 up-regulated genes (cyan color) in lung NHBE, A549_ACE2 and CALU-3 cells after SARS-CoV-2. There are 73 activated gene 
ontologies (GOs; red color), and 5 super-GOs (clusters of GOs; purple color). The node size of genes and GOs is proportional to the fold change and 
negative log2 p-values respectively
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related signaling, the GO analysis identified many poten-
tial viral infections related signaling pathways, e.g., 
MAPK, JNK, STAT, ERK1/2, MYD88 and Toll like recep-
tor signaling pathways. These results are consistent and 
complement the KEGG signaling pathway analysis.

Repurposing drugs inhibiting individual super‑GOs
The gene signatures in each of 5 super-GO clusters were 
used as the query input of the CMAP database to iden-
tify drugs capable of inhibiting the associated genetic 
pathways. Specifically, 258 drugs appeared in the top 
100 drugs in at least one of the 5 super-GOs. There 
were 26 common drugs among the total drugs derived 
from aforementioned signaling network analysis and the 
super-GO analysis (see Table  2). Then 113 drugs were 
selected based on their frequency (frequency >  = 2) 
appeared in the top 100 drugs of each of the 5 super-GOs 
(see Fig. 3 and Table 3). Surprisingly, the dexamethasone 
(glucocorticoid receptor agonist, corticosteroid agonist, 

immunosuppressant) (frequency = 5, top ranked) in our 
prediction, see Table 3), an existing FDA approved drug, 
was recently reported to be the first drug that can sig-
nificantly reduce the death rate of COVID-19 patients 
receiving respiratory support [5]. Specifically, the clini-
cal trials results indicated that dexamethasone reduced 
death rate by one-third in patients receiving invasive 
mechanical ventilation, and reduced the death rate by 
one-fifth in COVID-19 patients receiving oxygen with-
out invasive mechanical ventilation [5]. Moreover, a 
few top-ranked drugs were reported to be potentially 
able to treat or reduce the mortality of COVID-19. The 
fenofibrate, was used in clinical trials for COVID-19 
as a metabolic intervention (ClinicalTrials.gov Identi-
fier: NCT04517396). The parthenolide was reported 
as a potential inhibitor for the cytokine storm [33]. The 
diabetes drug, sitagliptin, was reported to be associated 
with reduced mortality in COVID-19 patients with type 

Table 3  Top 113 drugs frequently appeared in the top-ranked drugs of 5 super-GOs

