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Objectives: To explore the feasibility of predicting overall survival (OS) of patients with

midline glioma using multi-parameter magnetic resonance imaging (MRI) features.

Methods: Data of 84 patients with midline gliomas were retrospectively collected,

including 40 patients with OS > 12 months (28 cases were adults, 14 cases were

H3 K27M-mutation) and 44 patients with OS < 12 months (29 cases were adults,

31 cases were H3 K27M-mutation). Features were extracted from the largest slice of

tumors, which were manually segmented on T2-weighted (T2w), T2 fluid-attenuated

inversion recovery (T2 FLAIR), and contrast-enhanced T1-weighted (T1c) images. Data

were randomly divided into training (70%) and test cohorts (30%) and normalized and

standardized using Z-scores. Feature dimensionality reduction was performed using the

variance method and maximum relevance and minimum redundancy (mRMR) algorithm.

We used the logistic regression algorithm to construct three models for T2w, T2 FLAIR,

and T1c images as well as one combined model. The test cohort was used to evaluate

the models, and receiver operating characteristic (ROC) curves, areas under the curve

(AUCs), sensitivity, specificity, and accuracy were calculated. The nomogram of the

combined model was built and evaluated using a calibration curve. Decision curve

analysis (DCA) was used to evaluate the clinical application value of the four models.

Results: A total of 1,316 features were extracted from T2w, T2 FLAIR, and T1c images,

respectively. And then the best non-redundant features were selected from the extracted

features using the variance method and mRMR. Finally, five features were extracted each

from T2w, T2 FLAIR, and T1c images, and 12 features were extracted for the combined

model. Four models were established using the optimal features. In the test cohort, the

combined model performed the best out of all models. The AUCs of the T2w, T2 FLAIR,

T1c, and combinedmodels were 0.73, 0.78, 0.74, and 0.87, respectively, and accuracies

were 0.72, 0.76, 0.72, and 0.84, respectively. The ROC curves and DCA showed that

the combined model had the highest efficiency and most favorable clinical benefits.
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Conclusion: The combined radiomics model based on multi-parameter MRI features

provided a reliable non-invasive method for the prognostic prediction of midline gliomas.

Keywords: machine learning, radiomics, MRI, midline glioma, overall survival

INTRODUCTION

Diffuse midline gliomas (DMGs) with an H3 K27M mutation
are a group of tumors newly defined in 2016 and amended
to DMGs with an H3 K27-altered in 2021 (1, 2). They occur
commonly in the brainstem of children, although they are not
uncommon in adults. The median survival time of patients
with a DMG with H3 K27M mutation is shorter than that
of patients without H3 K27M mutation (3). Furthermore, H3
K27M mutation not only have prognostic implications but may
also represent a potential new immunotherapeutic target (4).
However, because of the high risk of operating on the midline
area, most patients only undergo radiotherapy or chemotherapy
(5, 6).Without information regarding H3 K27-altered, predicting
the survival of patients with midline gliomas is challenging.
Therefore, it is of significant clinical value to develop a non-
invasive method to evaluate the survival of patients with
midline gliomas.

In clinical practice, magnetic resonance imaging (MRI)
is one of the most valuable methods for evaluating the
survival of patients with midline gliomas before and during
treatment. MRI findings of tumors often help clinicians
adjust treatment strategies. Furthermore, the World Health
Organization’s classification of tumors of the central nervous
system began integrating molecular and genetic profiling in
2016, with gradual improvements being made continuously.
However, the relationship between macroscopic MRI findings
and molecular subtyping of tumors remains uncertain. H3 K27M
mutant patients has shorter survival time than those of wild
type, and several studies have shown no significant correlation
between H3 K27M mutant- and wild-type DMGs in terms of
tumor necrosis, patterns of enhancement, edema, infiltrative
features, or diffusion characteristics (3, 7, 8). This suggests that
macroscopic MRI findings, such as tumor location, size, signal
intensity, contrast enhancement, and advanced MRI techniques,
such as diffusion-weighted imaging, do not currently meet the
clinical needs of evaluation of DMG survival. On the other
hand, according to the 2021 WHO classification of tumors of the
central nervous system, DMGs, H3 K27-altered include H3 wild
type with enhancer of zeste homolog inhibitory protein (EZHIP)
overexpression and epidermal growth factor receptor (EGFR)
mutation in addition to H3 K27M mutation (2). Therefore,
the prediction of H3 K27M mutation alone in the past cannot
accurately evaluate the prognosis of patients with DMG. Thus,
there is an urgent need for better and more advanced tools
to explore biological information hidden in traditional MR
images, which would have substantial clinical implications, such
as avoiding inappropriate treatments.

