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Background: There is currently no reliable or validated tool to delineate and quantify

functional lung volumes with ventilation/perfusion (V/Q) SPECT/CT. The main challenges

encountered include the physiological non-uniformity of lung function, such as the

anterior-to-posterior gradient on perfusion images, and the lack of ground truth to assess

the accuracy of delineation algorithms. In that respect, Monte-Carlo simulations would

be an interesting tool. Thus, the aim of this study was to develop a realistic model of

dual-isotope lung V/Q SPECT-CT Monte-Carlo simulations, integrating the anterior to

posterior gradient on perfusion.

Methods: Acquisitions and simulations parameters were set in accordance to nuclear

medicine guidelines for V/Q lung SPECT-CT. Projections were acquired and simulated,

then the reconstructions [with and without attenuation correction (AC)] were compared. A

model was built from a patient’s CT scan. To model the anterior to posterior gradient, the

lungs were divided into sixteen coronal planes, where a rising radioactivity concentration

was set. To assess the realism of simulations, they were compared to a normal

co-registered normal cases database in terms of pixelwize Z-score map.

Results: For ventilation images, mean (SD) Zscores on Zscore maps were −0.2 (0.7)

and −0.2 (0.7) for AC and noAC images, respectively. For perfusion images, mean (SD)

Zscores were −0.2 (0.6) and −0.1 (0.6) for AC and noAC images, respectively.

Conclusion: We developed a model for dual isotopes lung V/Q SPECT-CT, integrating

the anterior-to-posterior gradient on perfusion images. This model could be used to

build a catalog of clinical scenarios, in order to test delineation methods of functional

lung volumes.

Keywords: V/Q SPECT, lung function, PE, simulation, Z-score

INTRODUCTION

Lung function evaluation mainly relies on pulmonary function tests, which provide information
about global lung function. Lung ventilation/perfusion scintigraphy is an imaging modality that
provides complementary information about the regional distribution of lung function. Ventilation
is assessed using inert gases or radio-labeled aerosols while local pulmonary blood flow is assessed
after administration of 99mTc labeled albumin macro-aggregates (MAA) (1, 2). Quantification of
lung functional volumes demonstrated a potential utility in various clinical scenarios. This includes
the quantification of the pulmonary vascular obstruction index (PVOI) in patients with pulmonary
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embolism (PE), which has been shown to be predictive of PE
reccurrence, either at diagnosis or after anticoagulant therapy (3–
5). Another indication is radiation oncology (6). The last 20 years
have seen the emergence of new methods of irradiation (IMRT,
VMAT, stereostatic radiotherapy), increasing the possibility of
individualizing radiotherapy treatment plans, in order to increase
the intensity to the tumor and/or to preserve lung function and
limit the risk of pneumonitis (7, 8).

Although lung scintigraphy is a very attractive tool for
regional lung function assessment, the main factor limiting a
wider use of the test in clinical practice is the lack of reliable
and validated tools to delineate and quantify functionnal lung
volumes. Functionnal lung delineation is not trivial because of
the physiological non-uniformity of lung ventilation and blood
flow, mainly because of anatomy and gravity (9), leading to
an anterior-to-posterior intensity gradient on perfusion SPECT.
This makes delineation methods based on pixel intensities
inaccurate, as an intensity value could be normal in the ventral
area or pathological in the dorsal area, even if a quantified
reconstruction is used. Several original segmentation methods
have been proposed (10–13), but studies are often limited by the
lack of ground truth.

Monte-Carlo simulations would be an intersting tool for
assessing and validating a delineation algorithm for lung
functional volumes with V/Q SPECT/CT. First, the advantage of
simulating realistic lung V/Q SPECT-CT would be to know the
ground truth for the evaluation and comparison of delineation
methods (e.g., the exact size of a perfusion defect for PE,
the exact pulmonary vascular obstruction index). Second, it
would allow to test a much greater number of clinical scerarios
(e.g., PE of various size and location). Finally, simulations may
integrate physiogical parameters, such as gravity, which make
conventional delineation methods inacurate in some situations.

