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Protein folding and function are closely connected, but the exact mechanisms by which proteins fold
remain elusive. Early folding residues (EFRs) are amino acids within a particular protein that induce
the very first stages of the folding process. High-resolution EFR data are only available for few proteins,
which has previously enabled the training of a protein sequence-based machine learning ’black box’ pre-
dictor (EFoldMine). Such a black box approach does not allow a direct extraction of the ’early folding
rules’ embedded in the protein sequence, whilst such interpretation is essential to improve our under-
standing of how the folding process works. We here apply and investigate a novel ’grey box’ approach
to the prediction of EFRs from protein sequence to gain mechanistic residue-level insights into the
sequence determinants of EFRs in proteins. We interpret the rule set for three datasets, a default set com-
prised of natural proteins, a scrambled set comprised of the scrambled default set sequences, and a set of
de novo designed proteins. Finally, we relate these data to the secondary structure adopted in the folded
protein and provide all information online via http://xefoldmine.bio2byte.be/, as a resource to help
understand and steer early protein folding.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proteins perform a multitude of essential functions in nature. A
well-defined three-dimensional organization of their constituent
atoms is often required to enable their function, with many pro-
teins folding independently into such stable structures [12]. Other
proteins might need chaperone help [33]or interaction partner(s)
[22] to fold or might not fold at all [35]. In all cases, the protein
sequence encodes its behavior and, by extension, the environmen-
tal context that is required for the protein to fold and/or function.
From the different theories about how proteins fold independently
[10,12,13,24], the concept of initial ’foldon’ formation is now
strongly supported by hydrogen–deuterium exchange (HDX) based
mass spectrometry (MS) experiments [13,20]. Foldons essentially
form through favorable interactions between amino acids close
to each other in the sequence (early folding residues or EFRs), so
further creating local structural elements that provide the right
context for other residues in the protein to fold. They so help to
determine the initial conformational states in the pathway towards
the native fold, the end product of the folding process. Many stud-
ies have focused on determining which pathways lead to the final
protein fold, with approaches describing the folding funnel, energy
landscape and minimal frustration [3,4,9,11,14,17,23,26]. These
processes are often directly related to the final protein fold, which
is not necessarily the case for the early folding sites we predict
here; they essentially describe the sites where local protein confor-
mations are most likely to be restricted, which can influence the
folding pathways that are preferentially followed by the protein.
They therefore act prior to the formation of more complex local
structures, and the interactions between those structures.

To gain insights in the early folding residues that drive very first
stage of protein folding and the subsequent formation of foldons,
the Start2Fold database was created [28]. This database collects
data from pulsed labelling and related HDX experiments [28].
Based on the Start2Fold per-residue information from NMR exper-
iments for a set of 30 proteins, the EFoldMine predictor [30] was
developed to detect the location of likely early folding residues in
a protein sequence. It does not, however, use the protein sequence
directly, but instead depends on a 5-residue window of biophysical
characteristics predicted from the sequence (backbone and side-
chain dynamics, and helix, sheet and coil propensities). A support
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vector machine with a radial basis function kernel then uses the
resulting 25 features to predict the location of EFRs from in a single
protein sequence. Although support vector machines are known to
be highly accurate classifiers based on strong mathematical foun-
dations, the resulting model in multi-dimensional space is difficult,
if not impossible, to understand by humans. This restricts the
extraction of further knowledge about the determinants of early
folding in proteins. An attempt was already made to obtain an
interpretable machine learning predictor for early folding residues
through the use of a Generalized Matrix Learning Vector Quantiza-
tion (GMLVQ) algorithm [2]. The GMLVQ is a supervised technique,
which can only learn from labeled data and obtains a matrix of rel-
evant correlations between features that lead to the identification
of classes, with the interpretability of this technique being a form
of (paired) feature attribution. An alternative is the use of more
intrinsically interpretable machine learning techniques such as
decision trees or rule-based algorithms. However, these algorithms
are generally less attractive in terms of performance compared to
black boxes, and typically require large amounts of training data.
Since EFR data, especially from NMR, are costly and time-
consuming to obtain experimentally, it is unlikely that the limited
EFR dataset that is currently available will grow extensively.

Therefore, to enable interpretation of the EFR determinants we
propose a semi-supervised classification approach, where we
leverage unlabeled and non-homologous protein sequence data
for which protein structure data are available [37]. By labelling
these data with EFR residues as identified by the ’black box’
approach (using F for early folding and N for not early folding),
we enlarge the interpretable training data, assuming it helps in
elucidating the separation of the classes by interpretable classi-
fiers. The goal is to obtain an interpretable model with better per-
formance compared to only using experimentally labelled data, as
well as obtaining a large dataset of (predicted) early folding data
that can be analyzed statistically. Our self-labeling ’grey-box’
(SlGb) approach [19] therefore aims to find a balance between
accuracy and interpretability in a semi-supervised classification
setting, so leveraging both labeled and unlabeled data, and provid-
ing a more flexible approach to interpretability [25]. In the learning
process, the enlarged interpretable dataset is amended to avoid
propagating misclassifications in the self-labeling. We experiment
with rule-based classifiers as a proxy for interpretability, since
these approaches are capable of providing both global holistic
views of the model and local interpretations that explain a partic-
ular prediction. We show that the self-labeling grey-box approach
achieves competitive results against the EFoldMine ’black box’ in
terms of sensitivity and specificity, through a leave-one-group-
out cross-validation. Yet, it is able to represent the classification
model with an average of 43 rules. Further analysis of these rules,
combined with more classical analyses of the enlarged predicted
dataset, enables us to gain mechanistic residue-level insights into
the early folding process as well as a better definition of what con-
stitutes an early folding fragment, which can provide useful infor-
mation for protein design strategies. An overview of the datasets
and essential elements of the strategy we developed is given in
Fig. 1.