Name Freq Name Freq Name Freq Name Freq

Dexamethasone 5 Amcinonide 3 Quinidine 3 Minoxidil 2

Atorvastatin 5 Amoxapine 3 Rosuvastatin 3 Mupirocin 2

Fenofibrate 5 Amylocaine 3 Scopolamine 3 Naphazoline 2

Flupirtine 5 Budesonide 3 Temozolomide 3 Nilutamide 2

Palonosetron 5 Dicloxacillin 3 Thalidomide 3 Nitrazepam 2

Parthenolide 5 Diethylstilbestrol 3 Tocainide 3 Pazopanib 2

Pindolol 5 Diltiazem 3 Albendazole 2 Phenelzine 2

Sitagliptin 5 Doconexent 3 Alprenolol 2 Pinacidil 2

Trimethobenzamide 5 Efavirenz 3 Artesunate 2 Propafenone 2

Vemurafenib 5 Enalapril 3 Atomoxetine 2 Quinine 2

Azithromycin 4 Estrone 3 Atracurium 2 Ranolazine 2

Carbetocin 4 Fluticasone 3 Betahistine 2 Rimantadine 2

Deferiprone 4 Formoterol 3 Betamethasone 2 Rimexolone 2

Diazepam 4 Fostamatinib 3 Betaxolol 2 Rizatriptan 2

Doxycycline 4 Hydrocortisone 3 Cefixime 2 Rucaparib 2

Gefitinib 4 Lapatinib 3 Cefotiam 2 Safinamide 2

Halcinonide 4 Lenalidomide 3 Clomipramine 2 Sibutramine 2

Iloperidone 4 Mepyramine 3 Desoximetasone 2 Sulfacetamide 2

Lovastatin 4 Naftifine 3 Diloxanide 2 Terbutaline 2

Melperone 4 Naloxone 3 Enalaprilat 2 Tolcapone 2

Memantine 4 Naltrexone 3 Fenoterol 2 Treprostinil 2

Mestranol 4 Nifedipine 3 Flunarizine 2 Triamcinolone 2

Norepinephrine 4 Nitrendipine 3 Fluorometholone 2 Triamterene 2

Promazine 4 Olanzapine 3 Guanabenz 2 Trimipramine 2

Rilmenidine 4 Phensuximide 3 Imiquimod 2 Vecuronium 2

Simvastatin 4 Piperacillin 3 Labetalol 2 Zolmitriptan 2

Testosterone 4 Pirfenidone 3 Lidocaine 2

Verapamil 4 Pirlindole 3 Linezolid 2

Ziprasidone 4 Pravastatin 3 Methantheline 2
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2 diabetes. Also the stains drugs, like atorvastatin and 
lovastatin, was associated with reduced hazard for fatal 
or severe disease of COVID-19. Also, hydrocortisone 
(corticosteroid agonist, glucocorticoid receptor agonist, 
immunosuppressant, interleukin receptor antagonist) 
(frequency = 3) were reported to be related to COVID-19 
treatment [34]. To help understand the potential mecha-
nisms of the drugs, the 102 drugs (some drugs have no 
target information) and 170 targets interaction network 
was provided in Fig.  4. We further compared the GO 
analysis derived drugs with the clinical trials drugs, and 
10 overlapping drugs were in both the prediction list and 
the clinical trial reports. The 10 drugs are: dexametha-
sone, sitagliptin, azithromycin, doxycycline, simvastatin, 
verapamil, formoterol, lenalidomide, pirfenidone, tha-
lidomide. Moreover, 3 drugs appeared in the predictions 
derived from signaling network analysis, GO analysis and 

clinical trials: lenalidomide, simvastatin, thalidomide. 
In summary, the evidence of reported studies and clini-
cal trials indicated that the prediction analysis could be 
potentially helpful for repurposing existing drugs as 
potentially effective treatments for COVID-19.

Activated GO terms and associated drugs using human 
tissue samples of COVID‑19
Human lung biopsies in the same GSE147507 dataset 
and Bronchoalveolar Lavage Fluid (BALF) samples [9] of 
COVID-19 patients were analyzed to identify activated 
GO terms and associated drug for potential repurpos-
ing. There were 660 up-regulated genes in Human lung 
biopsies with fold change >  = 2.0 and p-value <  = 0.05 
obtained by using DESeq2 (2 normal control and 2 
covid-19 human samples). In the BALF samples, 1014 
up-regulated genes had been identified in the study [9]. 

Fig. 3  The 113 drugs inhibiting the up-regulated genes in 5 super-GOs
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By applying the GO enrichment analysis, 86 overlapping 
GOs were identified; and 51 GOs were manually selected 
(see Table 4). The full list of enriched GOs was provided 

in the supplementary file (Human-sample-GO.txt). A 
seen, many general viral response, cytokines and immune 

Fig. 4  The targets of the 102 (out of 113) drugs inhibiting the up-regulated genes in 5 super-GOs
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response GO terms, like type I interferon, interleukin-1 
and toll-like receptor signaling, were strongly activated.

To identify drugs using updated CMAP database, the 
51 GO terms were clustered into five super-GOs. Then 
genes associated with individual super-GOs were used 
as the signatures to identify the associated drugs that 
can potentially inhibit the individual GOs. In total, 120 
drugs were identified that appeared at least two times in 
the top 100 drugs associated with the five super-GOs. 
Importantly, there were 49 overlapping drugs between 
the drug lists identified the super-GO gene signatures 
of cell lines infected by SARS-CoV-2 and human tis-
sue samples of COVID-19 respectively (see Table  5). 
These overlapping drugs can be potentially effective to 

inhibit the cytokine and immune responses to inhibit 
the cytokine storm of COVID-19.

