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Purpose: Agents specifically targeting the vasculature as a mode of therapy are finding increasing use in the clinic,
primarily in the treatment of colon cancer (Avastin™) and age-related macular degeneration (Lucentis™). We have
previously shown that maternal administration of angiogenic inhibitors (TNP-470 [O-[chloroacetyl-
carbamoyl]fumagillol, initially called AGM-1470], the first angiogenic inhibitor to undergo clinical trials, and
Angiostatin 4.5, currently in phase I-III clinical trials) cause fetal growth restriction and/or placental abnormalities. During
a rapid growth phase of ocular development in the mouse (embryonic days 12 to 19 [E12-E19]), the placenta mediates
the metabolic requirements of the fetus and consequently may impact upon the growth of the highly oxygen sensitive fetal
eye.
Methods: We injected pregnant dams (between E10.5 – E18.5) with anti-angiogenic agents, which caused either a
placental insufficiency type of IUGR (intrauterine growth restriction; i.e., TNP-470) or frank placental pathology
(Angiostatin4.5 [AS4.5]), and assessed changes in absolute ocular dimensions, tissue types, and vascular profiles using
stereological techniques.
Results: The experiments showed that ocular volumes were significantly reduced in fetal mice where dams were treated
with either TNP-470 or AS4.5. Furthermore, TNP-470 specifically caused a reduction in hyaloid blood vessel length and
volume, the only intraocular vascular circulation in fetal mice.
Conclusions: These experiments support the hypothesis that the angiogenic inhibitors (specifically TNP-470 and AS4.5)
induce microphthalmia either indirectly by their known effects on placental morphology (and/or function) or directly via
altering microvascular growth in the fetus. These results also warrant further investigation of a new experimental paradigm
linking placental pathology-related fetal growth restriction and microphthalmia.

Angiogenesis inhibitors are now finding widespread
clinical use as first-line treatments for ocular conditions such
as age-related macular degeneration (e.g. Lucentis™) or as
adjuvant chemotherapeutic agents in the management of
colorectal carcinoma (e.g., Avastin™) in addition to being
assessed for efficacy in a large variety of clinical trials for
specific neoplasms [1,2]. Although there are large numbers of
clinical trials with these agents, there is relatively little
information regarding their effect on fetal growth and
development despite pregnancy being a contraindication for
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entry into many of these trials. Since the worldwide use of
these agents is likely to increase dramatically in the coming
years, information on their potential teratogenic effects
particularly in rapidly growing fetal organs or tissues having
a high metabolic rate (such as the eye) will be important to
increase the knowledge base on this mechanistically diverse
range of compounds. TNP-470 (O-[chloroacetyl-
carbamoyl]fumagillol, initially called AGM-1470) is a semi-
synthetic derivative of fumagillin, a naturally secreted
antibiotic of Aspergillus fumigatus fresenius [3]. The target of
TNP-470 was identified as the type 2 methionine
aminopeptidase (MetAP2) [4]. One important role of the
methionine aminopeptidases is the posttranslational
processing required for protein myristoylation [4]. Further
studies showed that TNP-470 blocks S-phase entry and that
this cell cycle blockage is characterized by the
hypophosphorylation of the retinoblastoma protein (pRB),
which is likely due to the dramatic inhibition of cyclin E-
dependent kinase activity [5]. It was also demonstrated that
the inhibition of cyclin-dependent kinase (CDK) activity is
caused by the upregulation of the CDK inhibitor, p21WAF1/CIP1