The prediction rules are fully interpreted for the SlGb approach,
and analysed in relation to sequence patterns and secondary struc-
ture adopted in the folded protein, with all information provided

via http://xefoldmine.bio2byte.be/, a resource for the community
to help understand and steer early protein folding. Our interpreta-
tion confirms the importance of backbone rigidity for early folding
(Pancsa et al., 2016a), and reveals the importance of inherent sheet
propensity for the early folding residue itself, and strong helix
propensity for the residue at position �2. This indicates that very
particular specific restrictions on local conformations could be
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driving the formation of more stable local structures that then ini-
tiate the folding process.
2. Methodology

2.1. Datasets

The ground truth start2fold dataset is derived from the Start2-

Fold database [28] (http://start2fold.eu/), consists of 30 non-
overlapping sequences and was described for the development of
EFoldMine [30]. The default set is based on a set of proteins with
less than 20% shared sequence identity, for which high-resolution
(<1.6 Å) x-ray diffraction determined structures are available in
the Protein Data Bank (PDB) [1,5,37]. These sequences were con-
verted into their non-gapped equivalents, where residues are
included that are missing in the PDB structures, by querying the
PDBe API [36] and comparing the sequences. This resulted in a final
set of 3020 proteins. The scrambled set is based on the default set
and equally contains 3020 proteins, but the amino acids in each
individual protein sequence were randomly scrambled, so retain-
ing amino acid content but not their original order. The denovo
set contains 98 proteins selected from the PDB that were designed
de novo, so that have not evolved, and do not exist in nature. The
selection was based on the search terms ‘‘Primary citation
author = Baker, D.” and ‘‘organism = Synthetic construct”. Proteins
with a sequence length of less than 20 residues were subsequently
removed, as well as entries with more than 80% sequence identity
with any other protein in the dataset.

The secondary structure information for the default and den-
ovo sets was acquired via the PDBe API and is based on the DSSP
analysis [21] of the protein structure information, where only the
H (Helix), E (sheet) and C (coil) classes are retained. For all
sequences in all three sets, the backbone and sidechain dynamics,
as well as the helix, sheet and coil secondary structure propensi-
ties, were predicted using DynaMine [6] and derived tools [30],
with the original EFoldMine predictions (ef) also calculated. The
newly developed black box predictor (bb) and the grey box predic-
tor (SIGb) were also applied on all datasets.

2.2. Data analysis on predictions

For each dataset and each prediction, every amino acid was fur-
ther labelled whether it was at a single (S) early folding or non-
early folding residue, or whether it appeared at the beginning
(B), middle (M) or end (E) of a given early folding or non-early fold-
ing fragment (Fig. 2). For each residue in each protein, a compar-
ison was then performed on the overlap between the ef, bb and
SIGb predictions, in terms of true/false positives and true/false
negatives.

In the next step, all proteins were, per dataset, divided into 5-
residue fragments (the window size used for the predictors), and
each such amino acid fragment was classified based on its sec-
ondary structure string (e.g. CCHHH), with pre-N-terminal and
post-C-terminal positions designated with a ’+’ character (e.g. an
N-terminal residue could appear as ++CCC). Fragments were clus-
tered together if there was only one change between H or E to C
states, or vice versa (e.g. HHHHC and HHHHH), on the assumption
that the DSSP software can mis-assign the secondary structure des-
ignation for one residue, as well as increasing the size of the frag-
ment pools to obtain better statistical comparisons. For each
prediction type, the overall ratio of predicted early folding residues
to the total number of residues in that dataset was calculated and
used as the cutoff for a binomial statistical test per (clustered) sec-
ondary structure fragment. Fragments that had a statistically
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Fig. 1. Overview of the datasets and workflow of XEFoldMine (eXplainable EFoldMine). In a first step, ground truth labelled data is used for training a black box support vector
machine classifier. In a second step, the black box is used as a component of the SlGb classifier for predicting the labels (F or N) of default, scrambled and de novo datasets
(self-labelling process). In a third step, the SlGb model expressed in rules is further interpreted and finally, a per-fragment analysis using the secondary structure is made.
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significant higher number of central early folding residues (using a
p value cutoff of 0.05) were classed as ’over-represented’, con-
versely fragments with a significantly lower than average number
as ’under-represented’, with all other fragments labelled ’neutral’.
Fig. 2. Overview of the available data interpretation and analysis accessible from http:
inter-amino acid connections can be explored. Chord diagrams and heatmaps visua
distributions of the features used for the prediction for these fragments.
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For all fragments, a Sankey plot was generated where the inter-
amino acid connections can be explored (based on the amino acids
in each 5-residue fragment), a Chord diagram and heatmap to visu-
alize the rules for the per-fragment trained predictor, as well as an
//xefoldmine.bio2byte.be/. Sankey plot are available for all fragments where the
lize the rules for the per-fragment trained predictor, as well as an overview of the
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overview of the distributions of the features used for the prediction
for these fragments (backbone and sidechain dynamics, and sec-
ondary structure propensities, for each of the 5 positions of that