Monte-Carlo simulations have been widely proposed in
SPECT for multiple objectives (14). However, only a few studies
have been published in the area of lung V/Q SPECT (12, 13, 15–
17), and modeled the lung segmentation (18–22), but none have
modeled the the anterior to posterior gradient on perfusion
images. Furthermore, no study has modeled a dual energy 81mKr
gas ventilation associated with 99mTc-MAA perfusion SPECT.

The aim of this study was to develop a realistic model of
dual-isotopes lung V/Q SPECT-CT.

MATERIALS AND METHODS

Data Acquisition and Simulation
Parameters
All acquisitions were performed on a Symbia T6 system
(Siemens, Erlangen) equipped with a medium energy low
penetration (MELP) collimator, as it is used for dual-
isotopes lung VQ SPECT-CT (1). SPECT were acquired with
4.7mm pixels, 128 projections, 10 s/projections, step&shoot
mode, non-circular orbit, in accordance with nuclear medicine
clinical guidelines (1, 23). Energy windows for 99mTc scatter,
99mTc photopeak, 81mKr scatter, and 81mKr photopeak were
[109.9, 129.5], [129.5, 150.5], [150.7, 177.6], [177.6, 206.4],

respectively. CT acquisitions parameters were 110kV, 16 mAs
with automatic exposure, pitch1. Attenuation correction CT
(ACCT) reconstruction parameters were 5122 matrix, 0.98mm
pixel, 5mm slice width and B08 filter. SPECT reconstructions
were performed on Siemens MI-Apps software with FLASH3D
(OSEM3D with collimator detector response modeling), 4
iterations, 8 subsets, 8.4mm gaussian post-filtering, scatter
correction [dual energy window method (DEW)], with and
without attenuation correction.

TheMonte-Carlo package used to run SPECT simulations was
Simind (6.0) (24). The camera modeling parameters were set in
order to correspond to a Symbia T6 system (Siemens, Erlangen)
(25) equipped with a MELP collimator. All mesurements were
first acquired on a SymbiaT6 gamma camera, then simulated
with the same parameters on Simind. ACCT reconstruction was
used to define the simulation geometries. Simulation geometries
were Zubal-like phantoms (26, 27), built from the ACCT. ACCT
data was segmented according to hounsfield units using MiM
software (7.0, Cleveland). Images bit depth was set to 8 bits,
and a unique value was attributed to each segmented areas using
ImageJ sofware (28). Those values were used in Simind to set the
desired value of density and radioactivity concentration in the
defined areas. SPECT were simulated with the same parameters
than the acquisitions. Photons emitted from 99mTc decay were
simulated with a 140 keV Energy and 88.5% abundance. As
Krypton gas is continuously inspired and expired and has a
very fast decay (half-life is 13 s), it was simulated as a stationary
gas without significant decay, with homogeneous concentration,
with a 190 keV energy and 100% abundance.

All SPECT reconstructions were performed on Siemens MI-
Apps software, with FLASH3D, four iterations, eight subsets,
8.4mm gaussian post-filtering, scatter correction (DEW), with
and without attenuation correction.

In order to assess the simulated data, image quality tests were
run on both simulated and aquired data, and compared in terms
of Root Mean Square Deviatiation (RMSD) for spatial resolution
and activity recovery (see Appendix 1).