Identify potentially effective drugs using the up‑ 
and down‑regulated genes
In addition, we also investigated drug prediction using 
the up- and down-regulated genes directly, which can 
provide additional evidence to identify potentially effec-
tive drugs. For the cell lines, the common up- and down-
regulated genes between NHBE and CALU-3 cell lines 
were used because there were much fewer common 
genes among all three cell lines (NHBE, A549_ACE2, 
CALU-3). Also, the top 180 common up- and 183 com-
mon down-regulated genes between NHBE and CALU-3 

Table 4  Manually selected 51 activated GO terms using human tissue samples

go_id go_term_name p.value

GO:0016032 Viral process 7.75E−08 GO:0002221 Pattern recognition receptor signaling 
pathway

6.55E−15

GO:0034340 Response to type I interferon 1.78E−15 GO:0034341 Response to interferon-gamma 8.43E−25

GO:0042742 Defense response to bacterium 4.74E −13 GO:0035455 Response to interferon-alpha 8.74E −07

GO:0045071 Negative regulation of viral genome replica-
tion

2.38E −14 GO:0035456 Response to interferon-beta 9.80E−06

GO:0051607 Defense response to virus 1.54E−24 GO:0046597 Negative regulation of viral entry into host cell 0.00040034

GO:0060337 Type I interferon signaling pathway 6.45E−16 GO:0039530 MDA-5 signaling pathway 0.00446572

GO:0009615 Response to virus 1.60E−28 GO:0060326 Cell chemotaxis 4.46E−19

GO:0045088 Regulation of innate immune response 1.92E−18 GO:0048247 Lymphocyte chemotaxis 1.49E−11

GO:0098586 Cellular response to virus 0.00074571 GO:0006959 Humoral immune response 2.95E−16

GO:0071347 Cellular response to interleukin-1 7.13E−07 GO:0006935 Chemotaxis 1.01E−10

GO:0071356 Cellular response to tumor necrosis factor 4.84E−07 GO:0019731 Antibacterial humoral response 0.00133157

GO:1990869 Cellular response to chemokine 3.29E−08 GO:0002237 Response to molecule of bacterial origin 4.05E−16

GO:0043123 Positive regulation of I-kappaB kinase/NF-
kappaB signaling

1.01E−06 GO:0001817 Regulation of cytokine production 3.41E−25

GO:0009617 Response to bacterium 2.67E−25 GO:0051591 Response to cAMP 0.00254496

GO:0071346 Cellular response to interferon-gamma 4.49E−22 GO:0019079 Viral genome replication 4.70E−10

GO:0045089 Positive regulation of innate immune response 1.27E−15 GO:0031663 Lipopolysaccharid E-mediated signaling 
pathway

1.10E−08

GO:0002224 Toll-like receptor signaling pathway 1.09E−07 GO:0048245 Eosinophil chemotaxis 4.79E−05

GO:0050832 Defense response to fungus 0.00026658 GO:0070098 Chemokin E-mediated signaling pathway 4.75E−08

GO:0002548 Monocyte chemotaxis 6.18E−09 GO:0045055 Regulated exocytosis 1.68E−24

GO:0002218 Activation of innate immune response 9.08E−15 GO:0007249 I-kappaB kinase/NF-kappaB signaling 7.22E−08

GO:0034612 Response to tumor necrosis factor 2.65E−07 GO:0043122 Regulation of I-kappaB kinase/NF-kappaB 
signaling

1.61E−07

GO:0070555 Response to interleukin-1 5.34E−07 GO:0039528 cytoplasmic pattern Recognition receptor 
signaling pathway in response to virus

0.01386028

GO:0002430 Complement receptor mediated signaling 
pathway

2.11E−05 GO:0050920 Regulation of chemotaxis 1.71E−08

GO:0050688 Regulation of defense response to virus 3.49E−06 GO:0030595 Leukocyte chemotaxis 3.11E−20

GO:0071357 Cellular response to type I interferon 6.45E−16 GO:0019058 Viral life cycle 1.15E−09