One such tool is radiomics, which involves the non-invasive
extraction of a large amount of quantitative information from

medical images that cannot be perceived by human vision.
To date, radiomics has been demonstrated to be valuable in
predicting the molecular genetic characteristics, tumor grading,
differential diagnosis, and prognostic evaluation of gliomas (6, 9–
14). Numerous studies have accurately predicted the survival
of gliomas using radiomics. Prasanna et al. (15) found that
radiomic features from the peritumoral brain parenchyma on
routine pre-operative MRI can predict long- vs. short-term
survival in glioblastomas. Senders et al. (16) have trained
fifteen statistical and machine learning algorithms based on 13
demographic, socioeconomic, clinical, and radiographic features
to predict overall survival, 1-year survival status of glioblastomas,
and found the accelerated failure time model demonstrated
superior performance compared to Cox proportional hazards
regression and other machine learning algorithms. Therefore,
we investigated the feasibility of predicting the overall survival
(OS) of patients with midline gliomas using machine learning to
offer an alternative method to non-invasively predict prognoses
of midline glioma patients.

MATERIALS AND METHODS

Patients
This study was approved by the hospital ethics committee, and
the requirement for obtaining informed consent was waived. We
retrospectively collected data of patients with a midline glioma
treated at Guangdong 999 Brain Hospital between January 2017
and October 2020. The inclusion criteria were: (1) glioma located
in the midline area (e.g., vermis, brainstem, thalamus, corpus
callosum, sellar region, and basal ganglia); (2) patients had
undergone surgical resection or biopsy, and the pathological
diagnosis was certain; and (3) patients underwent T2-weighted
(T2w), T2 fluid-attenuated inversion recovery (T2 FLAIR), and
contrast-enhanced T1-weighted (T1c) imaging at our hospital
before the operation. Exclusion criteria were: (1) missing T2w, T2
FLAIR, or T1c images; (2) uncertain pathological diagnosis; and
(3) poor image quality. Poor image quality is defined as obvious
motion artifacts; the vascular pulsation artifact in the posterior
fossa was obvious after enhancement; and (4) patients who had
received related preoperative treatments, such as radiotherapy
or chemotherapy; (5) patients who had been followed up for
<12 months.

Initially, 161 cases were included, of whom 77 were excluded;
20 had received treatment before surgery, 11 had uncertain
pathology, 12 had incomplete imaging data, 6 had poor image
quality, and 28 were followed up for <12 months. Finally, a total
of 84 cases were included. The OS of 40 cases was >12 months
(long-term group) and the OS of 44 cases was <12 months
(short-term group) (Figure 1).
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FIGURE 1 | Flowchart of patient inclusion and patient groupings.

FIGURE 2 | MRI feature extraction and machine learning flow chart. By manually segmenting the tumors, we extracted 1,316 imaging features from masked

preoperative T2w, T2 FLAIR, and T1c images. The variance method and maximum relevance and minimum redundancy were used to select the best features, and the

four models were established. The test cohort was then used to verify the model.

T1w, T2w, T2 FLAIR, and T1c Images
Acquisition
All patients were scanned using a GE HDxt 3.0T MR (General
Electric, Milwaukee, WI, USA) or Philips Intera 1.5T MR (Royal
Philips Electronics, Amsterdam, Netherlands) scanner. Imaging
sequences included T1w, T2w, T2 FLAIR, and T1c sequences.

The 3.0T MRI scan parameters were: repetition time (TR)

1,900ms, echo time (TE) 24ms, and inversion time (TI) 780ms
for T1w imaging; TR 4,480ms and TE 120ms for T2w imaging;

TR 9,480ms, TE 120ms, and TI 2,300ms for T2 FLAIR imaging.

The T1w, T2w, and T2 FLAIR imaging sequences on the 3.0T

scanner used the following parameters: field of view (FOV): 240
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TABLE 1 | Clinical characteristics of 84 patients in the short-term and long-term groups.