fragment) (Fig. 2). This information is available via http://xefold-

mine.bio2byte.be/.
2.3. Self-labeling grey-box classifier

The prediction problem at hand is a semi-supervised classifica-
tion setting since unlabeled data is available in a high quantity and
labeled data is limited due to a costly process of labeling. There
exist several machine learning algorithms for tackling semi-
supervised classification problems, including transductive support
vector machines which are the extension of vanilla support vector
machines for this type of problem. However, transductive support
vector machines and the majority of semi-supervised classifiers
consist of complex ensemble structures which lack interpretability
features.

The SlGb approach [19] is a recently proposed semi-supervised
classification strategy for building a model which requires a certain
degree of interpretability. In a first step, a black-box classifier is
trained with available labeled data and used to predict the decision
class of unlabeled instances in a process called self-labeling. Given
the successful performance of EFoldMine predictor [30] we choose
a support vector machine-based classifier for the black box compo-
nent of the grey box model. From this step, we obtain an enlarged
training set comprising the originally labeled instances and the
extra labeled ones. An amending procedure [18] is used for weight-
ing the instances according to the confidence in their self-
classification. Afterward, a surrogate white-box classifier is used
to build an interpretable predictive model based on the enlarged
dataset. The aim is to outperform the base white-box component
using only the originally labeled data while maintaining a good
balance between performance and interpretability.

Based on EFoldMine and using the same choice of hyperparam-
eters as reported in [30] a black-box component for the classifica-
tion of unlabeled instances is developed (bb). The choice of white
box is guided by the type of interpretability we want to obtain,
either a global tree structure that allows to inspect the model as
a whole, or a set of rules that describe the decision space. We con-
sider tree white box methods in our experiments: C4.5 decision
trees (c45) [29], partial decision lists (part) [16] and propositional
rule learning (rip) [8]. The hyperparameters reported for each
model were determined by hyperparameter optimization, using a
grid of possible values on each case, minimizing complexity while
retaining prediction performance [18].

Decision trees. We use the C4.5 algorithm for inducing rules in
the form of a pruned decision tree. The hyperparameters used are:
two as the minimum number of objects per leaf, 0.25 as the confi-
dence factor for pruning, and the use of subtree raising operation
when pruning. The flow-like structure of decision trees allows
dividing the space with a series of tests on each attribute until
reaching a conclusion, providing a global view of the model as well
as the possibility of simulation from input to output by a human.
This transparency and simulatability are proxies for claiming the
interpretability of decision trees.

Partial decision lists. Partial decision lists use a separate-and-
conquer strategy for building rules. It generates a partial C4.5 deci-
sion tree in each iteration, makes the ‘‘best” leaf into a rule, sepa-
rates the instances covered by this rule, and repeats the process
until all instances are covered. The hyperparameters are idem to
the decision trees above. Decision lists are a set of rules which
should be interpreted in order. It generally starts covering the
cases from more general rules to more specific. The algorithm is
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still transparent, and the outputs can be computed by a human
being using the model.

Propositional rule learning. This propositional rule learner is
based on association rules and implements reduced error pruning.
The training data is split into a growing set and a pruning set. The
rules obtained from the growing set are simplified by pruning
operators, such as it yields the greatest reduction of the error on
the pruning set. The hyperparameters used for learning are: two
as the minimum total weight of instances in a rule, three folds
where one is used for pruning, and the other two for optimization
steps. The decision list that this model produces covers the rarest
instances first; therefore, is more suitable for explaining the classi-
fication of minority classes. It should also be interpreted in order,
similar to the partial decision lists. Like decision trees or partial
decision lists, the manual simulation from input to output to
explain the outcome of a particular instance is possible.

In general, the IF-THEN structure of the explanations is straight-
forward interpretable, although the total number of rules or the
rules’ length could affect this advantage. Decision lists tend to pro-
duce more compact rule sets than decision trees while being sim-
ilarly expressive. The models generated by the chosen white boxes
are generally sparse, which is another desideratum for inter-
pretability since they select only the relevant features for the
model.
3. Results

3.1. Performance comparison between the different predictors

We first determine which configuration of the SlGb approach
performs best compared to the baseline EFoldMine predictor and
the white-box baselines. The baseline models are trained on
labeled data only (start2fold dataset). We perform leave-one-
group-out cross-validation where each fold groups one labeled
protein from start2fold and an equal share of unlabeled proteins
per fold from the unlabeled datasets (default, scrambled, or den-
ovo). This selection results in a 27-fold cross-validation with resi-
dues from one labeled protein and 112 unlabeled proteins (for
default and scrambled datasets) or three or four unlabeled proteins
(for the denovo dataset). Only the ground truth labelled instances
distributed over the different CV folds are used for validation. The
different unlabeled datasets were so chosen to investigate whether
there are differences among the rules sets (and therefore the pre-
dictions) obtained for natural proteins (default), rationally
designed sequences based on natural proteins (denovo) and non-
sense proteins that still contain the same amino acids as natural
proteins (scrambled).