GO:0001819 Positive regulation of cytokine production 5.35E−15
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cell lines were selected to identify potentially effective 
drugs in the CMAP database. Specifically, 30 out of 180 
up-regulated genes, and 39 out of 183 down-regulated 
genes were not available in the CMAP database. Thus 150 
up-regulated and 144 down-regulated genes were used. 
Among the top 100 FDA drugs, there were 13 drugs also 
appeared in the clinical trials, i.e., sildenafil, lenalidomide, 
dexamethasone, sitagliptin, simvastatin, azithromycin, 
formoterol, thalidomide, fluoxetine, lopinavir, valsartan, 
verapamil, chloroquine. The best rank of dexamethasone 
was 6. The prediction is similar to the prediction using 
GO term analysis. Therefore, the prediction can be used 
as additional evidence of how these drugs can potentially 
reverse the differentially expressed genes.

For the human samples, there were 156 common up-
regulated genes and 162 common down-regulated genes 
between the human lung tissues and BALF samples. 
respectively. The common up- and down-regulated genes 
were used to identify potentially effective drugs in the 
CMAP database. Specifically, 31 out of 156 up-regulated 
genes, and 15 out of 162 down-regulated genes were not 
available in the CMAP database. Thus 125 up-regulated 
and 147 down-regulated genes were used. Among the 
top 100 FDA drugs, there were 5 drugs also appeared in 
the clinical trials, i.e., valsartan, doxycycline, isotretinoin, 
metformin, progesterone. The best rank of dexametha-
sone was 330 (not top-ranked). The results are not con-
sistent with the GO-term based analysis. One possible 
reason is that much noisy genes were identified in the 
human tissue and BALF samples as signatures to identify 
the related drugs in the CMAP database. Therefore, GO 
term analysis is helpful to identify biologically meaning-
ful gene sets as gene set signatures to identify drugs in 
CMAP database.

Discussion and conclusions
Currently, there is no effective new drugs or vaccine 
approved for the treatment of COVID-19, though rapid 
developments are occurring and being translated into 
clinical use. As the disease continues to spread, it is 
becoming increasingly important to develop a treatment 
modality in the most time-efficient manner. One such 
approach is to use genetic information to inform the 
repurposing of available medications. This preliminary 
and exploratory analysis uses transcriptional response 
(gene expression) profiles from human host cells before 
and after the infection with the SARS-CoV-2. In the anal-
ysis results, some potentially important targets, signaling 
pathways, and a set of GOs activated within host cells 
after viral infection, were identified. Moreover, a set of 
drugs registered for COVID-19 treatment globally were 
also identified in the analysis. These discoveries can be 
helpful to facilitate the design of future clinical trials for 
the COVID-19 treatment.

This exploratory computational study still has some 
limitations that can be further improved in the future 
work. First, the genetic data are derived from an in vitro 
analysis and will inevitably have a gene expression pro-
file different from an in  vivo epithelial, which may be 
further modified on a person-to-person basis. Second, 
the signaling network analysis is a long-standing chal-
lenge, and the models could be improved by integrating 
the KEGG signaling pathways with the GOs (to include 
more genes) and also incorporating transcriptomic 
response data of cells and human tissue samples of 
COVID-19 patients to uncover the core signaling net-
works involved in the life cycle of SARS-CoV-2 within 
host cells. Third, the unbiased list of medications 
generated and presented was not filtered by route of 
administration or clinical applicability. For instance, the 
immune dampening chemotherapeutic agent docetaxel 
was identified, but would likely not be administered to 
an infected patient due to concern for augmenting viral 

Table 5  49 common top-ranked drugs identified using the super-GO gene signatures of cell lines infected by SARS-CoV-2 
and human tissue samples of COVID-19 respectively