Variable Cases Short-term group (n = 44) Long-term group (n = 40) Statistical value p-value

Men 62 35 (79.55%) 27 (67.50%) 1.573 0.21

Women 22 9 (20.45%) 13 (32.50%)

Age 84 27.25 ± 17.51 28.25 ± 15.19 −0.278 0.781

Age (<18 years) 27 15 (34.09%) 12 (30.0%) 0.161 0.688

Age (≥18 years) 57 29 (65.91%) 28 (70.0%)

Tumor classification

WHO* 1 14 2 (4.55%) 12 (30.0 %) 11.868 0.001

WHO 2 21 9 (20.45%) 12 (30.0 %)

WHO 3 19 12 (27.27 %) 7 (17.50 %)

WHO 4 30 21 (47.73 %) 9 (22.50 %)

H3 K27M-mutation 45 31 (70.45%) 14 (35.00%) 10.589 0.001

H3 K27M wild-type 39 13 (29.55%) 26 (65.00%)

Tumor location

Sellar region 4 2 (4.55%) 2 (5.0%) 0.029 0.865

Basal ganglia 4 2 (4.55%) 2 (5.0%)

Brainstem 32 15 (34.09%) 17 (42.50%)

Corpus callosum 8 5 (11.36%) 3 (7.50%)

Thalamus 31 20 (45.45%) 11 (27.50%)

Cerebellar vermis 5 0 5 (12.50%)

Operation

Biopsy 21 14 (31.82%) 7 (17.50%) 3.377 0.066

Partial resection 31 16 (36.36%) 15 (37.50%)

Subtotal resection 23 12 (27.27%) 11 (27.50%)

Total resection 9 2 (4.55%) 7 (17.50%)

Treatment

Radiotherapy 55 22 (50.0%) 33 (82.50%) 9.79 0.002

Without radiotherapy 29 22 (50.0%) 7 (17.50%)

Chemotherapy 38 13 (29.55%) 25(62.50%) 1.285 0.257

Chemotherapy + targeted therapy 11 8 (18.18%) 3 (7.50%)

Without chemotherapy 35 23 (52.27%) 12 (30.0%)

OS** 84 5.16 ± 5.38 25.34 ± 9.46 −11.865 < 0.001

*World Health Organization.

**Overall survival.

× 240mm, matrix: 256 × 256, slice thickness: 5.5mm, slice gap:
1.0mm, number of excitations (NEX): 1. The 1.5T MRI scan
parameters were: TR 488ms, TE 15ms, and matrix: 152 × 121
for T1w imaging; TR 3,980ms, TE 110ms, and matrix: 230 ×

130 for T2w imaging; TR 6,000ms, TE 120ms, TI 2,000ms,
and matrix: 192 × 115 for T2 FLAIR imaging. The T1w, T2w,
and T2 FLAIR imaging sequences on the 1.5T scanner used
the following parameters: FOV: 230 × 182mm, slice thickness:
5.5mm, slice gap: 1.0mm, NEX: 1. T1c imaging on the 1.5T
and 3.0T MRI scanners was performed after the administration
of Gadolinium-Diethylenetriaminepentaacetic Acid (Gd-DTPA)
(Kangchen Company, Guangzhou, China) or Gd diamine (GE
Pharmaceuticals, USA) at a dose of 0.1 mmol/kg body weight.

Tumor Segmentation
All images were saved as Digital Imaging andCommunications in
Medicine (DICOM) and imported into the ITK-SNAP software
(version 3.8.0, http://www.itksnap.org) for segmentation. Some
studies have shown that one slice (2D) with the largest

cross-section of the tumor and the entire tumor volume (3D) for
segmentation has comparable diagnostic performance, and there
are also some studies that use one slice for tumor segmentation
(17–20). So, in this study, the regions of interest (ROIs) were
manually segmented (Figure 2) on the axial slice with the largest
cross-section of the tumors on T2w, T2 FLAIR, and T1c images
by two authors (S Wu and P He, with 4 and 6 years of diagnostic
experience in neuroradiology, respectively) who were blinded to
histological results.