In order to compare the results, we use several measures for
evaluating the prediction performance. Since the binary classifica-
tion problem at hand is highly imbalanced and the minority class
(positive or ‘‘early folding”) is the label of interest, we opt for
exploring several measures beyond accuracy. The sensitivity and
precision indicate the prediction power of the model regarding
the positive class, while specificity focuses on the negative predic-
tion power. To complement the overall accuracy, we include other
measures that consider the class imbalance, such as the balanced
accuracy, Mathew’s correlation coefficient, and Cohen’s kappa.

In termsof interpretability,weuse thenumberof rules as an indi-
cator of the complexity of themodel. The fewer the number of rules,
themore interpretability potential the resultingmodel has.We also
measure the agreement of the SlGb predictions with black box pre-
diction on the data as an indicator of the fidelity of the explanations
provided by the SlGb. For measuring the fidelity, we use Cohen’s
kappa as an agreement measure [7]. Observe that this measure is
reported as fidelity in the table, which is different from the kappa

http://xefoldmine.bio2byte.be/
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obtained as a prediction performancemeasure (which indicates the
agreement with the ground truth). Table 1 shows the averaged per-
formance across folds of the cross-validation, for the EFoldMine pre-
dictor (ef), the black box predictor built for this study based on
EFoldMine (bb), the white box baseline models trained on labeled
data (c45, part and rip), and the three configurations of the grey-
box model (SlGb_c45, SlGb_part, SlGb_rip), for each dataset
combination.

The first section of the table shows that the black box compo-
nent is able to reproduce the performance of the EFoldMine predic-
tor, which makes it a trusted model for the self-labeling process.
The second section of the table contains the results of the baseline
white boxes trained on the start2fold dataset, which shows that
the propositional rule learner classifier (rip) obtains the best
results. Rip outperforms other white boxes when predicting the
positive class and overall considering the imbalance of the dataset,
with a considerably simpler model in terms of the number of rules.
In general, the white-box baselines are less accurate than the
black-box approaches, particularly for detecting true positive
instances (see sensitivity and precision). In contrast, each SlGb con-
figuration is able to outperform its white-box baseline, especially
for the minority positive class ‘‘early-folding”, at the cost of an
increase in the number of rules. This trade-off between accuracy
and interpretability is inherent to grey-box models. Here, the per-
formance of the SlGb is competitive with EFoldMine while it
remains an interpretable model. These results support using a
semi-supervised grey-box approach since the SlGb is clearly prof-
iting from the unlabeled instances for improving its performance
on detecting the minority class while also being an interpretable
model.

The last three sections of the table show that decision lists (part
and rip) are preferred compared to decision trees (c45). These
models achieve competitive or better performance with a signifi-
cantly lower number of rules, making the grey-box more transpar-
ent. In particular, the SlGb configuration using propositional rule
learning (SlGb_rip) obtains the best results in terms of inter-
pretability measures with the lowest number of rules and high
fidelity to the black-box prediction for all unlabeled datasets.
Therefore, for the rest of the analysis, we choose the SlGb configu-
ration using a propositional rule learner as the white-box compo-
nent (SlGb_rip).

3.2. White box interpretation

The SlGb approach allows obtaining both global and local inter-
pretability of the machine learning model. Local explanations can
be derived for the prediction of a residue by inspecting the rule
that leads to that prediction. Fig. 3 shows the structure and inter-
pretation of the rules produced by SlGb.

A global view of the predicting model can also be obtained by
inspecting the decision list as a whole. For example, when using
the denovo data together with the start2fold dataset for training,
the resulting SlGb model contains 24 rules, with an average of
3.66 conditions in the antecedent. We can then analyze the relative
frequency of the features appearing in the rule antecedents. Fea-
tures such as backbone in position �1 and 0 (with 0 being the posi-
tion that is predicted, see also Fig. 2), helix in position �2 and sheet
in position 0 have the highest frequency for this model. Almost all
rules require the backbone feature (in combinations of position�2,
�1, or 0) to have a high value (>=0.8 indicates a rigid backbone) in
order to predict a residue as positive, which suggest that this is a
strong condition associated with early folding, as already indicated
by a previous analysis [27]. From the rules, it is also evident that
the early folding residues combine the high values of the backbone
feature with medium values (in the range from 0.3 to 0.7) of sheet0
and helix-2 features.
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The SlGb_rip model obtained from the scrambled dataset con-
tains a higher number of rules (146 rules with an average of 4.69
conditions in the antecedent), which is expected as this dataset
contains a much higher number of unlabeled proteins than the
denovo dataset, resulting in more complex decisions to cover the
wider sequence variety. However, the patterns in the frequencies
of the features and their cutoffs are relatively similar to the denovo
model. We use the Jaccard similarity index, weighted by features
frequency [15], to estimate this similarty and obtain a value of
0.74, which could be considered high. Similar to denovo model,
the scrambled model relies on high values of backbone feature
interacting with helix but focuses more on the values of sheet
and sidechain features for detecting early folding residues.