(p21), which in turn is activated by p53 [5]. Angiostatins
consist of varying numbers of the kringle domains [1-5] of
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plasminogen with Angiostatin4.5 (AS4.5; the subject of this
study) [6] being a naturally occurring cryptic fragment
consisting of kringles 1–4 and most of kringle 5. Angiostatin
is produced by at least two distinct mechanisms: first, via the
binding of plasminogen to the cell membrane by β-actin and
uPAR followed by proteolytic cleavage by urokinase-like
plasminogen activator/tissue plasminogen activator and
autoproteolysis [7] and second, via the proteolytic cleavage
of plasminogen through neutrophil elastase, which is
produced by activated human neutrophils [8]. Liberation of
angiostatin by circulating neutrophils results in increased
expression of Interleukin-12 in macrophages [9], implicating
the innate immune system in its anti-angiogenic activities.
Angiostatin also binds to one uncharacterized binding protein
(ABSP) [10] and angiogenin [11] (a potent inducer of
angiogenesis), the latter of which may play a role in mediating
the well documented anti-angiogenic effects of angiostatin.
Angiostatin 4.5 has also been shown to induce endothelial cell
apoptosis [12,13] by activating a caspase cascade, specifically
the activation of Caspases 3, 8 and 9 [12]. Angiostatin binds
to  cell  surface  proteins  (annexin II  [14],  the chondroitin
sulfate proteoglycan NG2 [15], c-met [16], angiomotin [17],
ATP synthase [18], and αvβ3 integrin [19]), which have been
shown to mediate its pleiotropic actions including inhibition
of endothelial migration, filopodial extension, tube formation,
and apoptosis in vitro as well as tumor growth in vivo.
Blocking these receptors with monoclonal antibodies or
soluble proteins inhibits both the binding of angiostatin as well
as its activity in vitro and in vivo assays. It is clear that
angiostatin (like its parent molecule, plasminogen) is
promiscuous in its binding partners and that the functional
activities of this potent anti-angiogenic protein are
consequently mediated through a variety of molecular
pathways [20].

During early murine pregnancy, a maternal injection of
TNP-470 (the first angiogenesis inhibitor to be assessed in
clinical trials) results in spontaneous abortion [21] whereas
administration during the second half of murine pregnancy
results in a reproducible model of intrauterine growth
restriction (IUGR) in mice [22]. Furthermore, Angiostatin4.5

(AS4.5) induces placental abnormalities in addition to fetal
growth abnormalities following maternal administration in
the second half of murine pregnancy [23]. Findings with these
two angiogenic inhibitors are consistent with the concept that
angiogenic inhibitors directly affect placental development
and fetal growth. The placenta, which is the materno-fetal
interface that mediates the metabolic requirements of the
fetus, allows the ready passage of a variety of molecules with
low molecular weights (Mw: up to 1 kDa) whereas large
proteins (such as heparin and insulin) do not cross this barrier
unless there is an active transport mechanism [24]. In addition
to having direct effects on the placenta, small Mw angiogenic
inhibitors such as thalidomide also have direct teratogenic
effects on the fetus [25] at least partially via their effects on

the vasculature [26]. Considering that many of the angiogenic
inhibitors are low molecular weight compounds [27-29] and
are thus likely to cross the placenta or have adverse effects on
placental growth, many of these molecules may also affect
fetal growth in general, including ocular development.

The developing eye is extremely sensitive to alterations
in oxygen concentrations [30-34] and vascular morphological
changes mediated by altered expression of vascular
endothelial growth factor (VEGF) [35,36]. Since the oxygen
concentrations sensed by the fetal eye are ultimately mediated
via placental transport, agents that influence placental
vascular growth such as TNP-470 and AS4.5 are highly likely
to influence ocular development. To test this hypothesis, we
administered angiogenic inhibitors with two differing modes
of action (i.e., TNP-470 and AS4.5) to pregnant dams. We then
used stereological analysis to determine their effect on fetal
ocular dimensions and on the volumes of the individual tissue
types including the hyaloid vasculature (HV), which supports
the early growth of the fetal eye.

The experiments in this paper were designed to assess the
effects of maternal administration of either TNP-470 or AS4.5

on overall ocular morphology and particularly the vascular
compartment of the fetal eye. TNP-470 is a low molecular
weight angiogenesis inhibitor (Mw=401.89), known to induce
murine IUGR, and characterized by significant placental
morphological changes. AS4.5 (Mw ~52–55 kDa) [7] also
induces placental pathology without IUGR, although there is
notable fetal skeletal growth delay [23], which is suggestive
of a placental insufficiency. The null hypotheses for these
studies are that ocular morphology and dimensions in addition
to the cross-sectional area or volume of hyaloid blood vessels
are not significantly altered in the eyes of fetuses from dams
treated with angiogenic inhibitors in comparison with vehicle-
only treated control mice.