Lung V/Q SPECT Realistic Model
Simulation Parameters
Using the ACCT, five representative tissues were delineated
using MiM Software (MiM 7.0, Cleveland), including outside air,
bones, fat, soft tissues, lungs, and bronchi. A code was assigned to
each area. Digital phantom was sub-sampled in a 128² matrix to
accelerate the simulation calculation, and the simulation grid was
128× 128× 108matrix, corresponding to 3.92× 3.92× 3.59mm
voxels. With regards to ventilation, the simulated radioactivity
was evenly set to 55 kBq·mL−in the lungs and the airways. With
regards to perfusion, in order to model anterior to posterior
gradient of the distribution of radioactivity on perfusion SPECT,
lungs were divided into sixteen coronal planes. For each coronal
plane a relative to maximum radioactivity concentration value
was assigned. The values were set to fit the mean anterior to
posterior intensity gradient measured on a normal cases database
(29), from 43 kBq·mL−1 inside the first coronal plane to 65
kBq·mL−1 in the last coronal plane. As the sourcemap is different
when simulating ventilation and perfusion, simulations were
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not run simultaneously. Scatter data was stored at each energy
window, and 81mKr scatter was added to 99mTc lower scatter and
primary energy windows.

Reconstructions Analysis and Z-Score Maps
In order to assess the realism and consistency of simulated
SPECT, reconstructed simulations were compared to a 73
co-registered normal cases database (29). Z-score maps were
generated as follows: First, SPECT simulated reconstructions
were normalized according to the mean value. Z-score map was
then calculated at each voxel coordinate as follows:

Z − scoreSPECT Reconstruction

(

x, y, z
)

=

[

Pixelvalue
(

x, y, z
)

−MEANmapValue(x, y, z)
]

SDmapValue(x, y, z)
;

Z score histograms were computed in a ROI built 0.5 cm inside
the lungs CT boundaries to avoid partial volume effect artifacts.
Simulations were evaluated as the mean Zscore ± SD, and as the
pourcentage of voxels below or above 1 SD.

Example of Application
As an example of the possible applications, a simulation with a
segmental perfusion defect was performed. A segmental area was

delineated on ACCT and the relative radioactivity concentration
was set to 50% in this zone.

RESULTS

Realistic Simulated Lung V/Q SPECT
Digital phantom, radioactivity source map and the
corresponding AC and NoAC perfusion reconstructions
are shown in Figure 1. An axial slice and the corresponding
Zscore maps and 3D histogram for ventilation, perfusion, AC
and NoAC reconstructions are shown in Figure 2. Zscores
distribution for all reconstructions are summurized in Table 1.
Mean Zscores ranged from −0.1 to −0.2. An exemple of PE
simulation, its radioactive source map and the corresponding
perfusion AC reconstruction is shown in Figure 3.

DISCUSSION

In this study we created a realistic model for dual isotopes
V/Q SPECT-CT Monte-Carlo simulations. The gamma camera
was correctly modeled, as shown by spatial resolution and
contrast recovery measurements. Reconstructed simulations of
ventilation and perfusion scans were very close to a normal cases
database including 73 normal co-registered V/Q SPECT/CT (29).

FIGURE 1 | Digital phantom, radiactivity source map definition, AC and NoAC reconstructions of the simulated projections.
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FIGURE 2 | AC and NoAC reconstructions for ventilation and perfusion (A), corresponding Z-score map (B) and pixels Z-score histograms (C), and statistics

measured 0.5 cm inside CT boundaries.

TABLE 1 | Zscores distribution for ventilation AC, NoAC, and perfusion AC and

NoAC.

Ventilation

AC

Ventilation

NoAC

Perfusion

AC

Perfusion

NoAC

Mean Zscore (SD) −0.2 (0.7) −0.2 (0.7) −0.2 (0.6) −0.1 (0.6)

%pixels > 1 4.6 5.2 3.5 4.9

%pixels < −1 1.9 1.3 1.9 3.8

The Monte-Carlo code used in this study was simind. As
compared with Gate (30) orMCNPX (31) packages, this program
is known to be fast, thanks to variance reduction techniques
and analytic calculation of the collimator response. Taheri et al.
showed that the accuracy was comparable to other packages (32).
The use of a user friendly graphical user interface, CHANGE,
and the ability to write scripts to run automatically simulations
with different parameters makes Simind an easy package to run
multiple SPECT simulations.