The decision list for the SlGb model for the default dataset con-
tains 137 rules, with an average of four conditions in the antece-
dent. When analyzing the relative frequency of the features in
the antecedents we observe similar patterns compared to the
scrambled dataset and, to a lesser extent, the denovo dataset. In
this model the backbone, sheet and sidechain features (all in posi-
tion 0) have a stronger role in the rules, when compared to denovo.
The Jaccard similarity index between denovo and default rule mod-
els is 0.69, which means both models are relatively similar in the
selection of the features for the antecedents of the rules. The
default model shares more similarity with the one obtained from
the scrambled dataset (jaccard index = 0.83). From the first rule
of the default model ‘‘(backbone0 � 0.87) and (sidechain0 � 0.61)
and (sheet0 � 0.45) and (sidechain-1 � 0.63) � class = F
(12172.24/20.39)”, we can already derive the characteristics that
distinguish roughly 10% of the early folding residues of this data-
set. A similar analysis can be made for the rest of the rules.

To facilitate the interpretation of bigger models such as the SlGb
based on the default dataset, we created heatmaps and chord dia-
grams for illustrating. The heatmaps show the strength of the pair-
wise interactions in the rules, based on the number of early folding
residues that are correctly predicted. In this way, we illustrate
common paired characteristics of the early folding residues.
Fig. 4 shows a reduced version of the heatmaps for the default
(a) and denovo (b) models. These heatmaps are focused on regions
with high interaction between features. For example, for the
default dataset, the backbone feature in positions �1 and 0 has a
strong interaction with helix-2 and sheet, with approximately
17,000 early folding residues having backbone values greater than
0.8 and sheet values greater than 0.4. In this dataset the sheet in
position 0 has a much stronger role in detecting early folding resi-
dues than in the denovo dataset. For the denovo dataset, the back-
bone interaction in position �1 is stronger for medium values of
the helix in position �2 and sheet, compared to the backbone in
position 0.

The chord diagram is an extended and interactive version of the
heatmap, including all interactions without showing sparse
regions. Fig. 5 shows a screenshot of the chord diagram corre-
sponding to the rule model for the default dataset. Here, the pair-
wise interactions between conditions in the antecedents are
represented as chords of the circumference. The wider the chord
between two features, the more early-folding residues it distin-
guishes correctly. Besides the pairwise interaction between condi-
tions, these diagrams show the strength of an individual feature by
highlighting all its interactions and the total number of early fold-
ing residues that share this characteristic. This strength is repre-
sented by the length of the arc in the circumference and can be
interpreted as a feature attribution measure. The wider the arc,
the more support and confidence this condition has from the rules,
and therefore the better it helps to distinguish early folding resi-
dues. In the screenshot, we highlight the interactions of the back-
bone with other features. However, it can be observed that



Table 1
Average cross-validated performance comparison between EFoldMine predictor and several configurations of the SlGb using sensitivity (sen), specificity (spe), accuracy (acc),
balanced accuracy (bac), precision (pre), Mathew’s correlation coefficient (mcc), area under the ROC (auc), Cohen’s kappa (kap), the number of rules, and the fidelity (fid) of the
SlGb white-box component to the black-box predictor. The best performing models per section are highlighted in bold.

dataset model sen spe acc bac pre mcc auc kap rules fid

start2fold ef 0.73 0.76 0.74 0.74 0.36 0.35 0.81 – – –
start2fold bb 0.74 0.73 0.71 0.73 0.34 0.33 0.80 0.28 – –
start2fold c45 0.53 0.77 0.72 0.65 0.29 0.22 0.64 0.19 165.74 –
start2fold part 0.59 0.69 0.66 0.64 0.26 0.20 0.68 0.16 37.96 –
start2fold rip 0.66 0.70 0.68 0.68 0.30 0.26 0.71 0.22 10.78 –
start2fold + default SlGb_c45 0.63 0.77 0.73 0.70 0.34 0.30 0.71 0.26 207.30 0.75
start2fold + default SlGb_part 0.71 0.71 0.70 0.71 0.32 0.30 0.75 0.25 54.93 0.75
start2fold + default SlGb_rip 0.69 0.72 0.71 0.71 0.33 0.30 0.72 0.25 43.41 0.76
start2fold + scrambled SlGb_c45 0.62 0.76 0.72 0.69 0.32 0.28 0.70 0.24 207.85 0.78
start2fold + scrambled SlGb_part 0.70 0.71 0.70 0.71 0.33 0.31 0.75 0.26 51.11 0.78
start2fold + scrambled SlGb_rip 0.69 0.73 0.71 0.71 0.33 0.30 0.72 0.26 42.74 0.76
start2fold + denovo SlGb_c45 0.47 0.78 0.72 0.62 0.29 0.19 0.62 0.17 172.74 0.65
start2fold + denovo SlGb_part 0.62 0.74 0.72 0.68 0.31 0.27 0.71 0.23 37.37 0.67
start2fold + denovo SlGb_rip 0.70 0.70 0.69 0.70 0.31 0.28 0.71 0.23 18.33 0.67
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residues with sheet values greater than 0.4 or sidechain values in
the range from 0.3 to 0.6 are also detected as early folding.