METHODS
Animal model: The experiments reported in this study were
performed following appropriate local and national (Home
Office) ethical approval, which are equivalent to the
Association for Research in Vision and Ophthalmology
(ARVO) guidelines and the Institute for Laboratory Animal
Research (Guide for the Care and Use of Laboratory Animals)
guidelines. Adult male and female C57BL/6J mice (eight
weeks old) were housed in a 12-h on/12-h off light-dark
schedule. After mating, the presence of a vaginal plug was
defined as embryonic day 0.5 (E0.5). Pregnant dams were
randomly assigned to a group, which received either PBS or
30 mg/kg bodyweight TNP-470 (n=19 and n=17,
respectively). Subcutaneous injections of TNP-470 were
administered every other day from E10.5 to E18.5.
Alternatively, pregnant dams were randomly assigned to a
group receiving 20mg/kg bodyweight AS4.5 (n=6) daily from
E10.5-E18.5. Dose and injection times and efficacies were in
line with previous studies [21,37-40]. The biological activity
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of both TNP-470 and AS4.5 was confirmed in vitro before
testing in vivo [12,22].

Following euthanasia, the gravid uteri were carefully
dissected free from the mother. After amnionectomy, the
fetuses were delivered and euthanized, and the eyes were
enucleated. One eye from each embryo was fixed in 10%
buffered formal saline (BFS; pH 7.4) overnight and
subsequently embedded in araldite.
Ocular stereology: A total of 10 vehicle-only controls, 6
TNP-470-treated mice, and 5 AS4.5-treated mice were
randomly selected from the total population of collected
fetuses. Following fixation, eyes were processed, critically
orientated in a mold, and embedded in araldite. Serial sections
(0.5 μm thick) were cut at 50 μm intervals through the eye.
The sections were placed onto glass slides and subsequently
stained with 2% toluidine blue. A three-stage stereological
analysis was performed to determine (i) ocular volume, (ii)
tissue and vascular proportions, and (iii) vascular
morphometry using systematic random sampling [41,42].
Light microscopic images were obtained using an Olympus
microscope (Olympus, Tokyo, Japan) and electronic images
were captured with an Olympus T4040 digital camera. Each
section was visualized, and stereological analysis was
performed using the ‘QProdit’ computer imaging program
(Leica Imaging Systems, Cambridge, UK).

Ocular volume—The perimeter of each eye section was
traced and the area calculated. Cross-sectional areas from
individual sections were multiplied by 50 (to take into account
that sections were cut at 50 µm intervals) and subsequently
summed to determine fetal ocular volume.

Tissue proportions—Serial sections (0.5 μm thick) of
each eye were cut at 50 μm intervals through the eye, and two
systematically random views [42] of each eye section were
collected, stored, and analyzed with the aid of a 96-point grid
layout (this resulted in an average of 50 sections being
analyzed per eye, ~4,800 points per eye). In late fetal mice,
there are two distinct anatomic regions of the hyaloid
vasculature (HV), one surrounding the lens (tunica vasculosa
lentis [TVL] incorporating the pupillary membrane
anteriorly) and the other on the vitreal surface of the inner
limiting membrane (arteria hyaloidea propria; AHP) [43].
With respect to the stereological analyses of ocular tissue
dimensions, the AHP and TVL were considered separately.
The ocular tissues were thus assigned to 1 of 11 tissue type
groups based on their location and histological phenotype:
retina, lens stroma, cornea, vitreous humor, aqueous humor,
iris, lens hemorrhage, TVL, AHP, optic stalk, and non-ocular
tissue (includes the sclera and eyelid). Tissue proportion refers
to the relative proportion of each tissue/blood vessel type
within the whole eye.

Vascular morphometry—A photomicrograph of each
section (averaging 25 sections per eye) containing HV was
analyzed by tracing around each blood vessel (an average of

70 tracings per eye). Vessels within the ‘broken lines’ were
included within the count whereas vessels crossing the ‘solid
lines’ were excluded. Blood vessel lengths, cross-sectional
areas, diameters, and volumes were calculated using the tissue
proportion and ocular volume data [44].
Statistical analysis: Statistical comparisons between groups
were assessed using Levene’s test for equality of variances.
Following confirmation of homologous populations, a t-test
for equality of means could be used with a p<0.05 being
considered significant.