The final ROIs were calculated using the overlapping
segmentations generated by the two authors. If the overlap rate
was <90%, the ROI was defined by L Cheng, who had >10
years of diagnostic experience in neuroradiology (16, 21). The
ROIs included cystic and necrotic components which may reflect
tumor heterogeneity.

Imaging Feature Extraction
A total of 1,316 texture parameters were extracted from T2w,
T2 FLAIR, and T1c images using the open-source package
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FIGURE 3 | Images of patients with midline gliomas. T2w (A), T2 FLAIR (B), and T1c (C) images of a 34-year-old man with a pontine diffuse midline glioma with a H3

K27M mutation (WHO 4), and histopathology of diffuse astrocytoma. He underwent a biopsy and was treated with radiotherapy and chemotherapy. The overall

survival of the patient was 4.4 months. T2w (D), T2 FLAIR (E), and T1c (F) images of a 33-year-old man with corpus callosum diffuse astrocytoma (WHO 2). He

underwent a biopsy and was treated with radiotherapy and chemotherapy. The overall survival of the patient was 39 months (up to October 2020).

Pyradiomics (version 3.0.1, https://github.com/Radiomics/
pyradiomics) on Python (version 3.5.6, https://www.python.
org) and included first-order statistical features, shape features,
gray level co-occurrence matrix, gray level dependence matrix,
gray level run length matrix, gray level size zone matrix, and
neighboring gray tone dependence matrix (22). The median and
block methods were used to replace missing values and outliers.

Data Cohort Division and Preprocessing
Data were randomly divided into training (70%; 59 patients
including the long-term group 31 patients and the long-term
group 28 patients) and test (30%; 25 patients including the long-
term group13 patients and the long-term group 12 patients)
cohorts. All features extracted from the ROIs were normalized
using Z-scores.

Feature Dimensionality Reduction and
Selection of Optimal Features
The variance method was used to calculate the variance of
features extracted from imaging.When the variance of the feature
was 0, the feature was removed. The maximum relevance and
minimum redundancy (mRMR) method was used to select the
best non-redundant features from the extracted features.

Radiomics Feature Model and Evaluation
Logistic regression was used to establish the model. According to
the best features of the T2w, T2 FLAIR, and T1c images, three

models for T2w, T2 FLAIR, and T1c images and one combined
model (T2w + T2 FLAIR + T1c) were constructed. Receiver
operating characteristic (ROC) curve analysis and decision curve
analysis (DCA) were used to assess the performance of the
models (Figure 2).

Statistical Analysis
All statistical analyses were performed using R (version 3.5.1,
http://www.R-project.org) and Python (version 3.5.6, https://
www.python.org/). Chi-squared or Fisher’s exact tests were used
for nominal variables. Kruskal–Wallis H tests were used for
ordinal variables. Student’s t-tests were used for continuous
variables. The variance method and mRMR were used for
feature dimensionality reduction. Logistic regression was used
to establish the model and construct a nomogram. ROC curve
analysis was used to assess the established models according
to accuracy (AC), area under the curve (AUC), sensitivity, and
specificity values. DCAwas used to evaluate the application value
of the models. A p < 0.05 was considered statistically significant.

RESULTS

Patient Characteristics
A total of 84 patients with a midline glioma were enrolled in the
study (62 men and 22 women; mean age 27.73 ± 16.36 years;
range 1–63 years). The clinical characteristics of the long-term
and short-term groups are shown in Table 1, Figure 3. There
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TABLE 2 | Clinical characteristics of 84 patients in the training and test cohorts.

Variable Cases Training cohort Test cohort Statistical value p-value

Men 62 45 (76.27%) 17 (68.0%) 0.621 0.431

Women 22 14 (23.73%) 8 (32.0%)

Age 84 29.15 ± 17.07 24.36 ± 14.29 −1.232 0.222

Age (< 18 years) 27 18 (30.51%) 9 (36.0%) 0.243 0.622

Age (≥ 18 years) 57 41 (69.49%) 16 (64.0%)

Tumor classification

WHO* 1 14 8 (13.56%) 6 (24.0%) 0.146 0.703

WHO 2 21 15 (25.42%) 6 (24.0%)

WHO 3 19 16 (27.12%) 3 (12.0%)

WHO 4 30 20 (33.90%) 10 (40.0%)