The decision lists for default and denovo SlGb models, as well as

the heatmaps and chord diagrams, are available online via http://

xefoldmine.bio2byte.be/.

3.3. Differences in predictions and rulesets for the datasets

There are differences between the prediction results of the dif-
ferent predictors in relation to the datasets (Table 2). The bb and
SlGb_rip predictors have roughly similar overall ratios of positive
to negative predictions in all three datasets, whereas the ef predic-
tor shows larger differences, and compared to default predicts
many more positives in the denovo dataset, and fewer in the
scrambled dataset. It is therefore difficult to make conclusions
about the likely relationships between the number of early folding
sites in the natural, scrambled and de novo sequences. All predic-
tors, however, show the same trends in relation to the final sec-
ondary structure state of the residues, with residues that fold
into beta sheets containing the most early folding residues, and
residues ending up as coil by far the least. This trend is more pro-
nounced in the default dataset than in the denovo dataset, indicat-
ing that helices in de novo designed proteins might be, compared to
natural proteins, ‘overdesigned’ with respect to the number of
early folding sites they contain.

A comparison of the ratio between positive (early folding) and
negative residues on a per-amino acid basis between the 3 datasets
for the SlGb_rip predictions (Fig. 6) shows that certain amino acids
(C, F, I, L, V, W, Y) are more likely to be present in early folding sites,
with the ratio in general similar between the datasets, except for C,
G and H, which are underrepresented as early folding residues in
the denovo dataset. This indicates these amino acids might not
Fig. 3. Structure and interpretation of an SlGb rule. This example rule was extracted
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be used in their ‘natural’ context in de novo proteins, but are rather
positioned only in specific contexts (e.g. G is only primarily in turns
and loops, whereas it can occur in secondary structure elements in
natural proteins).
3.4. Per-fragment analyses

In addition to the overall analysis of the prediction model, we
explored the relationship between the early fold predictions and
the secondary structure as adopted in the folded protein. Based
on 5 residue fragments, with the central residue either predicted
as early folding (F) or not (N), we retrained SlGb models on
secondary-structure derived subsets of the data, if enough avail-
able, and enable full access to this per-fragment information (see
also Fig. 2):

- Amino acid sequence information for the fragments, for both F
and N predictions, in the form of a Sankey diagram that visual-
izes the connections between the most commonly observed
amino acids in this fragment

- A chord diagram that gives an overview of the SlGb interpreta-
tion of why residues in this fragment are predicted as early
folding

- An overview of the statistics of the 5 input features for the
prediction for 5 fragment positions from �2 to +2, with the pos-
itive (F) fragments in red, the negative (N) fragments in blue.
This enables, per input feature, to visualize where there are con-
sistent differences between the fragments predicted as F or N.

For example, if you are interested to see where early folding
starts in helical fragments of natural proteins, first select the ’de-
fault’ dataset, then on the left-hand side of the page select the
from the SlGb model that was built using the start2fold and default datasets.

http://xefoldmine.bio2byte.be/
http://xefoldmine.bio2byte.be/


Fig. 4. Heatmaps of pairwise interactions of features (and their cutoffs) in the antecedents of the rule models built from a) the default dataset and b) the denovo dataset.
These heatmaps are focused on regions with high interaction between features. For the default dataset, the backbone feature in positions �1 and 0 has a strong interaction
with helix-2 and sheet. Meanwhile for the denovo dataset, the backbone interaction in position �1 is stronger for medium values of the helix in position �2 and sheet,
compared to the backbone in position 0.
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prediction method (e.g. EFoldmine), the EF fragment as ’Start’, the
Folded state as ’HHHHH’, and press ’Submit’. The next page will dis-
play the information for these specific fragments, bearing in mind
that for this statistical analysis the fragments’ CHHHH’, ’HHHHC’,
’HCHHH’, ’HHCHH’ and ’HHHCH’ were also included, with ’HHHHH’
as reference (see Methodology). The top text indicates that the
start of early folding in these fragments is significantly over-
represented, so is more common than average, and occurs in
25,668 fragments, with the central residue early folding 13,632
times, and not early folding 12,036 times (this represents the cases
where a non-early folding fragment starts in a full helical
fragment).