Dexamethasone Promazine Lenalidomide Tocainide Propafenone

Atorvastatin Rilmenidine Mepyramine Albendazole Rizatriptan

Palonosetron Testosterone Naloxone Betahistine Rucaparib

Sitagliptin Verapamil Naltrexone Betamethasone Safinamide

Trimethobenzamide Amylocaine Nifedipine Betaxolol Sibutramine

Vemurafenib Enalapril Olanzapine Fenoterol Terbutaline

Iloperidone Estrone Phensuximide Labetalol Treprostinil

Melperone Fluticasone Pirlindole Minoxidil Triamcinolone

Memantine Hydrocortisone Scopolamine Nitrazepam Vecuronium

Norepinephrine Lapatinib Temozolomide Pinacidil
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replication. Therefore, further pipelines and additional 
information are needed to analyze the potential effects 
of these medications, and to continue developing this 
computational approach to medication repurpos-
ing. In addition, we will investigate both up-regulated 
and down-regulated genes, which could be helpful to 
understand the potential mechanism of viral-host sign-
aling interactions. Network analysis and its applications 
for drug and drug combination prediction are challeng-
ing problems [35–38]. It can be interesting to conduct 
significance testing of activated signaling pathways, 
e.g., possibly using a set of randomly generated signal-
ing paths, to identify most important signaling path-
ways for drug and drug combination prediction. In the 
future work, we will investigate these challenges.

Supplementary information
is available for this paper at https​://doi.org/10.1186/s1291​1-020-01373​-x.

Additional file 1. Table S1: Drugs inhibiting targets on the signaling 
network.

Abbreviations
COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory 
syndrome coronavirus 2; GSEA: Gene set enrichment analysis; CMAP: Con-
nectivity map; KEGG: Kyoto Encyclopedia of genes and genomes; GO: Gene 
ontology.

Acknowledgements
We would like to thank Ms Kendall Cornick and Ms Kelley Foyil for proofread-
ing the manuscript.

Authors’ contributions
FL conceived the project. Project supervision and methodology design by 
FL, AM, RF, PP. Data collection and analysis were conducted by FL. FL, AM, 
MZ revised the manuscript. All authors have read and approved the final 
manuscript.

Funding
NA.

Availability of data and materials
Gene expression data of cell lines, and human lung tissue was available at 
Gene Expression Omnibus (GEO) (with the access number: GSE147507): https​
://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE14​7507. Differentially 
expressed genes of human BALF samples were available at (Table S3): https​
://www.cell.com/cell-host-micro​be/fullt​ext/S1931​-3128(20)30244​-4?_retur​
nURL=https​%3A%2F%2Flin​kingh​ub.elsev​ier.com%2Fret​rieve​%2Fpii​%2FS19​
31312​82030​2444%3Fsho​wall%3Dtru​e#suppl​ement​aryMa​teria​l. DrugBank: 
https​://go.drugb​ank.com/. Connectivity Map database: clue.io. KEGG signaling 
pathway database: https​://www.genom​e.jp/kegg/pathw​ay.html. KEGG signal-
ing pathways are accessible using ‘graphite’ R package: https​://bioco​nduct​
or.org/packa​ges/relea​se/bioc/html/graph​ite.html. Gene oncology (GO) terms 
are accessible using ‘GO.db’ R package: https​://bioco​nduct​or.org/packa​ges/
relea​se/data/annot​ation​/html/GO.db.html

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute for Informatics (I2), Washington University in St. Louis School 
of Medicine, St. Louis, MO, USA. 2 Department of Pediatrics, Washington 
University in St. Louis School of Medicine, St. Louis, MO, USA. 3 Pulmonary 
and Critical Care Medicine, Washington University in St. Louis School of Medi-
cine, St. Louis, MO, USA. 4 National Institute of Mental Health (NIMH), NIH, 
Bethesda, MD, USA. 

Received: 15 July 2020   Accepted: 16 December 2020

References
	1.	 Dong E, Du H, Gardner L. An interactive web-based dashboard to track 

COVID-19 in real time. Lancet Infect Dis. 2020. https​://doi.org/10.1016/
S1473​-3099(20)30120​-1.

	2.	 Wölfel R, et al. Virological assessment of hospitalized patients with COVID-
2019. Nature. 2020. https​://doi.org/10.1038/s4158​6-020-2196-x.

	3.	 Verity R, et al. Estimates of the severity of coronavirus disease 2019: a 
model-based analysis. Lancet Infect Dis. 2020. https​://doi.org/10.1016/
S1473​-3099(20)30243​-7.