H3 K27M-mutation 45 30 (50.85%) 15 (60.00%) 0.591 0.442

H3 K27M wild-type 39 29 (49.15%) 10 (40.00%)

Tumor location

Sellar region 4 4 (6.78%) 0 1.53 0.216

Basal ganglia 4 4 (6.78%) 0

Brainstem 32 21 (35.59%) 11 (44.0%)

Corpus callosum 8 7 (11.86%) 1 (4.0%)

Thalamus 31 20 (33.90%) 11 (44.0%)

Cerebellar vermis 5 3 (5.08%) 2 (8.0%)

Operation

Biopsy 21 17 (28.81%) 4 (16.0%) 3.767 0.052

Partial resection 31 23 (38.98%) 8 (32.0%)

Subtotal resection 23 15 (25.42%) 8 (32.0%)

Total resection 9 4 (6.78%) 5 (20.0%)

Treatment

Radiotherapy 55 43 (72.88%) 12 (48.0%) 4.809 0.028

Without Radiotherapy 29 16 (27.12%) 13 (52.0%)

Chemotherapy 38 30 (50.85%) 8 (32.0%) 2.172 0.141

Chemotherapy + targeted therapy 11 8 (13.56%) 3 (12.0%)

Without chemotherapy 35 21 (35.59%) 14 (56.0%)

OS** 84 14.48 ± 12.20 15.45 ± 13.89 0.32 0.75

*World Health Organization.

**Overall survival.

was a significant difference in radiotherapy between the long-
term group and the short-term group (p = 0.002). The patients
withH3K27Mmutation in short-term group outnumbered those
in long-term group significantly (p = 0.001). There was also a
significant difference in OS between the short-term and long-
term groups (5.16 ± 5.38 months vs. 25.34 ± 9.46 months, p <

0.001). The clinical characteristics of the training and test cohorts
are shown in Table 2. The patients who underwent radiotherapy
in the training outnumbered those in the test cohort significantly
(p= 0.0028).

Feature Selection and Model Comparison
The extracted texture parameters needed to be normalized and
standardized to reduce bias due to themissing values and outliers.
The best non-redundant features were then selected from the
extracted features using the variancemethod andmRMR. Finally,
five features were extracted each from T2w, T2 FLAIR, and T1c
images, and 12 features were extracted for the combined model
(Table 3).

The three separate models and the combined model
performed well on both the training and test cohorts, shown by
the high AC. The performance of each model on the training and
test cohorts, respectively, were: T2w: AUC= 0.86 vs. 0.734, AC=

0.84 vs. 0.72; T2 FLAIR: AUC= 0.89 vs. 0.78, AC= 0.90 vs. 0.76;
T1c: AUC = 0.84 vs. 0.74, AC = 0.76 vs. 0.72; combined model:
AUC= 0.96 vs. 0.87, AC= 0.93 vs. 0.84 (Table 4). The combined
model had the best performance. The ROC curves of the T2w, T2
FLAIR, T1c, and combined models are shown in Figure 4. DCA
of the four models showed that the combined model offered the
largest net benefit (Figure 5). The radiomics nomogram of the
combined model applied to the training cohort showed that it
directly predicted the probability of OS > 12 months in patients
with midline gliomas (Figure 6).

DISCUSSION

In this study, for the reproducibility and replicability of feature
extraction, we used an open-source Pyradiomics 3.0.1 package
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of Python to calculate the features. To minimize the bias
stemming from the use of data acquired at a single center
and parameters of a single machine, we collected MRI data

TABLE 3 | Best characteristic parameters of the four models.