RESULTS
The effect of angiogenic inhibitors, TNP-470 and AS4.5, on
murine pregnancy: The effect of angiogenic inhibitors on
placental and fetal development were similar to those
described previously by our group for TNP-470 [22] and AS4.5

[23] (unpublished). In brief, murine dams injected with 30 mg/
kg of TNP-470 showed consistent weight loss in the latter half
of pregnancy with reduced placental size and altered ratios of
fetal to maternal vessels and fetal growth restriction. Dams
injected with AS4.5 consistently gained weight during
pregnancy, and the placental weight and dimensions were
normal as were litter sizes and fetal weight. Placentae from
AS4.5-treated dams had significant pathological changes,
consistent with intravascular coagulation and vascular
restructuring (data not shown). Fetuses from AS4.5-treated
dams also had marked signs of skeletal growth delay and
widespread edema [23] (data not shown).
Stereological analysis:

Ocular volume—Maternal administration of TNP-470
resulted in a 27% reduction in ocular volume in comparison
with vehicle-only treated eyes (p<0.04; Figure 1A and Figure
2). Administration of AS4.5 led to a 38% reduction in ocular
volume in comparison to vehicle-only treated eyes (p<0.04;
Figure 1A and Figure 2).

Tissue proportion stereology—TNP-470-treated fetal
eyes showed a 40% reduction in the proportion of TVL
(p=0.04) and a 59% increase in the iris (p=0.02) when
compared with controls. Tissue proportions of all other tissues
were not significantly different. In fetal eyes from dams
exposed to AS4.5, there was a 61% reduction in the size of the
optic stalk (p=0.003; see Table 1) with no other significant
differences in tissue proportions observed.

Ocular blood vessel stereology—Treatment with
TNP-470 resulted in a decrease in length of the HV by 36%
in fetal mice (p<0.01; Figure 1C and Figure 3B) and cross-
sectional areas (p<0.001; Figure 1B and Figure 3B). HV
volumes were nearly halved in TNP-470-treated fetal eyes in
comparison with control mice (p<0.001; Figure 1D and Figure
3). All other comparisons were not significantly different
(p>0.05; Figure 1 and Figure 3).

DISCUSSION
Anti-angiogenic therapies for treatment of either solid tumors
or non-neoplastic conditions generally exhibit low levels of
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toxicity because they target the vascular compartment
allowing lower dosages to be used [45]. These agents have
seen a rapid increase in clinical usage since their approval by
the NIH in 2002 for treatment of colon cancer and ocular
conditions characterized by aberrant vascular formation
(notably “wet” age-related macular degeneration). Therefore,
possible teratogenic effects warrant further investigation. In
the present study, fetuses exposed to either the small
molecular weight endothelial inhibitor TNP-470 (Mw ~402
Da) or AS4.5 (52–55 kDa) showed a significant decrease in
fetal ocular volume, which may be associated with fetal
growth restriction (FGR) and placental pathologies resulting
from maternal administration of these agents [22].
Microphthalmia   is  observed   in  conjunction  with  FGR  in 
several  other  clinically   relevant   disorders  including  those

affected by Matthew-Wood syndrome [46] and Fanconi
anemia [47], patients with deletions in 3q26.33-q28 [48], and
those with the X-linked microphthalmia with linear skin
defects syndrome [49]. Fetal growth restriction and
microphthalmia have also been observed in rats exposed to
antiserum targeting the visceral yolk sac endoderm [50] or
hyperthermia [51]. Microphthalmia is also frequently
observed in children with fetal alcohol syndrome [52-54] with
reduced globe size and weight being observed in pre- and post-
natal rodents chronically exposed to ethanol [55,56]. In
addition to microphthalmia, ocular effects such as a reduction
in retinal thickness [57], persistent hyperplastic primary
vitreous (PHPV), and smaller lens vesicles [58,59] have been
observed in ethanol-exposed animals, although none of these
pathologies were observed in the present study. While

Figure 1. Hyaloid blood vessel
dimensions from E18.5 mice treated
with vehicle-only, TNP-470, or AS4.5

solution. The graphs show ocular
volume (A) where the asterisk indicates
p<0.04, vascular cross sectional area
(B) where the asterisk indicates p<0.01,
vascular length (C) where the asterisk
indicates p<0.001, and vascular volume
(D) where the asterisk indicates p<0.001
in vehicle-only (control), TNP-470-
treated, and AS4.5-treated animals.
Statistical comparisons between groups
were performed using t-test for equality
of means.