The Sankey diagram shows that L, A, V, I, F, Y and T are com-
monly found in the position where early folding starts (position
0), followed by the hydrophobic A, V, I, L amino acids at posi-
tion + 1, and a mix of charged and hydrophobic amino acids
at position + 2 (R, L, K, E, A). In contrast, position �1 is enriched
in negatively charged residues (E,D), alanine (A) and to a lesser
degree R, K, Q and L, with a similar mix in position �2. Hovering
over an amino acid shows which other amino acids are found in
relation to that one; for example, V as a central residue is found
with A, E and D in position �1, but not with the other amino
acids. Hovering over the link also displays the overall occurrence
(e.g. E in position �1 and V in position i occurs 250 times in the
fragment dataset). Changing the EF fragment setting on the left
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to ‘End’ and pressing ‘Submit’ again will update the page to
now show different residue preferences, in this case, for the
end of an early folding fragment in helices, hydrophobic residues
are strongly preferred at position �1, and negatively and posi-
tively charged residues at position + 1. It is also possible to dis-
play the negative set (the start of a non-early folding fragment
in full helix) by selecting ‘Non-early folding’ under the Sankey
diagram heading.

The per-secondary-structure fragment chord diagram is only
displayed for the SlGb_rip predictions, as they were directly
derived from the rulesets thereof. The content is the same as the
chord diagrams for the overall predictions, but in this case relates
to a re-training on only elements of a particular secondary struc-
ture fragment. This enables specific exploration of the features
leading to the prediction of early folding residues for a particular
secondary structure fragment, including the ability to distinguish
whether this relates to the start, middle or end of an early folding
fragment. For ‘HHHHH’ fragments, for example, the rules for pre-
dicting early folding when at the start of an early folding fragment
show that the 0 and 1 positions are the most relevant (high back-
bone, sheet, sidechain and helix predictions), whereas for the end
of an early folding fragment, the �2 and �1 positions are dominant
(again for the same features).

Finally, the overview of the statistics of the 5 input features
over positions �2 to +2 are shown as the final plot, with the



Fig. 5. Screenshot from the chord diagram for the rule model of the default dataset. The interaction of the backbone feature with other features is highlighted, contributing to
detect a high number of early folding residues. A coloured and interactive version of this diagram is available online via http://xefoldmine.bio2byte.be/.
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median, first and third quartile of the distributions of the pre-
dicted biophysical feature input values for positive (F) fragments
in red, the negative (N) fragments in blue. By default, the ‘back-
bone’ values are shown, with the bottom selection box enabling
switching between predictions. For the ‘HHHHH’ fragment, for
example, shows for the start of an early folding fragment that
the backbone dynamics predictions are very similar at position
�2, but that for position +2 the backbone dynamics predictions
are higher (more rigid backbone). A similar trend is present for
helix and sheet propensities. These trends are reversed for the
end of early folding fragments, and for the middle of early fold-
ing fragments for ‘HHHHH’, consistently higher backbone, helix
and sheet values are present. The elevated sheet propensity
seems to be consistently present in helices, which indicates that
sheet propensity is important to create early folding fragments.
This is also captured by the rule sets, as visualized by the chord
diagrams. For ‘EEEEE’ fragments, the helix propensities trends
are similar, but only somewhat elevated after the start of the
fragment, or before the end, whereas the sheet propensity differ-
ences are especially pronounced.
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3.5. Case study

To illustrate the rule set in a qualitative example, we compare
the backbone dynamics, helix and sheet propensity input features
for myoglobin (1myf) and leghemoglobin (1bin) sequences (Fig. 7),
as also discussed in the original EFoldMine article [30]. Both are
all-helical proteins, but have notably different processes of folding.

The first helix (A dark red box, Fig. 7) folds early in myoglobin,
but only folds later in leghemoglobin; this agrees with the original
EFoldMine predictions [30]. Although the predicted backbone
dynamics and helix predictions are in similar ranges for both pro-
teins, the sheet propensities are much lower in leghemoglobin,
which fits with the rule set that indicates sheet propensity is
important for early folding in helices. The second helix (B, red
box) folds early in both proteins, again correctly predicted by
EFoldMine, with the backbone dynamics and helix/sheet propensi-
ties adopting very similar values in both proteins, again in adher-
ence with the overall rule sets for high helix propensity at
position �2 and high sheet at position 0. Finally, the E helix (grey
box) folds early only in leghemoglobin, which has correspondingly

http://xefoldmine.bio2byte.be/


Table 2
Overview of the ratio of positives to negative early fold predictions for the ef, bb and SlGb_rip predictions for all residues, subdivided by residues that form helix, sheet and coil
secondary structures in the final fold.

predictor dataset overall ratio helix ratio sheet ratio coil ratio

ef default 0.335 0.438 0.715 0.107
scrambled 0.239 – – –
denovo 0.597 0.862 0.939 0.089

bb default 0.289 0.350 0.634 0.099
scrambled 0.293 – – –
denovo 0.321 0.420 0.534 0.036

SlGb_rip default 0.280 0.336 0.612 0.100
scrambled 0.291 – – –
denovo 0.258 0.331 0.428 0.050
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higher predictions for the backbone dynamics (more rigid) and a
region where helix and sheet propensities are concurrently ele-
vated, whereas in hemoglobin the peak in sheet propensity pre-
cedes the peak in helix propensity. This indicates that the
understanding derived from the SlGb rules can help us design,
for example, computational mutation studies which aim to modify
sequences in ways that affect the folding pathway, in this case a
possibility would be to change the sequence of the A helix in leghe-
moglobin to increase its sheet propensity without affecting other
biophysical characteristics, and while still agreeing with the over-
all fold.