Dataset Number Characteristic parameters

T2w 5 T2w_wavelet.HLL_first order_10 Percentile

T2w _exponential_glszm_Gray Level NonUniformity

T2w _gradient_glcm_MCC

T2w _exponential_glcm_Inverse Variance

T2w_wavelet.LHH_glszm_Low Gray Level Zone

Emphasis

T2 FLAIR 5 T2 FLAIR_square_glszm_Small Area Low Gray Level

Emphasis

T2 FLAIR_wavelet.HLH_first order_Skewness

T2 FLAIR_wavelet.LHH_gldm_Small Dependence

High Gray Level Emphasis

T2 FLAIR_wavelet.HHH_glszm_High Gray Level

Zone Emphasis

T2 FLAIR_wavelet.HHL_glcm_MCC

T1c 5 T1c_exponential_glszm_Small Area Low Gray Level

Emphasis

T1c _wavelet.HHH_glcm_Cluster Shade

T1c _logarithm_glszm_Gray Level NonUniformity

T1c _wavelet.LHH_gldm_Large Dependence High

Gray Level Emphasis

T1c _wavelet.LHH_glszm_Gray Level Variance

Combined model 12 T1c_exponential_glszm_Small Area Low Gray Level

Emphasis

T2 FLAIR_square_glszm_Low Gray Level Zone

Emphasis

T2 FLAIR_wavelet.HLH_first order_Skewness

T2w_exponential_glszm_Gray Level NonUniformity

T2 FLAIR_gradient_glszm_Small Area Low Gray

Level Emphasis

T1c_wavelet.HHH_glcm_ClusterShade

T2 FLAIR_wavelet.HHH_glszm_High Gray Level

Zone Emphasis

T2w_wavelet.LHH_glszm_Low Gray Level Zone

Emphasis

T2w_wavelet.HLL_gldm_Dependence

NonUniformity Normalized

T1c_wavelet.HLH_glszm_High Gray Level Zone

Emphasis

T2w_gradient_glcm_MCC

T2w_exponential_glcm_Inverse Variance

from different suppliers and different imaging protocols to
recognize the diversity of data. Finally, we obtained optimal
radiomics characteristics of T2w, T2 FLAIR, and T1c images to
construct four models to non-invasively predict the prognosis
of patients with midline gliomas. We compared the four
models in terms of ROC curve, AUC, AC, sensitivity, and
specificity and found that all models performed well on both
the training and test cohorts, showing high AC. Among these,
the combined model had the best performance. Moreover,
DCA showed that the combined model offered the highest
net benefit and application value. Our results demonstrate the
feasibility of evaluating prognoses of patients with midline
gliomas using traditional MRI radiomics. Furthermore, the
fusion of radiomics characteristics obtained from different
imaging sequences may improve the performance of the
predictive model.

Numerous studies have shown that a single radiomics
predictive model performs worse than a fusion radiomics model.
Fusion radiomics models perform better and include more
useful features, demonstrating the multimodal images play an
important role in the prognostic evaluation of gliomas (23, 24).
In this study, we constructed a machine learning model based
on multi-parameter MRI data to predict the OS of patients with
midline gliomas. Our results also showed that the fusion model
performed better than the single radiomicsmodel. In our training
cohort, the combined model included 12 radiomics features
(three features from T1c data, four features from T2 FLAIR data,
and five features from T2w data), which were mainly derived
from second- and higher-order texture features. The higher-
order texture features can capture deeper imaging heterogeneity
and provide information on tissue microstructure and local
tumor microenvironment, which can help predict patient
survival time (25, 26). Higher-order radiomics characteristics
have also been shown to be closely related to genetic changes
in tumors (6, 27–31). Five features in our combined model
come from T2w, indicating that T2w images may provide more
valuable texture features than T2 FLAIR and T1c images for
evaluating survival time, which may explain why most studies
prefer T2w sequences as the first choice for separate or joint
analyses (26). However, T2 FLAIR and T1c images can offer
additional details to the model and are thus indispensable
(6, 27, 28). Therefore, we chose these three sequences. In
addition, we applied the 12 features of the combined model to

TABLE 4 | Comparison of the diagnostic efficiency between the four models.

Dataset AUC (95% CI) Accuracy Sensitivity Specificity

T2w Training cohort 0.859 (0.764–0.955) 0.814 0.857 0.774

Test cohort 0.737 (0.537–0.937) 0.72 0.917 0.538

T2 FLAIR Training cohort 0.888 (0.798–0.979) 0.898 0.929 0.871

Test cohort 0.776 (0.582–0.969) 0.76 0.583 0.923

T1c Training cohort 0.844 (0.743–0.945) 0.763 0.786 0.742

Test cohort 0.737 (0.532–0.942) 0.72 0.917 0.538

Combined model Training cohort 0.961 (0.904–1.0) 0.932 0.893 0.968

Test cohort 0.865 (0.722–1.0) 0.84 0.667 1.0
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FIGURE 4 | The receiver operating characteristic curves of the four models for the training (A) and test (B) cohorts. The combined model (red line) applied to the

training and test cohorts had the best performance.