Figure 2. Photomicrographs of the eye and associated structures from E18.5 mice treated with vehicle-only, TNP-470, or AS4.5.
Photomicrographs of representative E18.5 murine eyes stained with toluidine blue are as follows: vehicle-only treated (A), TNP-470-treated
eyes (B), and AS4.5-treated eyes (C). The ocular cross-sectional area is clearly smaller in the TNP-470- and AS4.5-treated groups when compared
with controls (compare with Figure 1). In the images, the scale bar=500 μm.
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abnormalities in the developing iris such as coloboma are
observed in ethanol-treated mice [52], no distinct pathology
other than an increase in iridial size was observed in TNP-470-
treated mice.

In humans, HV has completely regressed by the seventh
month of gestation, although in rodents the vessels persist
until the third to fourth week post-natally [60]. Inappropriate
neovascularization within the human eye contributes to visual
loss in several ocular diseases including retinopathy of
prematurity [61] and PHPV, which can have several different
ocular manifestations ranging from persistent pupillary
membrane, Mittendorf dot, and even microphthalmia [62].
Examination of TVL is an accurate method for determining
fetal age [63], especially in the case of infants small for their
gestational age [64]. In infants whose weights are within or
below the tenth percentile (lowest 10% weight group within
a population), regression of TVL correlates well with their
gestational age in agreement with infants of appropriate
weight to gestational age [65]. In addition, the rate at which
TVL regresses in prematurely delivered neonates is
concordant with in utero infants, indicating that early delivery
is not associated with accelerated regression of TVL [66].
Remnants of HV are often observed in human preterm infants
(less than 38 weeks gestation), but the remnants regress in
accordance to the length of time before term at which the
infant was delivered [67].

Reduced blood vessel volume as a result of TNP-470
administration has been observed in several models of
xenotransplanted human tumors, leading to clinical trials of
this agent. A direct effect of TNP-470 on ocular vasculature
has also been confirmed by a reduction in blood vessel length
in over-vascularized corneas (caused by upregulation of
VEGF) where vessel length was significantly decreased in
TNP-470-treated animals [68]. Therefore, the results of the
present experiment are consistent with the hypothesis that the

low molecular weight angiogenic inhibitor, TNP-470, reduces
HV length and volume in the murine eye. Due to the fast
uptake, low molecular weight, and relatively long half-life of
this compound [69], its effects are likely to be mediated
through a direct effect on fetal vasculature.

VEGF expression from both the lens and retinal
astrocytes is critical for developmental vascular growth in the
hyaloid and retinal vascular plexi, respectively [35,44,70,71].
Several lines of evidence implicate VEGF signaling-mediated
mechanisms of action for TNP-470. These include inhibition
of VEGFR-2 phosphorylation and reduced Vascular
Permeability Factor/VEGF-induced RhoA activation [72].
Administration of TNP-470 also causes a decrease in levels
of VEGF in a variety of cell and tissue types [73-75] including
the eye [68]. While angiostatin does not appear to directly
influence VEGF signaling [76], it can modulate αvβ3 integrin,
which in turn influences VEGF expression [77]. Furthermore,
in rat models of oxygen-induced retinopathy and
streptozotocin-induced diabetes, angiostatin significantly
reduces retinal vascular permeability and downregulates
VEGF production while both permeability and VEGF levels
remained unchanged in control animals [78]. As angiostatin
binds to the αvβ3 integrin and inhibits the p42/p44 mitogen-
activated protein (MAP) kinase pathway, angiostatin-induced
VEGF downregulation may be mediated via the inhibition of
the MAP kinase pathway under conditions of hypoxic stress
[78]. Taken together, these findings implicate the VEGF
signaling pathway as the mechanism of action for these anti-
angiogenic agents, although further investigation of this
hypothesis is warranted.

Administration of AS4.5 has also been shown to cause a
reduction in blood vessel volume in models of retinopathy
[79], colonic anastomoses [80], and coronary angiogenesis in
vivo [81]. In the present study, the proportion of capillaries
(on either the inner limiting membrane or hyaloid vessels) was

TABLE 1. PROPORTIONS OF OCULAR TISSUE TYPES FOLLOWING MATERNAL ADMINISTRATION OF VEHICLE ONLY, TNP-470, OR AS4.5 SOLUTION.