A second case study illustrates the meaning of the early folding
predictions on superoxide dismutase 1, on which a detailed exper-
imental folding, unfolding and misfolding analysis was performed
by [34]. In this protein, combinations of the first four beta strands
(b1-b4) form an initial stable core from the unfolded state. Misfold-
ing of the protein then happens after formation of this stable core,
with the partially native stable core intermediates mediating mis-
folding. Especially loops IV (between b4-b5) and VII (between b7-
b8) are involved in formation of an aggregation prone interface
when flexible. The first four b -strands indeed all have very high
early folding and strand propensity (Fig. 8), in line with them form-
ing the stable core. These properties are in general lacking for the
region after b4, with only b7 having similar properties, but there
Fig. 6. Ratio between positive and negative predictions for SlGb_rip for the 20 natural a
present in early folding sites, with the ratio in general similar between the datasets, excep
dataset.
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are no other early folding regions close to it except for the region
just after b6. This indicates that there might not be enough confor-
mationally restricted regions around b7 to create an initial foldon.
The loop IV and VII regions lack early folding propensity, indicating
that they are dependent on the folding of other regions of the pro-
tein to become conformationally restricted, in line with the exper-
imental data.
4. Conclusion

The analysis we present here shows that our interpretation of
black box machine learning can reveal which combinations of
input features lead to positive predictions, in our case early folding
residues. The biophysical meaning of these input features in turn
enables us to infer the main determinants for the formation of
early folding fragments: especially a more rigid backbone for the
central residue (0) and subsequent residue (positions +1), in com-
bination with a strong propensity for sheet conformations for those
residues, and a strong helix propensity for the residue at position
�2.

It is important to stress that with the term ‘early folding’ we are
referring to transient processes, where the protein is initially
unfolded, and where the predominant interactions are local,
mino acids per dataset. Certain amino acids (C, F, I, L, V, W, Y) are more likely to be
t for C, G and H, which are underrepresented as early folding residues in the denovo



Fig. 7. Comparison between the backbone dynamics (black), helix (red) and sheet (blue) propensities for myoglobin (a) and leghemoglobin (b), which have similar overall
folds while folding differently. The regions indicating the matching A helix (dark red box), B helix (red box) and E helix regions (grey box) are indicated. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between residues close to each other in the amino acid sequence,
which are also inevitably close in space because of the permanent
covalent peptide bonds. The importance of such local amino acid
interactions was already pointed out decades ago based on infor-
mation from folded protein structures [31,32]. The predictors to
generate the input features from the primary sequence are based
on information from NMR experiments, so incorporating protein
mobility, and cover a wide range of proteins and their behavior;
they therefore reflect rather what a protein is capable of in terms
of general behavior, not its final fold. On the other hand, the
NMR HDX experiments to pinpoint early folding residues indicate
only the residues where the backbone NH hydrogen is protected
from solvent by hydrogen bonding; this is therefore also what
we are predicting. The present study seems to indicate that this
hydrogen bond is typically made with the CO carbonyl of the resi-
due at position�2, given the importance of helix propensity at that
position, which implies ‘turning’ the backbone. The importance of
sheet propensity for position 0 and 1, on the other hand, seems to
indicate an extended conformation where especially the side-chain
of the residue at position 1 can temporarily ‘protect’ the backbone
from solvent, so aiding intramolecular hydrogen bond formation.
This could still lead to helix formation; at this stage the protein
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is still highly dynamic, and a temporary formation of an extended
conformation does not preclude later helix formation. In NMR
experiments, for example, the first indication of local structure for-
mation are NOEs between backbone atoms of residues at positions
i ! iþ 2. This discussion is also only relevant for the environmen-
tal conditions in which the proteins were studied with HDX NMR,
which are in the pH 3.0–8.0 range at temperatures between 273
and 303 K.

In evolutionary terms, the high frequency of predicted early
folding residues in the scrambled dataset for the bb and SlGb pre-
dictors indicates that early folding fragments are easily formed
randomly, although the original EFoldMine underpredicts them
in scrambled sequences, which would rather indicate that early
folding fragments are under some evolutionary pressure, and need
to be maintained in particular positions to enable folding. The den-
ovo dataset does not indicate a large different of predicted early
folding residues, again for bb and SlGb, whilst the original EFold-
Mine indicates that early folding is (artificially) increased in the
de novo designed sequences. This is the case even though the per-
formances in themselves are similar (see Table 1), and highlights
the importance of testing different approaches and the results they
generate. The core rule sets, however, will be similar; in this



Fig. 8. The helix (red) and sheet (blue) propensities and early folding propensity (green) for superoxide dismutase 1. The positions of the eight beta strands, based on PDB
code 3ECU, are indicated by blue boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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respect, it is also important to be aware of the fact that we here
over-simplify the complex hyperdimensional space employed by
the black box into a representation that highlights the essential
features.

By providing all information online for easy examination, and
by indicating likely core features that underlying the formation
of early folding fragments, we hope to stimulate further discussion
and especially guided experiments for further illumination. In
addition, this resource is likely useful for protein design, to create
local sequence fragments that ensure folding in particular
sequence positions.
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