	4.	 Gao Y, et al. Structure of the RNA-dependent RNA polymerase from 
COVID-19 virus. Science. 2020;80:779. https​://doi.org/10.1126/scien​
ce.abb74​98.

	5.	 Horby, P. et al. Effect of dexamethasone in hospitalized patients 
with COVID-19: preliminary report. medRxiv (2020). https​://doi.
org/10.1101/2020.06.22.20137​273

	6.	 Thorlund K, et al. A real-time dashboard of clinical trials for COVID-19. 
Lancet Digit Heal. 2020. https​://doi.org/10.1016/S2589​-7500(20)30086​-8.

	7.	 Jia Z, Song X, Shi J, Wang W, He K. Transcriptome-based drug reposition-
ing for coronavirus disease 2019 (COVID-19). Pathog Dis. 2020;78:36.

	8.	 Jia Z, et al. Cogena, a novel tool for co-expressed gene-set enrichment 
analysis, applied to drug repositioning and drug mode of action discov-
ery. BMC Genomics. 2016;17:414.

	9.	 Zhou Z, et al. Heightened Innate Immune Responses in the Respiratory 
Tract of COVID-19 Patients. Cell Host Microbe. 2020;27:883-890.e2.

	10.	 Ogata H, et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 1999;28:29. https​://doi.org/10.1093/nar/27.1.29.

	11.	 Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28:1947–51.

	12.	 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: 
integrating viruses and cellular organisms. Nucleic Acids Res. 2020. https​
://doi.org/10.1093/nar/gkaa9​70.

	13.	 Croft D, et al. Reactome: a database of reactions, pathways and biological 
processes. Nucleic Acids Res. 2011;39:D691–7.

	14.	 Blanco-Melo, D. et al. SARS-CoV-2 launches a unique transcriptional signa-
ture from in vitro, ex vivo, and in vivo systems. bioRxiv (2020). doi:https​://
doi.org/10.1101/2020.03.24.00465​5

	15.	 Xu, J. et al. Diffusion mapping of drug targets on disease signaling 
network elements reveals drug combination strategies. in Proceed-
ings of tpacific symposium on biocomputing 92–103 (2018).https​://doi.
org/10.1142/97898​13235​533_0009

	16.	 Gene Ontology Consortium, T. et al. Gene ontology: tool for the unifica-
tion of biology NIH public access author manuscript. Nat Genet 25, 25–29 
(2000).

	17.	 Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank data-
base for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

	18.	 Lamb, J. et al. The connectivity map: Using gene-expression signatures 
to connect small molecules, genes, and disease. Science (80-. ). 313, 
1929–1935 (2006).

	19.	 Subramanian A, et al. A next generation connectivity map: L1000 plat-
form and the first 1,000,000 profiles. Cell. 2017;171:1437–52.

	20.	 Regan-Fendt KE, et al. Synergy from gene expression and network mining 
(SynGeNet) method predicts synergistic drug combinations for diverse 
melanoma genomic subtypes. Syst Biol Appl. 2019;5:6.

https://doi.org/10.1186/s12911-020-01373-x
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(20)30244-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312820302444%3Fshowall%3Dtrue#supplementaryMaterial
https://go.drugbank.com/
https://www.genome.jp/kegg/pathway.html
https://bioconductor.org/packages/release/bioc/html/graphite.html
https://bioconductor.org/packages/release/bioc/html/graphite.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1126/science.abb7498
https://doi.org/10.1126/science.abb7498
https://doi.org/10.1101/2020.06.22.20137273
https://doi.org/10.1101/2020.06.22.20137273
https://doi.org/10.1016/S2589-7500(20)30086-8
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1101/2020.03.24.004655
https://doi.org/10.1101/2020.03.24.004655
https://doi.org/10.1142/9789813235533_0009
https://doi.org/10.1142/9789813235533_0009


Page 13 of 13Li et al. BMC Med Inform Decis Mak           (2021) 21:15 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	21.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. https​://doi.
org/10.1186/s1305​9-014-0550-8.