The system performances comparison showed slight
differences between simulations and acquisitions. The root mean
square deviation was lower than 1mm for spatial resolution
and lower than 1% for contrast recovery. Thus, the system was
correctly modeled and usable to run realistic simulations, in

accordance with published studies (33, 34). Energy resolution
was not verifed, as it is an input of the simulation. Sensitivity was
not verified either, as images are scaled before adding Poisson
noise. This may have been of concern if the simulations were
run in a dosimetric purpose, but not for producing images. In
order to model the anterior to posterior intensity gradient, we
defined 16 horizontal planes in the patient orientation, so that
each plane’s width was close to 1 cm (3 pixels). This is far under
the spatial resolution for SPECT with a 30 cm radius, and thus is
enough to model precisely the gradient. The radioactivity values
in each plane was defined based on a parametric mean perfusion
AC map obtained from the normal cases database (29). Based on
Z-score analysis, V/Q SPECT modeling was satisfactory, with
a mean Z value close to zero, and at least 91.3% of the pixels
ranging from −1 to 1 SD. We measured Z scores in ROI defined
0.5 cm inside CT boundaries corresponding to a 1-pixel width in
order to avoid false measurements due to partial volume effects
on the edges of the Zscore map.

A current challenge in PE management is the ability to
estimate the Pulmonary Vascular Obstruction Index (PVOI),
which has been shown to be predictive of PE reccurence (3–
5). In order to measure precisely the PVOI with V/Q SPECT,
several methods have been proposed (11–13, 35), but an accurate
evaluation remains limited by the the lack of ground truth.
We illustrated the interest of a realistic model of lung V/Q
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FIGURE 3 | Application exemple: PE simulation. Radioactivity source map representing the ground Truth (A) and the corresponding perfusion AC reconstruction (B).

SPECT-CT Monte-Carlo simulations in Figure 3. A knowledge
of the real volume and geometry of perfusion defects, for various
morphologies and anterior to posterior gradient intensities,
should allow to develop and test new delineation methods, such
as statistical map threshold.

Our study has some limitations. First, we used a static Zubal-
like phantom instead of dynamic X-CAT phantom. Although
respiratory motion is a challenge in PET imaging, it has less
impact on SPECT images because of the lower spatial resolution
of the technique. Indeed, based on the analysis of 73 normal co-
registrated cases database (29), the impact of respiratory motion
on the uptake variability in the basis areas was very low, especially
as compared with the anterior to posterior gradient. Second,
the DEW scatter correction method is not the more efficient,
since both scatter (from 99mTc itself) and downscatter (from
81mKr) are present in the main Tc-window around 140 keV. It
has been shown that triple energy windows method (TEW) is
better in the case of multiple energy isotopes (36), or here in
multiple isotopes SPECT. However, given that the normal cases
database was created with the DEWmethod, the reconstructions
of the simulations were performed with the same method to
avoid a bias in Z-score analysis. Third, we did not model the
mild gradient described by some authors in the caudo-cranial
direction (35). Similarly, this gradient was negligible in the 73

normal co-registrated cases database (29). Fourth, some more
singularities have been described, such as the fissure sign or the
segmental contour sign (37). The distribution of 99mTc-MAA
often does not extend to the periphery of a segment or lobe,
often finishing 1 cm or less before the anatomical boundary. This
is usually attributed to the lack of pulmonary artery supplied
perfusion to the peripheral surface of the lung which is supplied
by the bronchial circulation. This was not simulated in our
model. Finally, Walrand et al. showed that it was possible to
simulate regionnal heterogeneity of liver perfusion with 90Y-
microspheres, taking into account the diameter of arteries (38).
Similarly, simulating the physics of MAA particles inside the
pulmonary arterial tree may have improved the realism of
simulations. However, these simulations were not developed for
dosimetry purposes.

CONCLUSION

We developed a realistic model for dual isotopes lung V/Q
SPECT-CT, integrating the anterior posterior gradient on
perfusion images. This model can be used to build a catalog
of clinical scenarios, in order to test delineation methods of
functionnal lung volumes. In the context of PE, this could help
to develop new delineation methods for PVOI estimation.
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