Tissue Tissue
label

Vehicle-only
(n=10)

30 mg TNP-470
(n=6)                           p                          (n=5)                          p 

                       20 mg AS4.5

Retina A 0.3681±0.0141 0.3211±0.0471 0.3724±0.0330
Cornea B 0.0340±0.0034 0.0303±0.0079 0.0231±0.0053
Optic Stalk C 0.0062±0.0006 0.0049±0.0016 0.0024±0.0007 0.003
Aqueous D 0.0027±0.0001 0.0022±0.0007 0.0043±0.0003
Vitreous E 0.3519±0.0073 0.3939±0.0986 0.3702±0.0573
TVL F 0.0035±0.0004 0.0021±0.0004 0.04 0.0026±0.0007
AHP G 0.0057±0.0009 0.0050±0.0009 0.0062±0.0007
Iris H 0.0232±0.0027 0.0368±0.0039 0.02 0.0231±0.0048
Lens stroma I 0.1923±0.0954 0.2037±0.0056 0.1956±0.0143
Total HV F+G 0.0093±0.0011 0.0071±0.0009 0.0088±0.0012

Values represent mean±SEM. Statistical comparisons between groups were performed using t-test for equality of means.
Significance was accepted as p<0.05. The p value is only indicated where a significant difference was observed between the
vehicle-only (control) and experimental groups.
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unaffected by the administration of AS4.5. However, optic
nerve head hypoplasia was consistently observed in fetal mice
exposed to 20 mg/kg of angiostatin in this study. Optic nerve
head hypoplasia in association with reduced retinal
vascularization is a well described clinical phenomenon [82],
particularly in children delivered before 29 weeks of gestation
[83] or with growth defects attributable to reduced levels of a
growth hormone [84] or insulin-like growth factor 1 [85].
Since AS4.5 is a ~55 kDa protein, it is highly unlikely to cross
the placenta where it induces significant placental pathology.
Therefore, the effects on both ocular dimension and optic
nerve head hypoplasia are likely to be mediated via the
pathological changes observed in placentae of these mice
(Rutland and Mitchell; unpublished observations). The clear
association of optic nerve head hypoplasia with pre-term or
low birth weight infants is consistent with reduced placental
perfusion mediating this pathology and may explain this
observation in the present study. In a published study
involving intravitreal injection of angiostatin in neonatal mice
[79], the progression of vascular malformations in an oxygen-
induced retinopathy model was slowed without affecting the
normal vasculature. Similarly, in a mouse model of
proliferative retinopathy, stable expression of a human

immunodeficiency virus vector-encoding angiostatin also
inhibited retinal neovascularization by up to 90% [86],
demonstrating that the anti-angiogenic effects of this protein
are observed in vasculature adjacent to the injection site.
Another interesting study investigated intravitreal injection of
angiostatin in diabetic and control rats and measured vascular
permeability [87]. The authors reported that pathological
vascular permeability was reduced in the diabetic mice
whereas permeability was unaffected in control mice [87].

Studies from our group and others have shown that
angiogenic inhibitors are not entirely specific to pathologic
angiogenesis [88] as TNP-470 clearly affects the physiologic
angiogenesis associated with both early embryonic
development and fetal-placental development [44]. In
contrast, the effects of maternal administration of AS4.5 are
consistent with placental-mediated effects on ocular
dimensions as HV in fetal mice was unaffected. The small
molecular weight compound, TNP-470 (Mw=402), can
influence growth of a vasculature destined to regress before
birth in humans (i.e., the hyaloid vascular system) whereas
AS4.5 does not exert a direct effect on normal fetal vasculature
via maternal administration. Intraocular injections of anti-
angiogenic agents may prove useful in the treatment of early

Figure 3. Photomicrographs of the lens and hyaloid vasculature in eyes from E18.5 mice treated with either vehicle-only, TNP-470, or AS4.5

solution. Low power micrographs (A-C) and matching high power detail (D-F) of the lens and hyaloid vasculature in eyes from E18.5 mice
stained with toluidine blue are displayed. Dams were treated with either vehicle-only (control: A,D), TNP-470 (B,E), or AS4.5 (C,F). In high
power light micrographs (D-F), the hyaloid vessels are clearly visible on the lens surface (arrows) in addition to hyalocytes (arrowheads).
Scale bars on A-C=100 µm and on D-F=50 µm.
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post-natal growth in disorders characterized by aberrant
angiogenesis such as persistent hyperplastic primary vitreous.
This study has shown that anti-angiogenic agents capable of
inducing FGR can result in concomitant microphthalmia,
providing evidence for contraindication of use of these agents
during pregnancy.
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