FIGURE 5 | Decision-curve analysis of the four models. The x-axis represents

the threshold probability, and the y-axis represents the net benefit. The

combined model (red line) had a higher net benefit and better application value

for predicting the survival time of patients with midline gliomas.

the nomogram, which enabled a more intuitive prediction of
survival time.

To the best of our knowledge, the H3 K27M mutation, an
independent prognostic factor, is common in midline gliomas.

Several studies on the prediction of H3 K27M mutation
status using machine learning based on radiomics features
extracted from MRI data have been conducted to date. Su
et al. (32) retrospectively studied 100 patients with midline
gliomas and built 10 models using the Tree-based Pipeline
Optimization Tool-based automatedmachine learning algorithm
with radiomics features extracted from T2 FLAIR images. The
AC of the best pipeline ranged from 0.788 to 0.867 in the
training cohort and from 0.60 to 0.84 in the testing cohort.
Pan et al. (14) retrospectively evaluated 151 brainstem gliomas
and built a prediction model that incorporated 36 MRI features
and three clinical features using a random forest algorithm.
The model achieved an AC of 84.44% in the test cohort.
Moreover, they constructed a simplified model that achieved
an AC of 75.55% in the test cohort. Kandemirli et al. (33)
developed an extreme gradient boosting algorithm classifier
based on machine learning to predict the H3 K27M mutation
using conventional MRI sequences. The model had an AUC
of 0.791 in the training set and 0.737 in the test set, and
the AC of the model was 73% in the test set. Furthermore,
Li et al. (34) explored visually accessible MRI features of 30
patients with DMGs with and without the H3 K27M mutation
using principal component analysis based on radiomics and
found that T2w sequences may be more valuable and that cystic
formation may be a biomarker for diagnosing DMGs with an H3
K27Mmutation.

In addition to predicting the mutation status of H3 K27M,
several researchers have evaluated the OS of patients with
midline glioma using texture analysis. Szychot et al. (35)
retrospectively analyzed 32 children with DMGs using a T2w
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FIGURE 6 | Nomogram of the combined model. A vertical line was drawn from each predictor to the point to obtain the score of the predictor. The scores of each

predictor are then added, and a vertical line is drawn from the total score to the survival probability axis. The total score corresponds to the probability of >12 months

survival.

imaging and apparent diffusion coefficient map-based texture
analysis to predict outcomes of patients with DMG and
found that the best predictor was mean of positive pixels,
which could divide patients into poor and good prognosis
groups according to a median survival time of 7.5 and
17.5 months, respectively. In this article, we included a
larger number of cases to predict the OS of midline glioma
patients using machine learning based on multiparametric MRI
radiomics features, and our ACs were similar to those of the
abovementioned machine learning studies. Thus, our model may
offer an alternative method to predict the OS of patients with
midline gliomas.

The current study has several limitations. First, a relatively
small sample size and lack of an independent external test dataset
in this study, which we will take as the key work in the next
step. Second, the use of a single center may have introduced
some bias. The next step is to conduct a multicenter study to
improve the performance of the predictive model using more
data. Third, only one method was used to build the model. If
multiple methods were used to build and verify the models,
a better model could be developed with improved AC. Forth,
the patients who underwent radiotherapy in the long-term
group are more than those in the short-term group, and some
RT patients were treated with chemotherapy and/or targeted
therapy at the same time, so it cannot be simply considered
that RT can better predict the survival. In the next step, more
cases need to be collected for subgroup analysis to detect the
impact of RT on predicting the survival of DMG. Fifth, At
present, there are many methods for extracting image features,
such as local binary pattern (LBP), local ternary pattern (LTP),
histogram of oriented gradients (HOG), etc. We used only one
conventional method for feature extraction in this study due to
the issues with overfitting and related techniques, In the future,
we will try to use more methods to extract image features for
further research.

Our radiomics model based on traditional MRI sequence data,
especially the fusion radiomics model, may offer a reliable and
non-invasive method to predict the survival time of patients

with midline gliomas. Although there are several limitations,
our findings provide a reference for the preoperative prediction
and individualized treatment of gliomas as well as for further
radiomics research on midline gliomas.
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