	22.	 Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a Bioconductor pack-
age to convert pathway topology to gene network. BMC Bioinformatics. 
2012;13:20.

	23.	 Sales G, Calura E, Romualdi C. metaGraphite-a new layer of pathway 
annotation to get metabolite networks. Bioinformatics. 2019;35:1258–60.

	24.	 Yu G, et al. GOSemSim: An R package for measuring semantic similarity 
among GO terms and gene products. Bioinformatics. 2010. https​://doi.
org/10.1093/bioin​forma​tics/btq06​4.

	25.	 Frey, B. J. & Dueck, D. Clustering by passing messages between data 
points. Science (80-. ). 315, 972–976 (2007).

	26.	 Subramanian A, et al. Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl 
Acad Sci USA. 2005;102:15545–50.

	27.	 Lim, Y. X., Ng, Y. L., Tam, J. P. & Liu, D. X. Human Coronaviruses: A Review of 
Virus-Host Interactions. Dis. (Basel, Switzerland) 4, 26 (2016).

	28.	 Rismanbaf A. Potential Treatments for COVID-19; a Narrative Literature 
Review. Arch Acad Emerg Med. 2020;8:e29–e29.

	29.	 Feldmann M, et al. Trials of anti-tumour necrosis factor therapy for 
COVID-19 are urgently needed. Lancet (London, England). 2020;S0140–
6736(20):30858–68. https​://doi.org/10.1016/S0140​-6736(20)30858​-8.

	30.	 Richardson P, et al. Baricitinib as potential treatment for 2019-nCoV acute 
respiratory disease. The Lancet. 2020. https​://doi.org/10.1016/S0140​
-6736(20)30304​-4.

	31.	 Luo, P. et al. Tocilizumab treatment in COVID-19: A single center experi-
ence. J. Med. Virol. n/a, (2020).

	32.	 Sallard E, Lescure F-X, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 
1 interferons as a potential treatment against COVID-19. Antiviral Res. 
2020;178:104791.

	33.	 Bahrami M, Kamalinejad M, Latifi SA, Seif F, Dadmehr M. Cytokine storm 
in COVID-19 and parthenolide: Preclinical evidence. Phytother Res. 
2020;34:2429–30.

	34.	 Russell B, Moss C, Rigg A, Van Hemelrijck M. COVID-19 and treatment with 
NSAIDs and corticosteroids: Should we be limiting their use in the clinical 
setting? Ecancermedicalscience. 2020. https​://doi.org/10.3332/ecanc​
er.2020.1023.

	35.	 Zhang T, et al. Core signaling pathways in ovarian cancer stem cell 
revealed by integrative analysis of multi-marker genomics data. PLoS 
ONE. 2018;13:e0196351.

	36.	 Zhang, T., Zhang, L. & Li, F. Integrative network analysis identifies potential 
targets and drugs for ovarian cancer. IInternational Conf. Intell. Biol. Med. 
recommended for publication at BMC Medical Genomic (2019).

	37.	 Wu H, et al. MD-Miner: A network-based approach for personalized drug 
repositioning. BMC Syst Biol. 2017;11:86.

	38.	 Regan, K. E., Payne, P. R. O. & Li, F. Integrative network and transcriptomics-
based approach predicts genotype- specific drug combinations for mela-
noma. AMIA Jt. Summits Transl. Sci. proceedings. AMIA Jt. Summits Transl. Sci. 
247–256 (2017).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1016/S0140-6736(20)30858-8
https://doi.org/10.1016/S0140-6736(20)30304-4
https://doi.org/10.1016/S0140-6736(20)30304-4
https://doi.org/10.3332/ecancer.2020.1023
https://doi.org/10.3332/ecancer.2020.1023

	Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Results
	Activated signaling pathways and associated inhibitory medications
	Activated gene ontologies (GOs)
	Repurposing drugs inhibiting individual super-GOs
	Activated GO terms and associated drugs using human tissue samples of COVID-19
	Identify potentially effective drugs using the up- and down-regulated genes

	Discussion and conclusions
	Acknowledgements
	References


